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ABSTRACT

Let (A, ℓ) be a Weil-Frobenius algebra, M a smooth manifold. In this paper, we study the
prolongations of generalized metallic structures on manifold M to its Weil bundle TAM and
we investigate some of their properties. In particular, we study the prolongation of calibrated
generalized product structures and calibrated complex structures induced by metallic structures
on M .
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1. INTRODUCTION

Let M be a manifold of dimension m > 0. By πM : TM →M we denote the tangent bundle and by π∗ :
T ∗M →M the cotangent vector bundle. the concept of generalized geometry was originally introduced by N.
Hitchin in [12] (as the differential geometry resulting from replacing the tangent bundle TM of a manifold
M with the direct sum of the tangent and cotangent bundles TM ⊕ T ∗M ) in order to unify complex and
symplectic geometry. The particular case of this concept named generalized metallic structure has been defined
and studied by A.M. Blaga and A. Nannicini in [2]. They defined the generalized metallic structure on M as an
endomorphism Λg : TM = TM ⊕ T ∗M → TM = TM ⊕ T ∗M satisfying

(Λg)
2
= pΛg + qid

for some real numbers p and q.
On the other hand, for a given linear connection ΓTM on vector bundle (TM →M) whose associated

covariant derivative is ∇TM , we consider the bracket [·, ·]ΓTM on the C∞(M)-module Γ(TM) ∼= Γ(TM)⊕
Γ(T ∗M) of sections of (TM →M) defined for any (X,ω), (Y,ϖ) ∈ Γ(TM)⊕ Γ(T ∗M) (see [2])by

[(X,ω), (Y,ϖ)]ΓTM =

(
[X,Y ],∇T∗M

Xϖ −∇T∗M
Y ω

)
where ∇T∗M is the covariant derivative induced by ∇TM and defined by

∇T∗M : Γ(TM)× Γ(T ∗M) → Γ(T ∗M),
(
∇T∗M

Xϖ
)
(Y ) = X

(
ω(Y )

)
− ω

(
∇TM

XY
)
.

The authors of [2] said that the generalized metallic structure Λg onM is ΓTM -integrable if its Nijenhuis tensors
field NΓTM

Λg
with respect to ΓTM ,

NΓTM

Λg
(σ, σ̃) = (Λg)

2[σ, σ̃]ΓTM + [Λgσ,Λgσ̃]ΓTM − Λg[Λgσ, σ̃]ΓTM − Λg[σ,Λgσ̃]ΓTM
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vanishes for all σ, σ̃ ∈ Γ(TM).
It is known that the simplest example of the product preserving bundle functor on the category Mf is a

jet functor T r
p . When p = 1, it is denoted by T r and is called tangent functor of order r from the category Mf

of differential manifolds to the category FM of smooth fibered manifolds which preserves the products. In
[16], the authors have proved that any bundle functor form Mf to FM which preserves the products is a Weil
functor. In other terms, the theory of Weil bundles represents a unified technique for studying a large class of
geometric problems associated with product preserving functor. For all this reasons, we generalized the work
of [25] by replacing the tangent functor of higher order by any Weil functor defined by the Weil-Frobenius
algebra (A, ℓ) and we study some properties as in [25]. The research of this paper was motivated by the works
of M. Doupovec, M. Kures and P.M. Kouotchop W.(see [6]-[17]).

So, the paper is organized as follows: In section 2, we recall briefly some results of [14]-[6] and [18] about the
notion of Weil algebras, Weil-Frobenius algebras and Weil-Frobenuis functor. In section 3, we review some
results about the prolongation of some tensor fields to Weil bundles. In section 4, the concept of metallic
structures and generalized metallic structures is discuss and some properties are recall as in [2]. In the last
section, some properties of the prolongation of generalized metallic structures related to Weil bundles are
established witch generalized some similar results established in [25].

2. Preliminaries

2.1. Weil algebras

A Weil algebra A (initiated by A. Weil in 1953 to introduce the bundle TAM of infinitely point of type
A over a manifold M ) is a finite dimensional real commutative, associative and unital algebra of the form
A = R · 1A ⊕NA, where NA is the ideal of nilpotent elements of A (see [14]-[15]-[16]). The simplest example of
Weil algebras is

Dr
k = R[x1, x2, · · · , xk]/(x1, x2, · · · , xk)r+1 = Jr

0

(
Rk,R

)
where R[x1, x2, · · · , xk] is the algebra of all polynomials on k undetermined. In particular, D1

1 = D is the
classical algebra of dual (or Study) numbers. The ideal of nilpotent elements of Dr

k is the finite vector space
Jr
0

(
Rk,R

)
0
.

Let A = R · 1A ⊕NA be a Weil algebra, we will adopt the covariant approach of Weil functor described by
I. Kolar in [14]. Let Nk

A be the ideal generated by the product of k elements of NA, there is one and only one
natural number r such that Nr

A ̸= 0 and Nr+1
A = 0. In this case, the integer r is called the order ord(A) of A and

the dimension k of the vector space NA/N
2
A is said to be the width wA of A. Hence, a Weil algebra A of order r

and width k will be called Weil (k, r)-algebra. We have the following results established in [14]

Proposition 2.1. Every Weil (k, r)-algebra is a factor algebra of Dr
k.

Proof. See [14].

Proposition 2.2. If ρ, ρ̃ : Jr
0

(
Rk,R

)
→ A are two surjective algebra homomorphisms, then there is an algebra

isomorphism ν : Jr
0

(
Rk,R

)
→ Jr

0

(
Rk,R

)
such that: ρ̃ ◦ ν = ρ.

Proof. See [14].

We say that, two maps φ, φ̃ : Rk →M determine the same A-velocity if for every smooth map f :M → R,
one has

ρ (jr0 (f ◦ φ)) = ρ (jr0 (f ◦ φ̃))

This condition is independent of the choice of ρ. We also say that φ and φ̃ determine the same A-jet. The
equivalence class of the map φ : Rk →M is denoted by jAφ and will called A-velocity at 0 (see [14]-[15]-[16]
for more details). In [14], one has the following result

Proposition 2.3. The space {jAφ, φ : Rk →M} of all A-velocities on M coincides with the smooth manifold TAM of
dimension m× dimA.

Proof. See [14].
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Hence, it is clair that TAR ∼= A.
We denote by πA

M : TAM →M, jAφ 7→ φ(0) the natural projection so
(
TAM,M,πA

M

)
is a well-defined fibered

manifold. If f :M1 →M2 is a smooth map, then it induces a smooth map

TAf : TAM1 → TAM2, j
Aφ 7→ jA(f ◦ φ)

In particular
(
f, TAf

)
is a fibered morphism from

(
TAM1,M1, π

A
M1

)
to

(
TAM2,M2, π

A
M2

)
. This defines a bundle

functor TA : Mf → FM on the category Mf of all manifolds with values in the category FM of smooth
fibered manifolds which is called the Weil functor induced by A. The bundle functor TA preserves product in
the sense, that for any smooth manifolds M1 and M2, the map

(TApr1, T
Apr2) : T

A(M1 ×M2) → TAM1 × TAM2

(where pri :M1 ×M2 →Mi i=1,2 is the projection) is an FM−isomorphism. Hence we can identify TA(M1 ×
M2) with TAM1 × TAM2.

Let B be another (p, d) Weil algebra and µ : A→ B be an algebra homomorphism, ρ̃ : Jd
0 (Rp,R) → B the

surjective algebra homomorphism. Then there is an algebra homomorphism µ̃ : Jr
0

(
Rk,R

)
→ Jd

0 (Rp,R) such
ρ̃ ◦ µ̃ = µ ◦ ρ. In particular, there is map fµ : Rp → Rk such that, µ̃ (jr0g) = jd0 (g ◦ fµ), where g ∈ C∞ (

Rk
)
. For

any manifold M of dimension m ≥ 1, there is smooth map µM : TAM → TBM defined by:

µM

(
jAφ

)
= jB (φ ◦ fµ)

More precisely, µM : TAM → TBM is the value of the natural transformation determined by µ on M [15].
Weil functors generalize through their covariant description the tangent functors, more precisely, when A is

the space of all r-jets of Rk into R with source 0 ∈ Rk denoted by Jr
0

(
Rk,R

)
, the corresponding Weil functor is

the functor of (k, r)-velocities and denoted by T r
k . For k = 1, it is called tangent functor of order r and denoted

by T r, this functor plays an essential role in hamiltonian mechanic. The particular importance of Weil functors
in differential geometry comes from the fact there is a bijective correspondence between them and the set of
product preserving bundle functors on the category of smooth manifolds ([16]).

2.2. Weil-Frobenius algebras and Weil-Frobenius functors

A Weil algebra A = R · 1A ⊕NA is called a Weil-Frobenius algebra, if there is a symmetric nondegenerate
bilinear form ξ on A such that

ξ(ab, c) = ξ(a, bc) (2.1)

for all a, b, c ∈ A. This bilinear form is called the Frobenius form of the algebra A. Equivalently, A is a Weil-
Frobenius algebra if there exists a linear map ℓ : A→ R such that ker(ℓ) contains nonzero ideal of A. More
precisely, when ξ is given, ℓ is defined by ℓ(a) = ξ(a, 1A) (such that ℓ(ab) = ξ(a, b), for all a, b ∈ A) and when ℓ
is given, the map ξ defined by ξ(a, b) = ℓ(ab) is bilinear symmetric and verify the relation (2.1). The linear form
ℓ : A→ R is nondegenerate if the bilinear symmetry form ξ : A×A→ R, (a, b) 7→ ℓ(ab) is non degenerate.
Hence, it follows that a Weil-Frobenius algebra is also a pair (A, ℓ) where A is a Weil algebra on which there
exists a linear and nondegenerate form ℓ.

Example 2.1. The pair
(
Dr

1, τr) is a Weil-Frobenius algebra where τr is the linear form on Dr
1 defined

τr : Dr
1 → R

jr0φ 7→ 1

r!

dr

dtr
(φ(t))|t=0.

A Weil-Frobenius functor is a Weil functor TA associated to a Weil-Frobenius algebra A. From the preserving
of Weil property for tensor product, it follows that if TA and TB are Weil-Frobenius functors, then their iteration
TA ◦ TB and fiber product TA ⊕ TB are Weil-Frobenius functor where TA ⊕ TB is defined for all M ∈ Mf and
f ∈ C∞(M) (See [6])by

TA ⊕ TB(M) = TAM ×M TBM and TA ⊕ TB(f) = TAf × TBf

dergipark.org.tr/en/pub/iejg 16
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2.3. Local coordinate system

LetM be and smooth manifold and
(
A = R · 1A ⊕NA, ℓ

)
a Weil-Frobenius algebra . For any h ∈ C∞(RwA,M)

and any local chart (U, ui) of M in h(0), one has

jA(ui ◦ h) = ui ◦ h(0) · 1A +
∑

1≤|α|≤ord(A)

1

α!
Dα(u

i ◦ h)(0)jA(xα).

It follows that the subset {dα = jA(xα) : 1 ≤ |α| ≤ ord(A)} of is the ideal NA which generates NA. We denote
by ℜ the subset of {α ∈ NwA : 1 ≤ |α| ≤ ord(A)} such that {dα : α ∈ ℜ} is a basis of NA and ℜc = NwA \ ℜ. For
β ∈ ℜc, one has dβ =

∑
γ∈ℜ

λγβdγ . Hence

jA(ui ◦ h) = ui(h(0)) · 1A +
∑
α∈ℜ

(
1

α!
Dα(u

i ◦ h)(0) +
∑
γ∈ℜc

λαγ
γ!
Dγ(u

i ◦ h)
)
dα.

Therefore, the coordinates system (ui0, u
i
α) of TAM over TAU is such that

ui0 = ui ◦ πA
M and uiα = uiα +

∑
γ∈ℜc

λαγu
i
γ

where uiα(jAf) =
1
α!Dα(ui ◦ f)(0), ∀ jAf ∈ TAU . In the particular case whereA = D, the local coordinate system

of TM induced by
(
U, ui

)
is denoted by

(
ui ◦ πM , u̇i

)
.

2.4. Canonical flow natural equivalence and natural isomorphism εℓA,M : TAT ∗M → T ∗TAM

LetA andB be two Weil algebras which widths are respectivelywA andwB. The Weil algebra corresponding
to the iteration TA ◦ TB of the two Weil functors TA, TB : Mf → FM is in general B ⊕A. The exchange
homomorphism ex : B ⊕A→ A⊕B induces the following natural transformation

exM : TATBM → TBTAM

Let t ∈ RwA and z ∈ RwB , then every ς ∈ TATBM is of the form

ς = jA
(
t 7→ jB

(
z 7→ Ψ(t, z)

))
,

where Ψ : RwA ×RwB →M . Hence,

exM (ς) = jB
(
z 7→ jA

(
t 7→ Ψ(t, z)

))
. (2.2)

In the particular case where TB = T i.e B = D ( which means that wB = 1), write κA for ex : D⊕A→ A⊕D.
Remarking that (TATM → TAM) and (TTAM → TAM) are vector bundles, we deduce form (2.2) that

κAM : TATM → TTAM

is a VB-morphism over TAM . For any smooth vector field X in M , one can define its flow prolongation

FAX : TAM → TTAM, u 7→ ∂

∂t
TA(exp(tX))(u),

where exp(tX) denoted the flow of X . On the other hand, we deduce from (2.2) that FAX = κAM ◦ TAX where
TAX : TAM → TATM (see [15]). This show that κAM is the flow natural exchange called the canonical flow
natural equivalence related to Weil functor TA.

For any vector bundle (E →M) and any linear map ℓ : A→ R, we consider the vector bundle morphism
over idTAM

ζℓA,E : TAE∗ → (TAE)∗

17 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Prolongation of Generalized Metallic Structures Related to Weil Bundles

defined for jAϕ ∈ TAE∗ and jAψ ∈ TAE by

ζℓA,M (jAϕ)(jAψ) = ℓ
(
jA(⟨ψ, ϕ⟩E)

)
,

where ⟨ψ, ϕ⟩E : RwA → R, z 7→ ⟨ψ (z) , ϕ (z)⟩E and ⟨·, ·⟩E the canonical pairing ([18]).
For any manifold M of dimension m, we consider the vector bundle morphism

εℓA,M =
[
(κAM )−1

]∗ ◦ ζℓA,TM : TAT ∗M → T ∗TAM.

It is clear that the family of maps
(
εℓA,M

)
defines a natural transformation between the functors TA ◦ T ∗ and

T ∗ ◦ TA on the category Mfm of m-dimensional manifolds and local diffeomorphisms, denoted by εℓA,∗ :

TA ◦ T ∗ → T ∗ ◦ TA. When (A, ℓ) is a Weil-Frobenius algebra (see [6]), the mapping εℓA,M is an isomorphism
of vector bundles over idTAM .

3. Prolongation of some tensor fields

3.1. Natural transformations χ(α) : TA → TA

Let TA : Mf → FM be a Weil functor associated to a Weil algebra A and (q : E →M) a vector bundle.
Similarly to what is done in [19], let’s denote µE : R× E → E, (x, eu)(∈ R× Eu) 7→ x · eu ∈ Eu the fibered
multiplication. This is a vector bundle morphism over the projection R×M →M . Hence, for any a ∈ A, we
have a natural transformation Q(a) : TA → TA given by the partial maps

TAµE(a, ·) : TAE → TAE.

When dα = jA(zα), α ∈ NwA, the natural transformation Q(dα) is denoted χ(α) : TA → TA. Hence, for all
φ ∈ C∞(RwA, E), one has

χ
(α)
A,E(j

Aφ) = jA(zαφ)

where zαφ is the smooth map defined for any z ∈ RwA by (zαφ)(z) = zαφ(z).
The maps Q(a)M = κAM ◦Q(a)TM ◦ (κAM )−1 define the natural affinor Q(a) : TTA → TTA associated to a ∈ A
(see [7]).

For each multi-index α ∈ NwA, we consider the map

χ
(α)
A,E⊕E∗ : TA(E ⊕ E∗) → TA(E ⊕ E∗), jA(φ1, φ2) 7→ (jA(zαφ1), j

A(zαφ2)),

where (E∗ →M) is the dual bundle of (E →M). It is clair that

χ
(α)
A,E⊕E∗ = χ

(α)
A,E ⊕ χ

(α)
A,E∗ .

3.2. Lifts of functions

Let υ : A→ R be a smooth function, for any smooth function f :M → R, we define the υ-lift of f to TAM by:

f (υ) = υ ◦ TA (f)

f (υ) is a smooth function on TAM . One verifies easily that the map

C∞ (M) → C∞ (
TAM

)
f 7→ f (υ)

is R-linear.
Remark 3.1. Let (d0 = 1A, dβ)β∈ℜ a basis of A and

(
d∗0, d

∗
β

)
β∈ℜ its dual basis . For υ = d∗α, the smooth function

f (υ) is denoted by f (α) and is defined for any jAφ ∈ TAM by

f (α)
(
jAφ

)
= 1

α!Dα (f ◦ φ) (z) |z=0 +
∑
β∈ℜc

λα
β

β! Dβ (f ◦ φ) (z) |z=0

with the convention f (γ) = 0 for γ ∈ ZwA \ (ℜ ∪ {0}). f (0) = f ◦ πA
M is called the complete lift of f and is denoted

f c. In particular when
(
U, ui

)
is a local coordinate system in M , the adapted local coordinate system

{
ui0, u

i
α

}
on TAM is such that, ui0 = ui ◦ πA

M and uiα =
(
ui
)(α).
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For any β ∈ ℜ, f ∈ C∞(M) and jAφ ∈ TAM , one has

d∗β
(
jA(zα · (f ◦ φ))

)
=

1

(β − α)!
Dβ−α(

1

α!
f ◦ φ) |z=0 +

∑
γ∈ℜc

λβγ−α

(γ − α)!
Dγ−α(

1

α!
f ◦ φ) |z=0 .

Hence, we define a function f
(β−α)

on TAM by

f
(β−α)

(jAφ) = d∗β
(
jA(zα · (f ◦ φ))

)
.

When α = 0, one has f
(β)

= f (β).

3.3. Prolongations of sections

For a smooth section σ :M → E of a vector bundle (E →M), its α-prolongation (α ∈ NwA such that 1 ≤ |α| ≤
ord(A)) related to a Weil functor TA is given by

σ(α) = χ
(α)
A,E ◦ TAσ

with the convention σ(γ) = 0, ∀γ ∈ ZwA \ (ℜ ∪ {0}).
Proposition 3.1. σ(α) is a section of the vector bundle (TAE → TAM).

In the particular case where E = TM and X ∈ Γ(TM), one has

X(α) := κAM ◦ χ(α)
A,TM ◦ TA (X)

It is a vector field on TA (M) called α-prolongation of X to TAM . In the particular case where α = 0, the
vector field X(0) is denoted by X(c) and it is called complete lift of X from M to TAM . By convention we put
X(γ) = 0, ∀γ ∈ ZwA \ (ℜ ∪ {0}).
Remark 3.2. For any |α| ≤ ord(A), the map

X (M) → X
(
TAM

)
, X 7→ X(α)

is R-linear and for any smooth map h :M → N and any h-related vector fields X ∈ Γ(TM), Y ∈ Γ(TN), the
vector fields X(α) ∈ Γ

(
TAM

)
, Y (α) ∈ Γ

(
TAN

)
are TA (h) related. The set {X(α) : 1 ≤ |α| ≤ ord(A)} generates

the C∞(TAM)-module Γ(TAM) of vector fields on TAM ([16]).

Proposition 3.2. For any X,Y ∈ Γ(TM), f ∈ C∞(M) and |α, β| ≤ ord(A), one has

(i) X(α)(f
β)
) = (X(f))

(β−α)
.

(ii)
[
X(α), Y (β)

]
= [X,Y ]

(α+β).

Proof. See [7].

For additional properties of α-prolongation of X , see [7]-[17].

3.4. Prolongation of 1-forms

Let ω ∈ Γ(T ∗M) be a 1-form on M and α ∈ NwA a multi-index such that |α| ≤ ord(A). We set

ω(α) = εℓA,M ◦ χ(α)
A,T∗M ◦ TAω. (3.1)

ω(α) is clearly a 1-form on TAM called the α-prolongation of ω to TAM . [18].
The following remark is due to Wamba and Ntyam, [17]

Remark 3.3. For any |α| ≤ ord(A), the map

Γ(T ∗M) → Γ
(
T ∗TAM

)
, ω 7→ ω(α)

is R-linear. For any ω ∈ Γ(T ∗M) and X ∈ Γ(TM), one has

ω(α)(X(β)) =
∑
γ∈ℜ

ℓγ
(
ω(X)

)(γ−α−β)
,

and the set {ω(α) : 1 ≤ |α| ≤ ord(A)} generates the C∞(TAM)-module Γ(T ∗TAM).
To learn more about the properties of α-prolongation of ω, see [7]-[17].
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3.5. Lifts of tensor fields of type (1, q).

Let S be a tensor field of type (1, q), we interpret the tensor S as a q-linear mapping S : TM ×M · · · ×M TM →
TM of the bundle product over M of q copies of the tangent bundle TM . For all 0 ≤ |α| ≤ ord(A), we put:

S(α) = κA,M ◦ χ(α)
TM ◦ TA (S) ◦

(
(κAM )−1 × · · · × (κAM )−1

)
: T

(
TAM

)
×TAM · · · ×TAM T

(
TAM

)
→ T

(
TAM

)
It is tensor field of type (1, q) on TA (M) called α-prolongation of the tensor field S from M to TA (M). In the
particular case where α = 0, it is denoted by S(c) or T AS and is called complete lift of S from M to TA (M) ([3]).

The following remark is due to Gancarzewicz, Mikulski and Pogoda, [7].

Remark 3.4. The family of α-lift of vector fields is very important, because, if Ŝ and Ŝ′ are two tensor fields of
type (1, p) or (0, p) on TA (M) such that, for all X1, · · · , Xp ∈ X (M), and multi-indices α1, · · · , αp, the equality

Ŝ
(
X

(α1)
1 , · · · , X(αp)

p

)
= Ŝ′

(
X

(α1)
1 , · · · , X(αp)

p

)
holds, then Ŝ = Ŝ′ (see [7]).

Proposition 3.3. The tensor S(α) is the only tensor field of type (1, q) on TA (M) satisfying

S(α)
(
X

(α1)
1 , · · · , X(αq)

q

)
= (S (X1, · · · , Xq))

(
α+

p∑
i=1

αi

)

for all X1, · · · , Xq ∈ X (M) and multi-index α1, · · · , αq.

Proof. See [3].

Refer to [3] and [5] for a thorough examination of some of these lifts’ characteristics.

3.6. Prolongation of pseudo-Riemannian metric

Let (q : E →M) be a vector bundle. A pseudo-Riemannian metric on E is a smooth section η of vectors
bundle E∗ ⊗ E∗ →M , such that for each x ∈M , the map

ηx ∈ (E∗ ⊗ E∗)x ∼= E∗
x ⊗ E∗

x

is symmetric and nondegenerate. The pair (E, η) is called a pseudo-Riemannian vector bundle. If the bilinear
form gx are positive definite for every x ∈M , then η is called a Riemannian metric and (E, η) is called a
Riemannian vector bundle.
In particular, η is called pseudo-Riemannian metric on M when E = TM .

Proposition 3.4. There exists a Riemannian metric on every vector bundle.

Remark 3.5. Riemannian metric on vector bundles E →M and F →M induce canonical Riemannian metrics
on E∗, E ⊕ F , E ⊗ F ,

r∧
E and E/F (if F is a subbundle of E).

Consider a tensor field η of type (0, k) on a smooth manifold M seen as k-linear mapping

η : TM ×M · · · ×M TM → R,

where the k-linearity means that the restriction of η to fibers are k-linear.
If ℓ : A→ R is a linear function, we set

η(A,ℓ) := ℓ ◦ TAη ◦
(
(κAM )−1 × · · · × (κAM )−1

)
: TTAM ×TAM · · · ×TAM TTAM → R.

Hence, η(A,ℓ) is a tensor of type (0, k) on TAM , which is called the (A, ℓ)-prolongation of η to TAM .

Proposition 3.5. Let η be a tensor field of type (0, k) on a smooth manifold M , ℓ : A→ R a linear form on a Weil algebra
A. For a family of vector fields {Xi}ki=1 and a family of multi-index {αi ∈ NwA : 1 ≤ |αi| ≤ ord(A)}ki=1, one has

η(A,ℓ)(X
(α1)
1 , · · · , X(αk)

k ) =
∑
γ∈ℜ

ℓγη(X1, · · · , Xk)
(γ−

k∑
i=1

αi)
.
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Proof. Let x̃ = jAφ ∈ TAM , one has

η(A,ℓ)(X
(α1)
1 , · · · , X(αk)

k )(x̃) = ℓ

(
TAη(x̃)

(
χα1 ◦ TAX1(x̃), · · · , χαk ◦ TAXk(x̃)

))
= ℓ

(
TAη(x̃)

(
jA(zα1X1 ◦ φ), · · · , jA(zαkXk ◦ φ)

))
= ℓ

(
jA

(
zα1+···αkη(X1, · · · , Xk) ◦ φ

))
=

∑
γ∈ℜ∪{0}

ℓγd
γ

(
jA

(
zα1+···αkη(X1, · · · , Xk) ◦ φ

))

=
∑
γ∈ℜ

ℓγη(X1, · · · , Xk)
(γ−

k∑
i=1

αi)
(x̃).

We have following result due to Gancarzewicz, Mikulski and Pogoda

Proposition 3.6. Let ℓ : A→ R be a linear form on a Weil algebra A and η a pseudo-Riemannian metric on a smooth
manifold M . The (A, ℓ)-prolongation η(A,ℓ) of η is a pseudo-Riemannian metric on TAM if and only if (A, ℓ) is a Weil-
Frobenius algebra.

Proof. See [7].

3.7. Prolongation of linear connections

Given an arbitrary vector bundle (ν : E →M), a linear connection on E is a vector bundle morphism
ΓE : TM ×M E → TE over idTM and idE such that Tν ◦ ΓE = ν1, πE ◦ ΓE = ν2, where ν1, ν2 are restrictions of
canonical projection to TM ×M E. In particular, ΓE is called linear connection on M when E = TM .

Let ΓE be a linear connection on (E →M). A covariant derivative associate to ΓE is a map

∇E : Γ(TM)× Γ(E) → Γ(E), (x, σ) 7→ ∇Xσ

which is C∞(M)-linear in X , R-linear in σ and satisfies Leibnitz rule

∇E
X(f · σ) = X(f) · σ + f · ∇E

Xσ.

A connection on E with a Riemannian metric g is called a metric connection if we have

X(η(σ1, σ2)) = η(∇E
Xσ1, σ2) + η(σ1,∇E

Xσ2),

for all (X,σ1, σ2) ∈ Γ(TM)× Γ(E)× Γ(E).

Remark 3.6. (i) In case E = TM , the Riemannian connection (also called Levi-Civita connection) is the
unique connection that is metric and torsion free.

(ii) If E and F are two vector bundles on the same base manifold M with linear connections ΓE and ΓF

respectively, then these linear connections induce linear connections on the vector bundles E∗, E ⊕ F
and E ⊗ F whose covariant derivatives are respectively defined by

(∇E∗

X ω)(σ) = X(ω(σ))− ω(∇E
Xσ)

∇E⊕F
X σ1 ⊕ σ2 = ∇E

Xσ1 ⊕∇F
Xσ2

∇E⊗F
X σ1 ⊗ σ2 = (∇E

Xσ1)⊗ σ2 + σ1 ⊗∇F
Xσ2,

for all (X,ω) ∈ Γ(TM)× Γ(E∗), σ, σ1, σ2 ∈ Γ(E).
If ΓE and ΓF are metric connections, then the induced linear connections are metric connections with
respect to the induced Riemannian metrics.
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Given a Weil functor TA and a linear connection Γ on a vector bundle (E →M), one defines the linear
connection T AΓ on (TAE → TAM) (see [24]) by

T AΓE := κAE ◦ TAΓE ◦
(
(κAM )−1 ×TAM idTAE

)
: TTAM ×TAM TAE → TTAE.

In the particular case where ΓE is a linear connection on M (i.e. E = TM ), one define a linear connection on
(TTAM → TAM) by

T TTAMΓTM := TκAM ◦ T AΓTM ◦
(
idTTAM ×TAM (κAM )−1

)
: TTAM ×TAM TTAM → TTTAM,

which is called the canonical (or complete) lift of ΓTM related to TA and denoted by Γc.

We present the following result, which is due to Ntyam and Wouafo, [19]

Proposition 3.7. Let ΓTM be a linear connection on (TM →M) with associated covariant derivative ∇TM and
T TTAMΓTM its complete lift with associated covariant derivative T TTAM∇TM . Then, T TTAMΓTM is the only linear
connection on (TTAM → TAM) satisfying the equality

T TTAM∇TM
X(α)Y (β) =

{
(∇TM

XY )(α+β), ∀α, β ∈ NwA : 0 ≤ |α+ β| ≤ ord(A)
0, ∀α, β ∈ NwA : |α+ β| > ord(A)

(3.2)

for all X, Y ∈ Γ(TM).

Proof. See [19].

4. Generalized metallic pseudo-Riemannian manifolds

4.1. Metallic pseudo-Riemannian manifolds

Let M be a smooth manifold
The metallic means family (also called metallic proportions) was introduced by V.M. de Spinadel in [23] as a

positive root τ(p,q) :=
1

2
(p+

√
p2 + 4q) of the algebraic equation

x2 − px− q = 0

where p and q are two positive integers. In particular,

⋄ τ1,1 is golden ratio or divine ratio which is used in the field of architecture, medicine, financial
market,...[26].

⋄ τ2,1 is silver ratio which is used in fractal geometry.

⋄ τ3,1 is bronze ratio which is in dynamical system.

⋄ τ1,3 is nickel ratio etc.

Inspired by the metallic proportions, Hreţcanu and Crâşmareanu, Ozkan and Yilmaz ([13]-[22]) introduced the
notion of metallic structure on a smooth manifold M as an C∞(M)-endomorphism Λ of TM satisfying the
following equality

Λ2 − pΛ− qid = 0,

where p, q are positive integers and id is the identity operator on the Lie algebra of vector fields on M. In
this case ,the pair (M,Λ) is called a metallic manifold. Moreover, the triple (M,η,Λ) will be called a metallic
pseudo-Riemannian manifold if the tensor fields η and Λ are compatible, that is

η(ΛX,Y ) = η(X,ΛY ) (or η(ΛX,ΛY ) = pη(ΛX,Y ) + qη(X,Y )),

for all X,Y ∈ Γ(TM).
Remark 4.1. In particular, an almost product structure (resp. an almost complex structure) is an C∞(M)-
endomorphism Λ of TM which satisfies the algebraic equation X2 − id = 0 (resp. X2 + id = 0). When Λ2 = 0
(resp. Λ2 − Λ− id = 0), we have the notion of almost tangent structure (resp. Golden-structure) (See [4]).

Let (M,Λ) be a metallic manifold. We recall that Λ is integrable if its Nijenhuis tensor field

NΛ(X,Y ) = Λ2[X,Y ] + [ΛX,ΛY ]− Λ[ΛX,Y ]− Λ[X,ΛY ]

vanishes for all vector fields X , Y in M .
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4.2. Generalized metallic structures

Let TM = TM ⊕ T ∗M →M be a generalized tangent bundle associated to a smooth manifold M and Γ(TM)
its C∞(M)-module of smooth sections. The elements of Γ(TM) are of the form (X,ω) where X ∈ Γ(TM) is a
smooth vector field and ω ∈ Γ(T ∗M) is a differential form of degree 1 on M . TM is equipped with a natural
symplectic structure Φ and a natural indefinite metric Φ̃ defined for all (X,ω), (Y,ϖ) ∈ Γ(TM) by

Φ
(
(X,ω), (Y,ϖ)

)
=

1

2

(
ϖ(X)− ω(X)

)
and Φ̃

(
(X,ω), (Y,ϖ)

)
= −1

2

(
ϖ(X) + ω(X)

)
Definition 4.1. ([2]) A generalized metallic structure on M is a C∞(M)-endomorphism Λg of TM satisfying

(Λg)
2 = pΛg + qid,

for some real numbers p and q.

A given linear connection ΓTM on (TM →M) with its associated covariant derivative ∇TM defines a bracket
[·, ·]ΓTM on Γ(TM ⊕ T ∗M) ∼= Γ(TM)⊕ Γ(T ∗M) (see [2]-[20]) by

[(X,ω), (Y,ϖ)]ΓTM :=
(
[X,Y ], (∇T∗M

Xϖ −∇T∗M
Y ω)

)
,

for all X,Y ∈ Γ(TM) and ω,ϖ ∈ Γ(T ∗M), where ∇T∗M is the extension of the covariant derivative ∇TM to
bundle of one forms. This bracket satisfies the following properties:

Proposition 4.1. ( [20]) For all σ, σ̃ ∈ Γ(TM ⊕ T ∗M) and all f ∈ C∞(M), one has

(i) [σ, σ̃]ΓTM = −[σ̃, σ]ΓTM

(ii) [σ, fσ̃]ΓTM = f [σ, σ̃]ΓTM +X(f)σ̃

(iii) [·, ·]ΓTM verifies Jacobi’s identity if and only if ΓTM has zero curvature.

Definition 4.2. ( [20]) A generalized metallic structure Λg is ∇TM -integrable if its Nijenhuis tensor field N∇TM

Λg

with respect to ΓTM

NΓTM

Λg
(σ1, σ2) = Λ2

g[σ, σ̃]∇TM + [Λgσ,Λgσ̃]ΓTM − Λg[Λgσ, σ̃]ΓTM − Λg[σ,Λgσ̃]ΓTM

vanishes for all σ, σ̃ ∈ Γ(TM).

5. Prolongation of generalized metallic structure to weil bundle and some properties

5.1. Prolongation of generalized metallic structure to weil bundle

Let M be a smooth pseudo-Riemannian manifold of dimension m > 0 and (A, ℓ) a Weil-Frobenius algebra.
Let consider the following natural equivalences

κAM : TATM → TTAM and εℓA,M : TAT ∗M → T ∗TAM. (5.1)

Hence, the bundle morphism

κAM ⊕ εℓA,M : TATM ⊕ TAT ∗M → TTAM ⊕ T ∗TAM (5.2)

is an isomorphism of vector bundles over idTAM .
Let Λg be a generalized metallic structure on M that is an endomorphism of TM = TM ⊕ T ∗M defined by

(Λg)
2 = pΛg + qid,

where p and q are some real numbers.
We set:

T AΛg := κAM ⊕ εℓA,M ◦ TAΛg ◦ (κAM )−1 ⊕ (εℓA,M )−1. (5.3)

Theorem 5.1. The endomorphism T AΛg define a generalized metallic structure on TAM .
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Proof. From the definition, it follows that (Λg)
2 = pΛg + qid. Therefore,

(T AΛg)
2 = T AΛg ◦ T AΛg

= κAM ⊕ εℓA,M ◦ TA(Λg ◦ Λg) ◦ (κAM )−1 ⊕ (εℓA,M )−1

= κAM ⊕ εℓA,M ◦ TA(pΛg + qid) ◦ (κAM )−1 ⊕ (εℓA,M )−1

= pT AΛg + qid.

Definition 5.1. The endomorphism T AΛg is called the ℓ-prolongation of generalized metallic structure Λg form
M to TAM .

Remark 5.1. In the particular case, where

ℓ = τr : Dr
1 → R

jr0φ 7→ 1

r!

dr

dtr
(φ(t))|t=0.

We obtain the tangent generalized metallic structure of high order r of generalized metallic structure Λg :
TM ⊕ T ∗M → TM ⊕ T ∗M from M to T rM described in [25].

For each multi-index α ∈ NwA, we have

χ
(α)
A,TM⊕T∗M = χ

(α)
A,TM ⊕ χ

(α)
A,T∗M ,

and let put
σ(α) = (X(α), ω(α)),

for any σ = (X,ω) ∈ Γ(TM)⊕ Γ(T ∗M). we have the following proposition

Proposition 5.1. Let Λg be a generalized metallic structure on M . For all σ = (X,ω) ∈ Γ(TM)⊕ Γ(T ∗M) and
α ∈ NwA such that 0 ≤ |α| ≤ ord(A), one has

(i) TAΛg ◦ χ(α)
TM⊕T∗M ◦ TA(σ) = χ

(α)
TM⊕T∗M ◦ TA(Λg(σ));

(ii) T AΛg(σ
(α)) = (Λg(σ))

(α).

Proof. (i) For all σ = (X,ω) ∈ Γ(TM)⊕ Γ(T ∗M) and jAφ ∈ TAM , one has

TAΛg ◦ χ(α)
TM⊕T∗M ◦ TA(σ)(jAφ) = TAΛg

(
χ
(α)
TM (TAX(jAφ), χ

(α)
T∗M (TAω(jAφ)))

)
= TAΛg(j

AzαX ◦ φ, jAtαω ◦ φ)
= TAΛg(j

Azα(X ◦ φ, ω ◦ φ))
= jAzαΛg(X ◦ φ, ω ◦ φ)

= χ
(α)
TM⊕T∗M (jAΛg(X ◦ φ, ω ◦ φ))

= χ
(α)
TM⊕T∗M ◦ TA(Λg(σ))(j

Aφ).

(ii) One has

T AΛg

(
σ(α)

)
= κAM ⊕ εℓA,M ◦ TAΛg ◦ ηAM ⊕ αA

M (X(α), ω(α))

= κAM ⊕ εℓA,M ◦ TAΛg

(
χ
(α)
TM ◦ TAX,χ

(α)
T∗M ◦ TAω

)
= κAM ⊕ εℓA,M ◦ TAΛg ◦ χ(α)

TM⊕T∗M (TA(X,ω))

= κAM ⊕ εℓA,M ◦ χ(α)
TM⊕T∗M ◦ TA(Λg(X,ω))

= (Λgσ)
(α)

Hence, the proof is complete.
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5.2. Prolongation of pseudo-Riemannian metrics and connections on vector bundle (TM ⊕ T ∗M →M)

5.2.1. Prolongation of pseudo-Riemannian metric Let (A, ℓ) be a Weil-Frobenius algebra and G be a pseudo-
Riemannian metric on a generalized tangent bundle TM ⊕ T ∗M →M . We set

G(A,ℓ) = ℓ ◦ TAG ◦
(
(κAM )−1 ⊕ (εℓA,M )−1 × (κAM )−1 ⊕ (εℓA,M )−1

)
.

Proposition 5.2. The tensor G(A,ℓ) is a pseudo-Riemannian metric on the vector bundle TTAM ⊕ T ∗TAM → TAM .

Proof. See proposition 3.6.

Definition 5.2. The tensor G(A,ℓ) is called an (A, ℓ)-prolongation of the tensor G from TM ⊕ T ∗M to TTAM ⊕
T ∗TAM .

Proposition 5.3. If G is a tensor field of type (0, 2) on TM ⊕ T ∗M , then for multi-indices α1, α2 ∈ NwA and all
σ1, σ2 ∈ Γ(TM ⊕ T ∗M), we have

G(A,ℓ)(σα1
1 , σα2

2 ) =
∑

β∈BA

ℓβG(σ1, σ2)
(β−(α1+α2))

.

Proof. For multi-indices α1, α2 ∈ NwA , σ1, σ2 ∈ Γ(TM ⊕ T ∗M) and x̃ = jAφ ∈ TAM , one has

G(A,ℓ)(σ
(α1)
1 , σ

(α2)
2 )(x̃) = ℓ

[
TAG

(
(κAM )−1 ⊕ (εℓA,M )−1(σ

(α1)
1 )(x̃)(κAM )−1 ⊕ (εℓA,M )−1(σ

(α2)
2 )(x̃)

)]
= ℓ

[
TAG

(
χ
(α1)
A,TM⊕T∗M (TAσ

(α1)
1 (x̃)), χ

(α2)
A,TM⊕T∗M (TAσ

(α2)
2 (x̃))

)]
= ℓ

(
jA(zα1+α2G(σ1 ◦ φ, σ2 ◦ φ))

)
=

∑
β∈BA

ℓβG(σ1, σ2)
(β−(α1+α2))

(x̃).

Corollary 5.1. Let (G,Λg) be a generalized Riemannian metallic structure on M . If Λg is G-symmetric, then T AΛg is
G(A,ℓ)-symmetric too.

Proof. For all multi-indices α1, α2 ∈ NwA and σ1, σ2 ∈ Γ(TM ⊕ T ∗M), one has

G(A,ℓ)(T Λg(σ
(α1)
1 ), σ

(α2)
2 ) = G(A,ℓ)((Λgσ1)

(α1), σ
(α2)
2 )

=
∑

β∈BA

ℓβG(Λgσ1, σ2)
(β−(α1+α2))

=
∑

β∈BA

ℓβG(σ1,Λgσ2)
(β−(α1+α2))since Λg is G-symmetric

= G(A,ℓ)(σ
(α1)
1 , T AΛg(σ

(α2)
2 ).

5.2.2. Prolongation of connections Let ΓTM be a linear connection on vector bundle (πM : TM →M), ∇TM its
covariant derivative and ∇T∗M the covariant derivative of the induced linear connection ΓT∗M on (T ∗M →M).
We have

∇T∗M : Γ(TM)× Γ(T ∗M) → Γ(T ∗M), (∇T∗M
Xω)(Y ) = X(ω(Y ))− ω(∇TM

XY ).

for all (X,Y, ω) ∈ Γ(TM)× Γ(TM)× Γ((TM)∗). Let’s denote by T T∗TAMΓTM the induced linear connection by
T TTAMΓTM on vector bundle (T ∗TAM → TAM) and T T∗TAM∇TM its covariant derivative. Then, one has the
following results:
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Proposition 5.4. For all σ1 = (X,ω), σ2 = (Y,ϖ) ∈ Γ(TM ⊕ T ∗M), and all multi-indices α1, α2 ∈ NwA such that
0 ≤ |αi| ≤ ord(A), i = 1, 2, one has

(i) T T∗TAMΓTM is the only connection on (T ∗TAM → TAM) verifying

T T∗TAM∇TM
X(α1)ω(α2) =

(
∇T∗M

Xω

)(α1+α2)

,

(ii)
[
σ
(α1)
1 , σ

(α2)
2

]
T TTAMΓTM =

(
[σ1, σ2]ΓTM

)(α1+α2)

Proof. (i) One has(
T T∗TAM∇TM

X(α1)ω(α2)

)
(Y (γ)) = X(α1)

(
ω(α2)(Y (γ))

)
− ω(α2)

(
T TTAM∇TM

X(α1)Y (γ)

)
=

∑
ν∈ℜ

ℓνX
(α1)

(
ω(Y )

(ν−α2−γ)
)
− ω(α2)

(
(∇TM

XY )(α1+γ)

)
=

∑
ν∈ℜ

ℓν

(
X
(
ω(Y )

)(ν−(α1+α2+γ))
)
−

∑
ν∈ℜ

ℓν

(
ω
(
∇TM

XY
)(ν−(α1+α2+γ)

)

=

(
∇T∗M

Xω

)(α1+α2)(
Y (γ)

)
(ii) One has [

σ
(α1)
1 , σ

(α2)
2

]
T TTAMΓTM =

[
(X(α1), ω(α1)), (Y (α2), ϖ(α2))

]
T TTAM∇TM

=

(
[X,Y ](α1+α2), (∇T∗M

Xϖ)(α1+α2) − (∇T∗M
Xω)

(α1+α2)

)
=

(
[σ1, σ2]ΓTM

)(α1+α2)

.

Theorem 5.2. For all σ1 = (X,ω), σ2 = (Y,ϖ) ∈ Γ(TM ⊕ T ∗M), and all multi-index α, β ∈ NwA such that 0 ≤
|α, β| ≤ ord(A), one has

NT TTAMΓTM

T AΛg

(
σ
(α)
1 , σ

(β)
2

)
=

(
NΓTM

Λg
(σ1, σ2)

)(α+β)

.

where NT TTAMΓTM

T AΛg
denote the Nijenhuis tensor field of T AΛg with respect to T TTAMΓTM .

Proof. The proof is based on the previous proposition.

Corollary 5.2. A generalized metallic structure T AΛg on TAM is T TTAMΓTM -integrable if and only if Λg on M is
ΓTM -integrable too.

Proposition 5.5. If (Λg, G) is generalized metallic Riemannian structure on TM ⊕ T ∗M, then (T AΛg, G
(A,ℓ)) is also a

generalized metallic Riemannian structure on TTAM ⊕ T ∗TAM .

5.3. Prolongation of generalized metallic structure induced by (Λ, η)

. Let (A, ℓ) be Weil-Frobenius algebra and M a smooth manifold. A pseudo-Riemannian manifold (M,η)
gives rise to the musical vector bundle isomorphism ♭η : TM → T ∗M and its inverse ♯η : T ∗M → TM naturally
induced by the C∞(M)-module isomorphism

♭η : Γ(TM) → Γ(T ∗M)

X 7→ iXη
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and ♭−1
η = ♯η. Remak that, the vector bundle morphism ♭η can be defined for any covariant tensor field η of

type (0, 2) on M , but its inverse exists only if η is non-degenerate. Let Λ be a metallic structure on (M,η) such
that Λ2 = pΛ + qid, where p and q are some real numbers. Since Λ is η-symmetry, we have

♭η ◦ Λ = Λ∗ ◦ ♭η and ♯η ◦ Λ∗ = Λ ◦ ♯η (5.4)

where Λ∗ : T ∗M → T ∗M denote the dual map of Λ. This dual map is also a metallic structure such that
(Λ∗)2 = pΛ∗ + qid.
Remark 5.2. For any 0 ≤ |α| ≤ ord(A), one has

TA♯ ◦ χ(α)
A,T∗M = χ

(α)
A,TM ◦ TA♯,

TAΛ∗ ◦ χ(α)
A,T∗M = χ

(α)
A,T∗M ◦ TAΛ∗

Proposition 5.6. Let (M,η) is a pseudo-Riemannian manifold. The C∞(M)-module isomorphism

♭η(A,ℓ) : Γ(TTAM) → Γ(T ∗TAM)

X 7→ iXη
(A,ℓ)

is defined by
♭η(A,ℓ) = εℓA,M ◦ TAη ◦

(
κAM

)−1
.

(where η(A,ℓ) = ℓ ◦ TAη ◦ ((κAM )−1 × (κAM )−1)). In this case, its inverse is defined by

♯η(A,ℓ) = (κAM )−1 ◦ TAη ◦
(
εℓA,M

)−1
.

Proof. Let X, Y ∈ Γ(TM), x̃ = jAφ ∈ TAM and α, β two multi-indices. One has,(
εℓA,M ◦ TAη ◦

(
κAM

)−1
)
(X(α)(x̃))(Y (β)(x̃)) = εℓA,M

((
TAη ◦ χα

A,TM ◦ TAX
)
(x̃)

)
(Y (β)(x̃))

= εℓA,M

((
χα
A,T∗M ◦ TAη ◦ TAX

)
(x̃)

)
(Y (β)(x̃))

= εℓA,M

(
jA

(
zα♭η ◦X ◦ φ

))
(Y (β)(x̃))

= ζℓA,TM

(
jA

(
zα♭η ◦X ◦ φ

))(
κAM ◦ Y (β)(x̃)

)
= ζℓA,TM

(
jA

(
zα♭η ◦X ◦ φ

))(
jA

(
zβY ◦ φ

))
= ℓ

(
jAzα+β

(
⟨Y ◦ φ, ♭η ◦X ◦ φ⟩TM

))
= η(A,ℓ)

(
X(α), Y (β)

)
(x̃).

Remark 5.3. For all X ∈ Γ(TM) and |α| ≤ ord(A), one has ♭η(A,ℓ)

(
X(α)

)
=

(
♭η(X)

)(α). Indeed, for all X, Y ∈
Γ(TM) and |α, β| ≤ ord(A), one has

♭η(A,ℓ)

(
X(α)

)(
Y (β)

)
= η(A,ℓ)

(
X(α), Y (β)

)
=

∑
γ∈ℜ

ℓγη(X,Y )
(γ−(α+β))

=
∑
γ∈ℜ

ℓγη(X,Y )
(γ−(α+β))

=

(
♭η(X)

)(α)(
Y (β)

)
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On vector bundle (TM →M), we consider the pseudo-Riemannian metric Ĝ (induced by η) defined by

Ĝ
(
(X,ω), (Y,ϖ)

)
=

(
η(X,Y ), η(♯gω, ♯gϖ)

)
for all (X,ω), (Y,ϖ) ∈ Γ(TM). A pair (Λg, Ĝ) of a generalized metallic structure Λg and a pseudo-Riemannian
metric Ĝ such that Λg is Ĝ-symmetric is called generalized metallic pseudo-Riemannian structure on M .

Hence, a pair
(
Λ̂g :=

(
Λ 0
0 Λ∗

)
, Ĝ

)
is a generalized metallic pseudo-Riemannian structure induced by the

metallic pseudo-Riemannian structure (Λ, η) on M (see [2]).

We set

Ĝ(A,ℓ) := η(A,ℓ) ⊕ (η(A,ℓ) ◦ (♯η(A,ℓ) × ♯η(A,ℓ))) and T AΛ̂g :=

(
T AΛ 0
0 (Λ∗)(A,ℓ)

)
where

{
T AΛ = κAM ◦ TAΛ ◦ (κAM )−1

(Λ∗)(A,ℓ) = εℓA,M ◦ TAΛ∗ ◦ (εℓA,M )−1.

Proposition 5.7. The endomorphism T AΛ̂g : TTAM → TTAM is a metallic structure such that

(T AΛ̂g)
2 = pT AΛ̂g + qid

Proposition 5.8. For any ω ∈ Γ(T ∗M) and any 0 ≤ |α| ≤ ord(A), one has

(i) ♯η(A,ℓ)(ω(α)) = (♯ω)(α).

(ii) (Λ∗)(A,ℓ)(ω(α)) = (Λ∗(ω))(α).

(iii) ♯η(A,ℓ)((Λ∗)(A,ℓ)(ω(α))) = (Λ(♯ηω))
(α).

Proof. By using the remark 5.2 and relation (5.4).

Proposition 5.9. For any σ, σ̃ ∈ Γ(TM) and any multi-indices α, β ∈ NwA such that 0 ≤ |α, β| ≤ ord(A), one has

Ĝ(A,ℓ)

(
T AΛ̂gσ

(α), σ̃(β)

)
= Ĝ(A,ℓ)

(
σ(α), T AΛ̂gσ̃

(β)

)
.

Proof. Let σ = (X,ω), σ̃ = (Y,ϖ) be two elements of Γ(TM) and α, β ∈ NwA such that 0 ≤ |α, β| ≤ ord(A), one
has

Ĝ(A,ℓ)

(
T AΛ̂gσ

(α), σ̃(β)

)
= Ĝ(A,ℓ)

(
T AΛ̂g(X

(α), ω(α)), (Y (β), ϖ(β))

)
= Ĝ(A,ℓ)

(
(T AΛ(X(α)), (Λ∗)(A,ℓ)(ω(α))), (Y (β), ϖ(β))

)
=

(
η(A,ℓ)

(
T AΛ(X(α)), Y (β)

)
, η(A,ℓ)

(
T A♯η((Λ

∗)(A,ℓ)(ω(α))), T A♯ηϖ
(β)

))
=

(
η(A,ℓ)

(
(ΛX)(α), Y (β)

)
, η(A,ℓ)

(
(Λ(♯ηω))

(α), (♯ηϖ)(β)
))

=

(∑
γ∈ℜ

ℓγη(ΛX,Y )
(γ−α−β)

,
∑
γ∈ℜ

ℓγη(Λ(♯ηω), ♯ηϖ)
(γ−α−β)

)
=

(∑
γ∈ℜ

ℓγη(X,ΛY )
(γ−α−β)

,
∑
γ∈ℜ

ℓγη(♯ηω,Λ(♯ηϖ))
(γ−α−β)

)
since η is compatible with Λ

= Ĝ(A,ℓ)

(
σ(α), T AΛ̂gσ̃

(β)

)
.
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Proposition 5.10. The pair (T AΛ̂g, Ĝ
(A,ℓ)) is a generalized metallic pseudo-Riemannian structure on vector bundle

(TTAM → TAM).

Proof. See remark 5.4 and proposition 5.9.

Definition 5.3. The pair (T AΛ̂g, Ĝ
(A,ℓ)) is called a generalized metallic pseudo-Riemannian structure on TAM

induced by metallic pseudo-Riemannian structure (Λ, η) on M .

5.4. Prolongation of metallomorphisms

Definition 5.4. Let f : (M1,Λ1) → (M2,Λ2) be a smooth map between metallic pseudo-Riemannian structures.
Then f is called a local metallomorphism if it satisfies

f∗ ◦ Λ1 = Λ2 ◦ f∗ (5.5)

where f∗ : TM1 → TM2 is the tangent map of f . It will be called metallomorphism, when it is local
metallomorphism and a diffeomorphism.

Remark 5.4. (a) If f : (M1,Λ1) → (M2,Λ2) is a local metallomorphism, then

(f∗)
∗ ◦ Λ∗

2 = Λ∗
1 ◦ (f∗)∗, (5.6)

where f∗ : T ∗M2 → T ∗M1 is the dual map of f defined by (f∗ω)(X) := ω(f∗X) for all ω ∈ Γ(T ∗M2) and
X ∈ Γ(TM).

(b) If f : (M1,Λ1) → (M2,Λ2) is a local metallomorphism, then it induced an isomorphism of vector bundles
between their generalized tangent bundles defined by

ψf : TM1 → TM2, (X,ω) 7→ (f∗X, ((f∗)
∗)−1ω).

(i.e ψ :==

(
f∗ 0
0 ((f∗)

∗)−1

)
)which preserves the induced generalized metallic structures Λ̂ig =(

Λi 0
0 Λ∗

i

)
where i = 1, 2.

In particular case where f : (M,Λ) → (M,Λ) is a metallomorphism, ψf can be defined by

ψf : TM1 → TM2, (X,ω) 7→ (f∗X, ((f∗)
∗)ω).

which coincides with the generalized metallic structure Λg when Λ = f∗. In this case, Λ is invertible and
Λ−1 = 1

qΛ− p
q id, for q ̸= 0.

let θ : TM1 → TM2 be a smooth map between two generalized tangent bundles and (A, ℓ) a Weil-Frobenius
algebra. We set

θ(A,ℓ) := κAM2
⊕ εℓA,M2

◦ TAθ ◦ (κAM1
)−1 ⊕ (εℓA,M1

)−1.

We have the following results

Proposition 5.11. If θ : (TM1,Λ1) → (TM2,Λ2) is the smooth map between two generalized metallic manifolds such
that θ preserves metallic structures Λ1 and Λ2 (that is θ ◦ Λ1 = Λ2 ◦ θ), then θ(A,ℓ) preserves also metallic structures
T AΛ1g and T AΛ2g.

Proof. The proof is based on straightforward calculations.

Proposition 5.12. If f(M1,Λ1) → (M2,Λ2) is a metallomorphism, then the map

(ψf )
(A,ℓ) :

(
TTAM1, T AΛ̂1g

)
→

(
TTAM2, T AΛ̂2g

)
between the induced generalized metallic manifolds preserves the metallic structures T AΛ̂1g and T AΛ̂1g.
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Proof. Let (X,ω) ∈ Γ(TM) , x̃ = jAφ ∈ TAM and |α| ≤ ord(A). One has

T AΛ̂2g ◦ (ψf )
(A,ℓ)

(
X(α), ω(α)

)
(x̃) = T AΛ̂2g

(
κAM2

⊕ εℓA,M2
◦ TAψf

(
jA(zαX ◦ φ), jA(zαω ◦ φ)

))
=

(
T AΛ2g ◦ ◦κAM2

(
jA(zαf∗ ◦X ◦ φ)

)
, (Λ∗

2g)
(A,ℓ) ◦ εℓA,M2

(
jA(zα[(f∗)

∗]−1 ◦ ω ◦ φ)
))

=

(
κAM2

TAΛ2

(
jA(zαf∗ ◦X ◦ φ)

)
, εℓA,M2

◦ TAΛ∗
2

(
jA(zα[(f∗)

∗]−1 ◦ ω ◦ φ)
))

=

(
κAM2

(
jA(zαΛ2 ◦ f∗ ◦X ◦ φ)

)
, εℓA,M2

(
jA(zαΛ∗

2[(f∗)
∗]−1 ◦ ω ◦ φ)

))
=

(
κAM2

(
jA(zαf∗ ◦ Λ1 ◦X ◦ φ)

)
, εℓA,M2

(
jA(zα[(f∗)

∗]−1 ◦ Λ∗
1 ◦ ω ◦ φ)

))
see (5.6)

= κAM2
⊕ εℓA,M2

◦ TAψf

(
χα
A,TM ◦ TA(Λ1 ◦X), χα

A,T∗M ◦ TA(Λ∗
1 ◦ ω)

)
(x̃)

= (ψf )
(A,ℓ) ◦ T AΛ̂1g

(
X(α), ω(α)

)
(x̃)

6. Prolongation of generalized product (resp. complex) structure induced by a metallic
structure

Let (Λ, η) be a metallic Riemannian structure on M such that Λ2 = pΛ + qid, for some real numbers p and q.
Then

Λ̂gp :=

(
Λ (id− Λ2) ◦ ♯η
♭η −Λ∗

) (
resp. Λ̂gc :=

(
Λ −(id+ Λ2) ◦ ♯η
♭η −Λ∗

))
is a generalized product (resp. generalized complex) structure on M (i.e. Λ̂gp

2
= id (resp. Λ̂gp

2
= −id)) induced

by (Λ, η) [2].
We set

T AΛ̂gp :=

(
T AΛ

(
id− (T AΛ)2

)
◦ ♯η(A,ℓ)

♭η(A,ℓ) −(Λ∗)(A,ℓ)

) (
resp. T AΛ̂gc :=

(
T AΛ −

(
id+ (T AΛ)2

)
◦ ♯η(ℓ)

♭η(A,ℓ) −(Λ∗)(A,ℓ)

))
Proposition 6.1. T AΛ̂gp (resp. T AΛ̂gc )is a generalized product (resp. complex) structure on TAM .

Proposition 6.2. For all σ ∈ Γ(TM) and |α| ≤ ord(A), one has

T AΛ̂gp(σ
(α)) =

(
Λ̂gp(σ)

)(α)

and T AΛ̂gc(σ
(α)) =

(
Λ̂gc(σ)

)(α)

.

Proof. It comes from proposition 5.8 and remark 5.3

Hence, we have the following result,

Proposition 6.3. Let ΓTM be a linear connection on M . If Λ̂gp is ΓTM -integrable, then T AΛ̂gp (resp. T AΛ̂gc ) is
T TTAMΓTM -integrable too.

Definition 6.1. ([2]) A generalized product (resp. generalized complex) structure Λg is called pseudo-calibrated
(resp. anti-calibrated) with respect to Φ if it is Φ-invariant (resp. Φ-anti-invariant) and the bilinear form
Φ ◦ (id× Λg) on TM is non-degenerate (resp. non-degenerate and positive definite ).

Remark 6.1. The generalized product structure Λ̂gp (resp. generalized complex Λ̂gc ) structure induced by a
metallic structure (η,Λ) on M is pseudo-calibrated (resp. anti-calibrated) with respect to Φ.

Proposition 6.4. (i) If a generalized product structure Λg on M is pseudo-calibrated with respect to Φ, then T AΛg is
also pseudo-calibrated with respect to Φ(A,ℓ).
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(ii) If a generalized complex structure Λg on M is anti-calibrated with respect to Φ, then T AΛg is also anti-pseudo-
calibrated with respect to Φ(A,ℓ).

where Φ(A,ℓ) = ℓ ◦ TAΦ ◦
(
(κAM )−1 ⊕ (εℓA,M )−1 × (κAM )−1 ⊕ (εℓA,M )−1

)
Proof. The proof is based on straightforward calculations.

Corollary 6.1. The tensor field T AΛ̂gp (resp. T AΛ̂gc ) is pseudo-calibrated (resp. anti-calibrated) with respect to Φ(A,ℓ).

Proposition 6.5. If The pair
(
Λgc ,Λgp

)
of generalized complex structure and generalized product structure is

a generalized complex-product structure (i.e. Λgc ◦ Λgp = −Λgp ◦ Λgc ) then, the pair
(
T AΛgc , T AΛgp

)
is also a

generalized complex-product structure.

Proof. The proof stems from direct and simple calculations.

Corollary 6.2. The pair
(
T AΛ̂gc , T AΛ̂gp

)
is a generalized complex-product structure.

Proof. The proof is based on the fact that The pair
(
Λ̂gc , Λ̂gp

)
is a generalized complex-product structure and

the use of previous proposition.
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