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ABSTRACT

Let (A,¢) be a Weil-Frobenius algebra, M/ a smooth manifold. In this paper, we study the
prolongations of generalized metallic structures on manifold M to its Weil bundle 74)M and
we investigate some of their properties. In particular, we study the prolongation of calibrated
generalized product structures and calibrated complex structures induced by metallic structures

on M.

Keywords: Weil-Frobenius algebra; Weil functor; A-jet, generalized metallic structures; natural transformations.

AMS Subject Classification (2020): Primary: 53D18; Secondary: 58A32; 53C15; 53C05.

1. INTRODUCTION

Let M be a manifold of dimension m > 0. By my; : TM — M we denote the tangent bundle and by 7* :
T*M — M the cotangent vector bundle. the concept of generalized geometry was originally introduced by N.
Hitchin in [12] (as the differential geometry resulting from replacing the tangent bundle 7'M of a manifold
M with the direct sum of the tangent and cotangent bundles T'M & T* M) in order to unify complex and
symplectic geometry. The particular case of this concept named generalized metallic structure has been defined
and studied by A.M. Blaga and A. Nannicini in [2]. They defined the generalized metallic structure on M as an
endomorphism A, : TM =TM & T*M — TM =TM & T*M satisfying

(Ag)2 =pAy + qid
for some real numbers p and gq.
On the other hand, for a given linear connection '™ on vector bundle (TM — M) whose associated

covariant derivative is V'™, we consider the bracket [,-]pra on the C°°(M)-module I'(TM) = T(TM) @
I'(T*M) of sections of (TM — M) defined for any (X,w), (Y,w) e I'(TM) & I'(T"* M) (see [2])by

[(X7w)7 (Y, w)]FTM = ([X’ YLVT*MXW _ VT*MYCU>

where V"M is the covariant derivative induced by V'™ and defined by

VML D(TM) x T(T*M) - T(T*M), (VI M x@)(Y) = X (w(Y)) —w(VIMxY).
The authors of [2] said that the generalized metallic structure A, on M is I'TM-integrable if its Nijenhuis tensors
field NX:M with respect to TT™,

FTI\/]

Ay (U, 5) = (AQ)Q[U, &]FTM + [AQU, AgE]FTAI — Ag [AgU, 5]pTM — Ag[d, Agg]FTAl
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vanishes for all o, o € T'(TM).

It is known that the simplest example of the product preserving bundle functor on the category Mf is a
jet functor 7. When p = 1, it is denoted by 7" and is called tangent functor of order r from the category M f
of differential manifolds to the category FM of smooth fibered manifolds which preserves the products. In
[16], the authors have proved that any bundle functor form M f to 7 M which preserves the products is a Weil
functor. In other terms, the theory of Weil bundles represents a unified technique for studying a large class of
geometric problems associated with product preserving functor. For all this reasons, we generalized the work
of [25] by replacing the tangent functor of higher order by any Weil functor defined by the Weil-Frobenius
algebra (A, ¢) and we study some properties as in [25]. The research of this paper was motivated by the works
of M. Doupovec, M. Kures and P.M. Kouotchop W.(see [6]-[17]).

So, the paper is organized as follows: In section 2, we recall briefly some results of [14]-[6] and [18] about the
notion of Weil algebras, Weil-Frobenius algebras and Weil-Frobenuis functor. In section 3, we review some
results about the prolongation of some tensor fields to Weil bundles. In section 4, the concept of metallic
structures and generalized metallic structures is discuss and some properties are recall as in [2]. In the last
section, some properties of the prolongation of generalized metallic structures related to Weil bundles are
established witch generalized some similar results established in [25].

2. Preliminaries

2.1. Weil algebras

A Weil algebra A (initiated by A. Weil in 1953 to introduce the bundle T4 M of infinitely point of type
A over a manifold M) is a finite dimensional real commutative, associative and unital algebra of the form
A=R-14 @ Na, where N, is the ideal of nilpotent elements of A (see [14]-[15]-[16]). The simplest example of
Weil algebras is

D}; = R[l‘h T, ,$k]/(l‘1,$2, e 7xk)r+1 = Jg (RkaR)
where R[zi, 2, -, 2] is the algebra of all polynomials on k& undetermined. In particular, Di =D is the

classical algebra of dual (or Study) numbers. The ideal of nilpotent elements of I}, is the finite vector space
Ji (R*, R),.

Let A=R-14 ® N4 be a Weil algebra, we will adopt the covariant approach of Weil functor described by
L. Kolar in [14]. Let N% be the ideal generated by the product of k elements of Ny, there is one and only one
natural number  such that N7; # 0 and N’;™' = 0. In this case, the integer r is called the order ord(A) of A and
the dimension k of the vector space N4 /N3 is said to be the width wA of A. Hence, a Weil algebra A of order r
and width k will be called Weil (k, r)-algebra. We have the following results established in [14]

Proposition 2.1. Every Weil (k,r)-algebra is a factor algebra of Dj.

Proof. See [14]. O
Proposition 2.2. If p,p: J§ (R*,R) — A are two surjective algebra homomorphisms, then there is an algebra
isomorphism v : J§ (RF,R) — J§ (R*,R) such that: po v = p.

Proof. See [14]. O

We say that, two maps ¢, : R¥ — M determine the same A-velocity if for every smooth map f: M — R,
one has

p (o (few)) = p (o (fo®))

This condition is independent of the choice of p. We also say that ¢ and ¢ determine the same A-jet. The
equivalence class of the map ¢ : R¥ — M is denoted by j4¢ and will called A-velocity at 0 (see [14]-[15]-[16]
for more details). In [14], one has the following result

Proposition 2.3. The space {j*¢, ¢ : R¥ — M} of all A-velocities on M coincides with the smooth manifold T4 M of
dimension m x dim A.

Proof. See [14]. O
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Hence, it is clair that 7R = A.
We denote by 74 : T4M — M, j4¢ — ¢(0) the natural projection so (T4 M, M, 4, ) is a well-defined fibered
manifold. If f : M; — M, is a smooth map, then it induces a smooth map

TAf  TAMy — TAM,, o §4(f o)

In particular (f, T4 f) is a fibered morphism from (T4 My, My, 74y, ) to (T4 My, My, 74y, ). This defines a bundle
functor T4 : Mf — FM on the category M of all manifolds with values in the category FM of smooth
fibered manifolds which is called the Weil functor induced by A. The bundle functor 74 preserves product in
the sense, that for any smooth manifolds AM; and Ms, the map

(Tpry, T pry) : TA(My x My) — TAM; x T4 M,

(where pr; : My x My — M, i=1,2 is the projection) is an F M—isomorphism. Hence we can identify TA(M; x
My) with TAM, x TAMs,.

Let B be another (p,d) Weil algebra and p: A — B be an algebra homomorphism, p: J§ (R?,R) — B the
surjective algebra homomorphism. Then there is an algebra homomorphism i : J§ (R¥,R) — J¢ (R?,R) such
pofi=pop. In particular, there is map f, : R? — R* such that, 1 (jig) = j§ (g o f.), where g € C> (R¥). For
any manifold M of dimension m > 1, there is smooth map s : TAM — TP M defined by:

s (79) =57 (po fu)

More precisely, jas : TAM — TP M is the value of the natural transformation determined by x on M [15].

Weil functors generalize through their covariant description the tangent functors, more precisely, when A is
the space of all r-jets of R into R with source 0 € R* denoted by J§ (R*, R), the corresponding Weil functor is
the functor of (k,r)-velocities and denoted by 77 . For k£ = 1, it is called tangent functor of order » and denoted
by T, this functor plays an essential role in hamiltonian mechanic. The particular importance of Weil functors
in differential geometry comes from the fact there is a bijective correspondence between them and the set of
product preserving bundle functors on the category of smooth manifolds ([16]).

2.2. Weil-Frobenius algebras and Weil-Frobenius functors

A Weil algebra A =R-14 @ N4 is called a Weil-Frobenius algebra, if there is a symmetric nondegenerate
bilinear form £ on A such that

&(ab, c) = &(a, be) (2.1)

for all a,b, c € A. This bilinear form is called the Frobenius form of the algebra A. Equivalently, A is a Weil-
Frobenius algebra if there exists a linear map ¢: A — R such that ker(¢) contains nonzero ideal of A. More
precisely, when ¢ is given, ¢ is defined by ¢(a) = £(a,14) (such that ¢(ab) = £(a,b), for all a,b € A) and when ¢
is given, the map ¢ defined by £(a, b) = ¢(ab) is bilinear symmetric and verify the relation (2.1). The linear form
¢: A — R is nondegenerate if the bilinear symmetry form £: A x A - R, (a,b) — {(ab) is non degenerate.
Hence, it follows that a Weil-Frobenius algebra is also a pair (A,¢) where A is a Weil algebra on which there
exists a linear and nondegenerate form /.

Example 2.1. The pair (D7, 7,.) is a Weil-Frobenius algebra where 7, is the linear form on D} defined

:Di — R
. 14
Jo® ar (¢(t))le=0-

A Weil-Frobenius functor is a Weil functor 74 associated to a Weil-Frobenius algebra A. From the preserving
of Weil property for tensor product, it follows that if 74 and T¥ are Weil-Frobenius functors, then their iteration
T4 o TP and fiber product T4 & TP are Weil-Frobenius functor where 74 @ T'? is defined for all M € M f and
f € C>(M) (See [6])by

TAoTB(M)=T*M xpy TPM and T @ TE(f) =T f x TBf

dergipark.org.tr/en/pub/iejg


https://dergipark.org.tr/en/pub/iejg

G.F. Wankap Nono et al.

2.3. Local coordinate system

Let M be and smooth manifold and (A =R - 14 & Ny, () a Weil-Frobenius algebra . For any h € C*°(R“#, M)
and any local chart (U, u%) of M in h(0), one has

. . 1 )
jAutoh) =u oh(0)-1a+ Y aDa(uzoh)(O)jA(gja).
1<[a|<ord(A)

It follows that the subset {d, = j*(z®) : 1 < |a| < ord(A)} of is the ideal N4 which generates N4. We denote
by R the subset of {a € N4 : 1 < |a| < ord(A)} such that {d, : o € R} is a basis of N4 and ®¢ = Nv4 \ . For
B € R, onehasds = ) \)d, .Hence

yER

. . ) A )
A (ut o h) = u'(h(0)) - 14 + Z (1'Da(u’ o h)(0) + Z —V'D.Y(uz o h)> dy,.
a€eR o yeRe v

Therefore, the coordinates system (), @,) of T4 M over TAU is such that

Ty =u'omy and W, =ul + Y AJu
YERS®

where u},(j4f) = 2 Da(u; o f)(0),V j4f € TAU. In the particular case where A = I, the local coordinate system
of TM induced by (U, u’) is denoted by (u' o mpy, i').

2.4. Canonical flow natural equivalence and natural isomorphism €'y \, : TAT*M — T*T4M

Let A and B be two Weil algebras which widths are respectively wA and wB. The Weil algebra corresponding
to the iteration 74 o T® of the two Weil functors T4, T2 : Mf — FM is in general B @ A. The exchange
homomorphism ez : B® A — A @ B induces the following natural transformation

exn : TATEM — TBTAM

Lett € R*4 and z € R¥Z, then every ¢ € TATZ M is of the form
¢=j4 (t r—)jB(z — W(t,z))),
where ¥ : R¥4 x R¥B — M. Hence,
exp(s) = §8 (z . (t— \Il(t,z))> (2.2)

In the particular case where T2 = T i.e B = D ( which means that wB = 1), write k* forex :D® A — A @ D.
Remarking that (TATM — TAM) and (TTAM — TAM) are vector bundles, we deduce form (2.2) that

ko TATM — TTAM

is a VB-morphism over 7 M. For any smooth vector field X in M, one can define its flow prolongation
0
FAX :TAM — TTAM, u aTA(exp(tX))(u),

where exp(tX) denoted the flow of X. On the other hand, we deduce from (2.2) that FAX = k%, o T4 X where
TAX : TAM — TATM (see [15]). This show that x4, is the flow natural exchange called the canonical flow
natural equivalence related to Weil functor 7.

For any vector bundle (E — M) and any linear map ¢: A — R, we consider the vector bundle morphism
over idpa s
Chp: TAE* — (TAE)*

dergipark.org.tr/en/pub/iejg
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defined for j4¢ € TAE* and j4¢ € TAE by
Cha (40) () = (7 (4, 0) ),

where (¢, ¢) : R¥4 - R, 2z (¢ (2),¢(2)) and (-, ), the canonical pairing ([18]).
For any manifold M of dimension m, we consider the vector bundle morphism

b =[5 o Gy : TAT*M — T*TAM.

It is clear that the family of maps (¢, ;,) defines a natural transformation between the functors 7' o T* and
T*oT# on the category Mf,, of m-dimensional manifolds and local diffeomorphisms, denoted by & , :
TAoT* — T* o T4 When (A,/) is a Weil-Frobenius algebra (see [6]), the mapping %, ;, is an isomorphism
of vector bundles over idra ;.

3. Prolongation of some tensor fields

3.1. Natural transformations x(®) : T4 — T4

Let T4 : Mf — FM be a Weil functor associated to a Weil algebra A and (¢: E — M) a vector bundle.
Similarly to what is done in [19], let’s denote up : R x E — E, (x,e,)(€¢ R x E,) — z-e, € E, the fibered
multiplication. This is a vector bundle morphism over the projection R x M — M. Hence, for any a € A, we
have a natural transformation Q(a) : T4 — T given by the partial maps

TAug(a,”) : TAE — TAE.
When d, = j*(z%), « € N4, the natural transformation Q(d,) is denoted x(® : T4 — T4, Hence, for all
p € C®(R¥4 E), one has
Xip(ite) = 54(=29)
where 2% is the smooth map defined for any z € R¥4 by (2%¢)(z) = 2%¢(2).

The maps Q(a)y = K4y © Q(a)7ar o (k4;) ! define the natural affinor Q(a) : TT4 — TT# associated to a € A
(see [7]).

For each multi-index oo € N¥4, we consider the map
X pop : TAE® BY) 5 TAE S EY), j4(p1.92) = (74 (%01), 04 (2% 92)),

where (E* — M) is the dual bundle of (E — M). It is clair that

(a) _ () (a)
XA BoE = XA,E D Xa B

3.2. Lifts of functions
Let v : A — R be a smooth function, for any smooth function f : M — R, we define the v-lift of f to T4 M by:
7 =voTA(f)
f®) is a smooth function on T4 M. One verifies easily that the map
C> (M) — C>=(T*M)
f — )
is R-linear.
Remark 3.1. Let (dy = 14,dg) sen @ basis of A and (dé, d;g) sem its dual basis . For v = d}, the smooth function
f) is denoted by f(® and is defined for any j4p € T4 M by
F@ (i%0) = D0 (fo @) (2) Lo + > 2Ds (£ 0 9) () |0
BeR®

with the convention f() = 0 fory € Z¥4 \ (RU {0}). f© = f o 7§, is called the complete lift of f and is denoted
f¢. In particular when (U, u?) is a local coordinate system in M, the adapted local coordinate system {uf,u/, }

on T4M is such that, u = v’ o 7§, and @, = (u’) @)

dergipark.org.tr/en/pub/iejg
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Forany 8 € R, f € C>(M) and j*¢ € T*M, one has

1 1
d5 (542" - (f o)) Zﬁ ( f ®) (a,foso) |2=0
yER® ’
Hence, we define a function ?(5—(1) on TAM by
TU%) = dy (M (o))

—(B)

When oo = 0, one has [~ = f(®,

3.3. Prolongations of sections

For a smooth section o : M — E of a vector bundle (E — M), its a-prolongation (o € N*4 such that 1 < |a| <
ord(A)) related to a Weil functor 74 is given by

o) = Xiﬁ}; oT4¢o
with the convention ¢() = 0, Vy € Z*4\ (R U {0}).
Proposition 3.1. ¢(®) is a section of the vector bundle (TAE — T4 M).
In the particular case where E = TM and X € I'(T'M), one has
X (@) .= /f]’e[ o sz)TM oT4 (X)

It is a vector field on T4 (M) called a-prolongation of X to 7M. In the particular case where a = 0, the
vector field X(©) is denoted by X () and it is called complete lift of X from M to T M. By convention we put
X =0, Vy € Z"4\ (RU{0}).
Remark 3.2. For any |a| < ord(A), the map

X (M) = X(T*M), X — X

is R-linear and for any smooth map h: M — N and any h-related vector fields X € I'(TM), Y € I'(TN), the
vector fields X(® e T (T4M), Y™ €T (TAN) are T* (h) related. The set {X(®) : 1 < |a| < ord(A)} generates
the C>°(T4 M )-module T'(T4 M) of vector fields on T4 M ([16]).

Proposition 3.2. Forany X,Y e T'(TM), f € C*°(M) and |a, B| < ord(A), one has
i) xF") =’
(i) [X@,y®)] = [X,y] 7.

Proof. See [7]. O
For additional properties of a-prolongation of X, see [7]-[17].

3.4. Prolongation of 1-forms
Letw € I'(T*M) be a 1-form on M and o € N*4 a multi-index such that |a| < ord(A). We set

W) = e © XEZ)T*M o Tw. 3.1)

w(® is clearly a 1-form on 74 M called the a-prolongation of w to 74 M. [18].
The following remark is due to Wamba and Ntyam, [17]

Remark 3.3. For any |«| < ord(A), the map
L(T*M) =T (T*T*M), wrs w®
is R-linear. For any w € I'(T*M) and X € I'(T'M), one has
WX =30 ( (y=e=f)
yER

and the set {w(®) : 1 < |a| < ord(A)} generates the C°°(TAM)-module I'(T*TAM).
To learn more about the properties of a-prolongation of w, see [7]-[17].
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3.5. Lifts of tensor fields of type (1, q).

Let S be a tensor field of type (1, ¢), we interpret the tensor S as a g-linear mapping S : TM xpr --- xp TM —
TM of the bundle product over M of ¢ copies of the tangent bundle 7M. For all 0 < |a| < ord(A), we put:

S@ = ka0 xi o TA(S) o (ki)™ X -+ x (k) ™)) : T(TAM) Xpapy - xpap T (TAM) — T (TAM)

It is tensor field of type (1,¢) on T4 (M) called a-prolongation of the tensor field S from M to T4 (M). In the
particular case where o = 0, it is denoted by S(°) or 74S and is called complete lift of S from M to T4 (M) ([3]).
The following remark is due to Gancarzewicz, Mikulski and Pogoda, [7].

Remark 3.4. The family of a-lift of vector fields is very important, because, if S and S are two tensor fields of
type (1,p) or (0,p) on T4 (M) such that, for all X, , X, € X (M), and multi-indices a1, - - - , o, the equality

§(X1(041)7... 7X1(7%)) - g <X£041)’... ’Xlg%))

holds, then S = 5 (see [7]).
Proposition 3.3. The tensor S is the only tensor field of type (1, q) on T4 (M) satisfying

a+ 3 ;
g(@) <X1(a1)7... ,Xéa‘I)) = (S(Xy,--- ,Xq))< = )

forall Xy,---, X, € X (M) and multi-index ay, - - -, oy.
Proof. See [3]. O

Refer to [3] and [5] for a thorough examination of some of these lifts’ characteristics.

3.6. Prolongation of pseudo-Riemannian metric

Let (¢: E — M) be a vector bundle. A pseudo-Riemannian metric on E is a smooth section 1 of vectors
bundle E* ® E* — M, such that for each « € M, the map

Ne € (E*Q@E*), 2 EXQFE}

is symmetric and nondegenerate. The pair (£,7) is called a pseudo-Riemannian vector bundle. If the bilinear
form g, are positive definite for every = € M, then 7 is called a Riemannian metric and (E,7) is called a
Riemannian vector bundle.

In particular, 7 is called pseudo-Riemannian metric on M when E = T'M.

Proposition 3.4. There exists a Riemannian metric on every vector bundle.

Remark 3.5. Riemannign metric on vector bundles £ — M and F — M induce canonical Riemannian metrics
onE*, E®F,E®F, \ Eand E/F(if F is a subbundle of E).
Consider a tensor field 7, of type (0, k) on a smooth manifold M seen as k-linear mapping

nZTMXM‘-‘XMTM—)R,

where the k-linearity means that the restriction of 7 to fibers are k-linear.
If ¢ : A — Ris alinear function, we set

A = o T4 o ((K;‘@[)—l X e X (nf/[)_1> STTAM Xpap - Xpap TTAM — R.

Hence, n(4+*) is a tensor of type (0, k) on T M, which is called the (A, £)-prolongation of i to T4 M.

Proposition 3.5. Let n) be a tensor field of type (0, k) on a smooth manifold M, ¢ : A — R a linear form on a Weil algebra
A. For a family of vector fields {X;}¥_, and a family of multi-index {a; € N4 : 1 < |ay| < ord(A)}E_,, one has

k
o o —_— (v 20 i)
pAO(x(e0)  xleny = § :zw(xl,... D=

yER
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Proof. Letz = j4p € TAM, one has
B0, X)@E) = e(TAn@ (X o TAX1(@), - x™ o TAXk@)))
. e(TAn@) (A X1 0 ), A X o w)))
_ €<J-A(Zoz1+.uak,'7(X1,... , X1) o(p)>
_ Z d (jA(Za1+~'O¢kn<X17 o Xp) o<p)>

yeRU{0}

k
- (v @)
— E (X, Xp) =

yER

@).

We have following result due to Gancarzewicz, Mikulski and Pogoda

Proposition 3.6. Let ¢ : A — R be a linear form on a Weil algebra A and n a pseudo-Riemannian metric on a smooth
manifold M. The (A, £)-prolongation 749 of 1 is a pseudo-Riemannian metric on TAM if and only if (A, ¢) is a Weil-
Frobenius algebra.

Proof. See [7]. O

3.7. Prolongation of linear connections

Given an arbitrary vector bundle (v: £ — M), a linear connection on E is a vector bundle morphism
I'E.TM x E — TE over idpy and idg such that Tv o T'F = 1y, 7 o I'F = 1y, where 14, 15 are restrictions of
canonical projection to TM x s E. In particular, I'? is called linear connection on M when E = T'M.

Let I'¥ be a linear connection on (E — M). A covariant derivative associate to I'? is a map
VE . T(TM) xT(E) = T(E), (z,0) = Vxo
which is C°°(M)-linear in X, R-linear in ¢ and satisfies Leibnitz rule
VR(f-0)=X(f) o+ f Vio.
A connection on F with a Riemannian metric g is called a metric connection if we have
X(n(o1,02)) = n(VXo1,02) + (o1, Vi oa),

forall (X,01,02) € T(TM) x I'(E) x T'(E).
Remark 3.6. (i) In case E =TM, the Riemannian connection (also called Levi-Civita connection) is the
unique connection that is metric and torsion free.

(ii) If E and F are two vector bundles on the same base manifold M with linear connections I'” and I'”
respectively, then these linear connections induce linear connections on the vector bundles E*, E & F
and E ® F' whose covariant derivatives are respectively defined by

(V¥ w)(o) = X(w(0) —w(Vio)
Vi o000 = Vio1®Vio,
V)E(®FO'1®02 == (V)E(Ul)®02+01®V§027
for all (X,w) € T(TM) x I'(E*), o, o1, 02 € T(E).

If I'F and I'F are metric connections, then the induced linear connections are metric connections with
respect to the induced Riemannian metrics.
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Given a Weil functor 74 and a linear connection I' on a vector bundle (E — M), one defines the linear
connection TAT on (TAE — TAM) (see [24]) by

TATE = ki o TATP o ((kf)) ™ Xpapridpag) : TTAM xpap TAE — TTAE.
In the particular case where I'” is a linear connection on M (i.e. E = T'M), one define a linear connection on
(TTAM — TAM) by
TITMETM . Tyl o TATTM o (idppany xpans (55)7Y) : TTAM xqap TTAM — TTTAM,

which is called the canonical (or complete) lift of I'7 related to 7 and denoted by T'“.

We present the following result, which is due to Ntyam and Wouafo, [19]

Proposition 3.7. Let TT™ be a linear connection on (TM — M) with associated covariant derivative VI™ and

TIT*MPTM jts complete lift with associated covariant derivative TTT"MTM  Then, TTT*MTTM s the only linear
connection on (TTAM — TAM) satisfying the equality

rigT oy = [ (VX)) va, g€ NvA L0 < o+ B| < ord(4)
’TT \v4 X(Q)Y = { 0, Va,ﬁ c NwA . |Oé + ﬂ| > O?“CZ(A) (32)
forall X, Y € T(TM).
Proof. See [19]. .

4. Generalized metallic pseudo-Riemannian manifolds

4.1. Metallic pseudo-Riemannian manifolds

Let M be a smooth manifold
The metallic means family (also called metallic proportions) was introduced by V.M. de Spinadel in [23] as a

positive root 7, o) := %(p + 1/p? + 4q) of the algebraic equation
z? - pr—q=20
where p and ¢ are two positive integers. In particular,
o 71,1 is golden ratio or divine ratio which is used in the field of architecture, medicine, financial
market,...[26].
o Ty is silver ratio which is used in fractal geometry.

¢ 731 is bronze ratio which is in dynamical system.

o 71,3 is nickel ratio etc.

Inspired by the metallic proportions, Hretcanu and Crasmareanu, Ozkan and Yilmaz ([13]-[22]) introduced the
notion of metallic structure on a smooth manifold M as an C*°(M)-endomorphism A of T'M satisfying the
following equality

A% — pA — qid =0,
where p, ¢ are positive integers and id is the identity operator on the Lie algebra of vector fields on M. In
this case ,the pair (M, A) is called a metallic manifold. Moreover, the triple (M, n, A) will be called a metallic
pseudo-Riemannian manifold if the tensor fields n and A are compatible, that is

nAX,Y) =n(X,AY) (or n(AX,AY) = pn(AX,Y) + qn(X,Y)),

forall X,Y e I'(TM).

Remark 4.1. In particular, an almost product structure (resp. an almost complex structure) is an C*°(M)-
endomorphism A of TM which satisfies the algebraic equation X? — id = 0 (resp. X? + id = 0). When A? =0
(resp. A2 — A — id = 0), we have the notion of almost tangent structure (resp. Golden-structure) (See [4]).

Let (M, A) be a metallic manifold. We recall that A is integrable if its Nijenhuis tensor field
NA(X,Y) = A*[X, Y] + [AX,AY] — A[AX,Y] — A[X,AY]

vanishes for all vector fields X, Y in M.
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4.2. Generalized metallic structures

Let TM =TM & T*M — M be a generalized tangent bundle associated to a smooth manifold A/ and I'(TM)
its C>°(M)-module of smooth sections. The elements of I'(TM) are of the form (X,w) where X € T'(TM) is a
smooth vector field and w € T'(T* M) is a differential form of degree 1 on M. TM is equipped with a natural

symplectic structure ® and a natural indefinite metric & defined for all (X,w), (Y,w) € ['(TM) by

(w(X) — w(X)) and B((X,w), (Y.®)) = — - (@(X) + w(X))

@((X,w),(Y,w)) = D)

N =

Definition 4.1. ([2]) A generalized metallic structure on M is a C*°(M )-endomorphism A, of TM satisfying
(Ag)? = pAg + qid,

for some real numbers p and gq.

A given linear connection '™ on (T'M — M) with its associated covariant derivative V™ defines a bracket
[ Jprm onT(TM @ T*M) = T(TM) & T'(T*M) (see [2]-[20]) by

(X, w), (Y, @)]prar = ([X, Y], (VT*MXW - VT*MY@);

for all X,Y € T(TM) and w,w € I'(T*M), where V7 M is the extension of the covariant derivative V'™ to
bundle of one forms. This bracket satisfies the following properties:
Proposition 4.1. ([20]) Forall 0,0 € T(TM ©T*M) and all f € C*°(M), one has

(i) [o,0)prm = —[0, 0)prm

(ii) [o, fo|prm = flo,o)prm + X (f)o

(iti) [, ]prw verifies Jacobi’s identity if and only if TT™ has zero curvature.

Definition 4.2. ([20]) A generalized metallic structure A, is V7 -integrable if its Nijenhuis tensor field NAVQTM

with respect to '™

FT]M

NAQ (01,02):A2

g[cr, g]vT}M + [AgU, Agg]FTM — Ag [AQO', a:]l"TM — Ag [O’, Aga'/h"TM

vanishes for all o, o € T(TM).

5. Prolongation of generalized metallic structure to weil bundle and some properties

5.1. Prolongation of generalized metallic structure to weil bundle

Let M be a smooth pseudo-Riemannian manifold of dimension m > 0 and (A4, ¢) a Weil-Frobenius algebra.
Let consider the following natural equivalences

Kyt TATM — TTAM and &Y, : TAT*M — T*T*M. (5.1)
Hence, the bundle morphism
kip ® el TATM & TAT*M — TTAM & T*T4M (5.2)

is an isomorphism of vector bundles over idra ;.
Let A, be a generalized metallic structure on M that is an endomorphism of TAM = T'M & T*M defined by

(Ag)2 = pAg + qid,

where p and ¢ are some real numbers.
We set:
TAAg = nﬁ & €€47M o TAAg o (/{‘1?/[)*1 & (52]\4)*1. (5.3)

Theorem 5.1. The endomorphism T4 A, define a generalized metallic structure on TAM.
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Proof. From the definition, it follows that (A,)? = pA, + gid. Therefore,
(THA)? = THA oTHA,
= HQ@EQMOT (AgoAg)o (ki)™ 1®(£€4,M)_1
= HM@EAMOTA(Z?A + qid) o (k) 1@<52,M)_1
= pTAAg + qid.
O

Definition 5.1. The endomorphism 744, is called the ¢-prolongation of generalized metallic structure A, form
M to TAM.

Remark 5.1. In the particular case, where

{=7:D] - R
1a
rldtr

-7

Jo¥

(¢(t)lt=0-

We obtain the tangent generalized metallic structure of high order r of generalized metallic structure A, :
TMeT*M — TM ®T*M from M to T" M described in [25].

For each multi-index oo € N¥4, we have

) (
XELXQT]\/[@T M = XEL\Q)TM D XE)T*]VI’

and let put
(@) = (X(@) ()

forany o = (X,w) € I(TM) & T'(T*M). we have the following proposition

Proposition 5.1. Let A, be a generalized metallic structure on M. For all 0 = (X,w) € I(TM) & T(T*M) and
o € N*4 such that 0 < |a| < ord(A), one has

(i) TAN, o XTM@T*M oT4(0) = X;QA)/[@T*M o TA(Ay(0));
(ii) TAAg(0()) = (Ag(0))().
Proof. (i) Forallo = (X,w) € T(TM) @ T(T*M) and j*¢ € TAM, one has

TNy o X Sarar o TAO)A9) = TAA (XTM@AX@A@),x;%>M<TAw<jA@>>>>

= T2 X 0, j w0 )
= T4, (2" (X o p,wo))
= j2* N (X op,wop)

= x%@p (" Ag(X 00,00 9))
= X;“I\)/I@T*JM ° TA(Ag(U))(jAS0)~
(ii) One has
TAAg (J(Q)) = /i‘;&[ D €Q7M o TAAg o nj& ©® aﬁ(X(a),w(o‘))
= K@l 0T (ngyw o TAX X\, o T%)
= "fﬁf D 5?4,1\4 o TAAg ° X(Tazx)m;T*M(TA(XvW))

= Ky @ 5Q,M o X%\Z@T*M o TH(Ag(X,w))
= (Aga)(a)

Hence, the proof is complete.

O
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5.2. Prolongation of pseudo-Riemannian metrics and connections on vector bundle (T M & T*M — M)

5.2.1. Prolongation of pseudo-Riemannian metric Let (A,{) be a Weil-Frobenius algebra and G be a pseudo-
Riemannian metric on a generalized tangent bundle TM @ T*M — M. We set

G = oTGo (M&)l ® (han) ™ X (i) M@ <e€4,M>1>.

Proposition 5.2. The tensor G\A+*) is a pseudo-Riemannian metric on the vector bundle TTAM & T*TAM — TAM.
Proof. See proposition 3.6. O

Definition 5.2. The tensor G(4*) is called an (A4, ¢)-prolongation of the tensor G from TM @ T*M to TTAM &
T*T*M.

Proposition 5.3. If G is a tensor field of type (0,2) on TM @ T*M, then for multi-indices a1, oo € N4 and all
o1, o9 €T(TM ® T*M), we have
G40 (001,052) = Z gﬁm(ﬁf(aﬂraz)).
BEBA

Proof. For multi-indices a1, az € N4, 0y, 09 € (TM ® T*M) and 7 = j4p € TAM, one has
GUAD (o) plony ) = e[TAG<<m2>—1 & () () @) rd) " @ <ea,M>-1<a§“2>><z))]

= [TAG <X531T’M@T*M<TAU§““ (7)), x;%?M@T*M<TAa£°‘2><%>>)]

e(jA(ﬁl*“ZGm 0,000 w)))

———(B—(a1taz2)) -
Z LsG(0o1,02) (2).

BEBa

O

Corollary 5.1. Let (G, A,) be a generalized Riemannian metallic structure on M. If A, is G-symmetric, then TAA, is
GAD-symmetric too.

Proof. For all multi-indices a1, ap € N4 and 01, 09 € ['(TM @ T* M), one has

GANTA 1), 08™) = GAD((hgor) ), o))
_ Z gﬁm(ﬁf(aﬂraz))
BeEBA
= Y 15G(01,A400)
BEBA

- G0 (0.§041)’ TAAg (Uéaz)).

(5—(a1+az))since A, is G-symmetric

O

5.2.2. Prolongation of connections Let I'"™ be a linear connection on vector bundle (my, : TM — M), VIM its
covariant derivative and g+ the covariant derivative of the induced linear connection I'""™ on (T*M — M).
We have

VI™M . D(TM) x D(T*M) — D(T*M), (VI Mxw)(Y) = X(w(Y)) —w(VIMxY).

forall (X,Y,w) € T(TM) x T(TM) x T((TM)*). Let's denote by 77 T*MTTM the induced linear connection by

TTT*MLTM on vector bundle (T*TAM — TAM) and T T*MYTM jts covariant derivative. Then, one has the
following results:
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Proposition 5.4. For all oy = (X,w), 02 = (Y,w) € I(TM & T*M), and all multi-indices o,y € N4 such that
0 <|a;| <ord(A), i = 1,2, one has

(i) T T*MPTM fs the only connection on (T*TAM — TAM) verifying

" (a1+as)
T*T* Mx—~TM ¢ T*M
TTTAMGTM (w@) = (V x“) ,

( (a1+az)
(11) [0_101)’ U£a2)] TTTAMPTM — ([Ula GQ]FTM>

Proof. (i) One has
(ﬂ*TAMvTMwa(az)>(y(v)) — X(al)(w(az)(y("/))> w(Oéz)(ﬂTAMVTMX(Ql)Y(“/))

= Z 0, X (@) (w(Y)(VOézv)) CEY <(VTMXY)(O‘1+'Y))

veR
———~w—(a1tazt+7y)) — (v (a1tazty)
- Y <X(w(Y)) e ) - Z@(w(vmxy) e )
veER veR
i (ar+o)
(ii)) One has
[U§a1)7 0_50‘2)] TTTAMPTM = [(X(al)’ w(al))v (Y(OQ)v w(az))} TTTAMYGTM

- <[X’ y)leate) ("M y gyy(entee) _ (VT*MXw)(alJraz))

(a1 +az)
= ([Ulaaz]FTM> .

O
Theorem 5.2. For all 01 = (X,w), 02 = (Y,w) € I(TM & T*M), and all multi-index o, 3 € N4 such that 0 <

o, B| < ord(A), one has
|, B
TTTAMFTM () 8 rT™ (ath)
Nran, oy, 03" | =Ny, (01, 002) :
A
where N7, """ denote the Nijenhuis tensor field of T A, with respect to TTTAMLTM,

Proof. The proof is based on the previous proposition. O

Corollary 5.2. A generalized metallic structure TAN, on TAM is TTT*MTTM integrable if and only if A, on M is
I'TM_integrable too.

Proposition 5.5. If (A, G) is generalized metallic Riemannian structure on TM & T* M, then (TAA,, GA9) is also a
generalized metallic Riemannian structure on TTAM & T*TAM.
5.3. Prolongation of generalized metallic structure induced by (A,n)

. Let (A4, ¢) be Weil-Frobenius algebra and M a smooth manifold. A pseudo-Riemannian manifold (17, n)
gives rise to the musical vector bundle isomorphism b,, : TM — T*M and its inverse #,, : T*M — T'M naturally
induced by the C*°(M)-module isomorphism

by : T(TM) — T(T*M)
X = ixT]
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and b, = #,. Remak that, the vector bundle morphism b, can be defined for any covariant tensor field 7 of
type (0,2) on M, but its inverse exists only if 7 is non-degenerate. Let A be a metallic structure on (), 1) such
that A% = pA + ¢id, where p and ¢ are some real numbers. Since A is 7-symmetry, we have

ppoA=A"ob, and #,0 A" =Ao4, (5.4)

where A* : T*M — T*M denote the dual map of A. This dual map is also a metallic structure such that
(A*)? = pA* + qid.
Remark 5.2. For any 0 < |a| < ord(A), one has

TAﬁ o XE:)T*M = XE:K,)TM o T,
TAN* o XE:)T*M = XEE)T*M o TAN*

Proposition 5.6. Let (M, n) is a pseudo-Riemannian manifold. The C*° (M )-module isomorphism
byan : D(TTAM) — T(T*TAM)
X o iyn@o
is defined by
byia = £ o TAno () .
(where nA0) = o TAno ((k4,) ™" x (k4,)™Y)). In this case, its inverse is defined by

_ —1
tncan = (ki) "t o T4 0 (5 )

Proof. Let X, Y € I(TM), 7 = j%p € TAM and «, 8 two multi-indices. One has,
(o0 () ) XOEE @) = ehoss (00 x50 TAX) @ ) (VO @)
= e ((x%,T*M oTAnoT4X) (55)) YO (7))
= ehu <j“(z%77 0Xo ¢)> (Y& ()
= Chru <jA(zO‘|7n oXo ¢)> (@I o y<6>(5)>
. <jA(zo‘bn 6 Xo s0)) <jA(Zﬂy o s0))
- g<jAz@+ﬁ (Y op,byo X 0@p) >

= A0 <X(a)7 y(ﬁ)) ().

O

Remark 5.3. For all X € I(T'M) and |a| < ord(A), one has b,an (X)) = (b,(X))'"). Indeed, for all X, Y €
I(TM) and |o, 8| < ord(A), one has

bpcae (XY (YE) = A0 (x(@ y®)

— (Y~ (a+B))
= ngn(va)’Y
YER

— (= (at8))
= > taxY)”
YER

= (bn(X)> ) (y(ﬁ))
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On vector bundle (TM — M), we consider the pseudo-Riemannian metric G (induced by ) defined by

~

G((X.w). (V) = <n<X, Ym(ﬁgw,ﬁm)

forall (X,w), (Y,w) € I'(TM). A pair (Ag, é) of a generalized metallic structure A, and a pseudo-Riemannian
metric G such that A, is G-symmetric is called generalized metallic pseudo-Riemannian structure on M.

Hence, a pair (//\; = ( 3 AO* ) ,@) is a generalized metallic pseudo-Riemannian structure induced by the

metallic pseudo-Riemannian structure (A, n) on M(see [2]).

We set \
~ — TAA 0
GAD =0 @ (D o (g0 X fyan)) and THA, = < 0 (A%)AD )
h TAA—K oTAAo(A)
where (A*)(A ) _ 5 o TAA* o o (€4, ‘ )—1.

Proposition 5.7. The endomorphism T AAg : TTAM — TTAM is a metallic structure such that
(TAA,)? = pT A, + qid
Proposition 5.8. Forany w € T'(T*M) and any 0 < |a| < ord(A), one has
(Q) fyca. o (W) = (fw)().
(i) (M)A (@) = (A% (w))).
(iii) a0 (A0 (@) = (A(tyw)) .
Proof. By using the remark 5.2 and relation (5.4). O

Proposition 5.9. For any o, ¢ € T(TM) and any multi-indices o, 8 € N*4 such that 0 < |, 8| < ord(A), one has
&a (TA/Tga<a>, 5(5)) _ aan <J<a>7 TA/ngw)) ,

Proof. Let o = (X,w), ¢ = (Y, w) be two elements of I'(TM) and «, 8 € N*4 such that 0 < |a, 8] < ord(A), one
has

GAD <TAAAga<a>’ 5(@) o) <TAAAQ( K@ (@) (y @), w(ﬁ)))
_ @ <(TAA(X(C“)), (A7) A0 (@), (v, w(ﬂ)))
_ (n(Al)(TAA(X(a))’Y(ﬂ)) RO (TA%, (A A (u <a>))7TAﬁnw<ﬁ>)>
_ <n<”) ((AX)@, Y ) A (A(tw)) @, (ﬁnwym))
_ ( 3 ey A g 3 6777(A(linw),tinw)(7a5)>

yER yeR

— 0 —e—h) T (0 —a—h)
= ( Z £m(X, AY) ! ) Z Lyn(Epw, Ay @) k >
vER yER
since 7 is compatible with A

— @ <0(0‘), TA[/\;(}([?))_

O
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Proposition 5.10. The pair (TAX; ,GAD)Y s q generalized metallic pseudo-Riemannian structure on vector bundle
(TTAM — TAM).

Proof. See remark 5.4 and proposition 5.9. O

Definition 5.3. The pair (TAI/X;, GA0) is called a generalized metallic pseudo-Riemannian structure on 74 M
induced by metallic pseudo-Riemannian structure (A,7n) on M.
5.4. Prolongation of metallomorphisms

Definition 5.4. Let f : (M7, A1) — (M2, As) be a smooth map between metallic pseudo-Riemannian structures.
Then f is called a local metallomorphism if it satisfies

f* ] A1 = A2 o f* (55)

where f,:TM; — TM, is the tangent map of f. It will be called metallomorphism, when it is local
metallomorphism and a diffeomorphism.

Remark 5.4.  (a) If f: (M, A1) = (M2, Ag) is a local metallomorphism, then

(f)" oAy = Ao ()" (5.6)
where f*: T*M; — T* M is the dual map of f defined by (f*w)(X) := w(f.X) for all w € I'(T*M;) and
X e I(TM).

(b) If f: (My,A1) — (Mo, As) is a local metallomorphism, then it induced an isomorphism of vector bundles
between their generalized tangent bundles defined by

byt TMy — TMz, (X,w) = (£X, ((f)) " w).

—

(ie ¢ :== < JS* ((f ;)*),1 ) )which preserves the induced generalized metallic structures A;, =
A O
0 A
In particular case where f : (M, A) — (M, A) is a metallomorphism, 1), can be defined by

where i =1, 2.

Yp: TMy — TMy, (X,w) = (X, ((f)7)w).

which coincides with the generalized metallic structure A, when A = f*. In this case, A is invertible and
At = 1A~ 2id, for g # 0.

let 6 : TM; — TM; be a smooth map between two generalized tangent bundles and (A, ¢) a Weil-Frobenius

algebra. We set
A 1

o0 = ’ﬁe[z ® 5?4,1\/12 oT40 o (k) "' @ (Eflx,Ml)_ .
We have the following results

Proposition 5.11. If 0 : (TMy, A1) — (TMa, A2) is the smooth map between two generalized metallic manifolds such
that 0 preserves metallic structures Ay and Ay (that is 6 o Ay = Ay 0 6), then fA8) preserves also metallic structures
TAN1g and TAAs,.

Proof. The proof is based on straightforward calculations. O

Proposition 5.12. If f(M;, A1) — (Ma, Ag) is a metallomorphism, then the map
()40 (TTAMl,TAleg) - (TTAMQ,TAKQZ>

between the induced generalized metallic manifolds preserves the metallic structures TAN g and TAN, g-
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Proof. Let (X,w) € I'(TM) , 7 = j4p € TAM and |a| < ord(A). One has

TARao ()40 (X, 0@) () = TAK;(HAMQ & <y ap, 0 T (A (X 0 0), A (w0 <P))>
T4y o onfl, (74 (2 f2 0 X 09)), (A3g) A 0 ey ap, (4 (="[(12)"] owow))

K TARG (A" 0 X 09)) ey ar, o TAAS (5 (21(£)] Oww))>

(40020 £ 0 X0 0) han (511 00 ))
(/{ﬁ[,z( (2 f*oAloXogo)) 5AM2( Y(fO) ™ loATowoga)>> see (5.6)

= ’fﬁfg D €f4,M2 o T4y (Xj,TM o T4(A; 0 X), XA, 1M © TA(A} o w)> ()

= ()0 o TAK (X1, W) (@)

6. Prolongation of generalized product (resp. complex) structure induced by a metallic
structure

Let (A, n) be a metallic Riemannian structure on M such that A2 = pA + gid, for some real numbers p and q.

Then 5 2
— [ A (id—A%)ot, — (A —(id+A*)od,
Ag, = < by _AF resp. Ag, = by _A*

is a generalized product (resp. generalized complex) structure on M (i.e. Xg\: = id (resp. Kg\Pz = —id)) induced

by (A, n) [2].

We set
. TAN  (id = (TAN)?) o tyan — TAN  —(id+ (TAA 2) o fy®
A — n A — n
T4, - ( Dpcan —(A*)AD resp- T Ay - bycao —(A)A0

Proposition 6.1. TAX; (resp. TAXQ\C )is a generalized product (resp. complex) structure on TAM.

Proposition 6.2. Forall o € I'(TM) and |o| < ord(A), one has

(@) (@)
TR, ) = (R (0)) and T8, 0) = (R )
Proof. It comes from proposition 5.8 and remark 5.3 O

Hence, we have the following result,

Proposition 6.3. Let T™M be a linear connection on M. If N, is T"M-integrable, then TN, (resp. TAN,, ) is
TTTAMPTM jnteqrable too.
Definition 6.1. ([2]) A generalized product (resp. generalized complex) structure A, is called pseudo-calibrated

(resp. anti-calibrated) with respect to @ if it is ®-invariant (resp. ®-anti-invariant) and the bilinear form
® o (id x Ay) on T'M is non-degenerate (resp. non-degenerate and positive definite ).

Remark 6.1. The generalized product structure X; (resp. generalized complex Xg\c ) structure induced by a
metallic structure (n, A) on M is pseudo-calibrated (resp. anti-calibrated) with respect to ®.

Proposition 6.4. (i) Ifa generalized product structure A, on M is pseudo-calibrated with respect to ®, then TAA,, is
also pseudo-calibrated with respect to (49,
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(ii) If a generalized complex structure A, on M is anti-calibrated with respect to ®, then TAA, is also anti-pseudo-
calibrated with respect to &40,

where 40 = Lo T4® o <(’€11€1)_1 ® () X (k) @ (EQ,JV[)_1>

Proof. The proof is based on straightforward calculations.
U

Corollary 6.1. The tensor field TAK,; (resp. TAX; ) is pseudo-calibrated (resp. anti-calibrated) with respect to (4%,

Proposition 6.5. If The pair <AgC,Agp> of generalized complex structure and generalized product structure is

a generalized complex-product structure (ie. Ay oAy = —Ay oA,y ) then, the pair (T ANy, T AAQP) is also a
generalized complex-product structure.

Proof. The proof stems from direct and simple calculations.

Corollary 6.2. The pair <7'AK;, TAX;> is a generalized complex-product structure.

—

Proof. The proof is based on the fact that The pair (Xq\, Agp) is a generalized complex-product structure and

the use of previous proposition. O
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