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 Abstract 
Article Info Many national and international initiatives depend on detailed spatial data on changes 

in soil organic carbon stock (SOC stock) at various scales to support policies aimed at 
land degradation neutrality and climate change mitigation Developing tools to 
accurately model the spatial distribution of SOCstock at national scales is a priority for 
both monitoring soil organic carbon (SOC) changes and contributing to global carbon 
cycle studies. The primary goal of this study was to evaluate and compare various 
spatial performance metrics used to assess the accuracy of predicting soil SOC and 
SOCstock content in a semi-arid pasture. Soil samples were taken from 0-20 cm soil 
depth at 150 random sampling points. Spatial structure of SOCstock and SOC were 
modelled by ordinary kriging The soil pH varied from slightly acidic (6.34) to neutral 
(7.19), and salinity was not an issue in the study area. Lime content, with an average 
of 2.04%, stands out as the most variable soil property, with a coefficient of variation 
(CV) of 61.76%. The carbon stock ranged from 23.46 to 65.36 tons ha-1, with an 
average carbon stock of 43.28 tons ha-1 calculated. In the study area, SOC (%) and 
stoniness (%) had the shortest autocorrelation distance (21.00 m), while bulk density 
had the longest (27.00 m). The prediction errors indicated that parameters in the 
random sampling did not result in better predictions using the OK technique.The 
results indicated that SOC content can exhibit significant spatial variability even 
within a small area, highlighting the need for site-specific management in semi-arid 
pastures. In order to achieve high accuracy and success in modeling, metrics of the 
performance such as RRMSE, RMSE and MAPE should be used that minimize the effect 
of the relevant soil property measurement unit. 
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Introduction 
Digital mapping of pasture soil organic carbon (SOC) aids in the development of sustainable grazing 
management and in monitoring its effects on climate change (Garcia-Franco et al., 2021). SOC has commonly 
been assumed that plays an important role in determining grassland quality affecting soil quality and grass 
growth (Wang  et. al., 2022). Recent studies indicate that increasing plant species richness in grasslands 
enhances soil carbon storage (Yang et al., 2019; Zhou et al., 2019). As determining soil organic carbon stock 
(SOCstock) requires extensive sampling effort, time-consuming and high cost, it is not possible to observe at 
every point in the field (Bhunia et al., 2018). Therefore, the interest in predicting the amount of soil organic 
carbon stock is growing rapidly. Spatial interpolation analysis has been commonly used to predict SOCstock at 
non-sampling points by various forms of kriging algorithms for estimating continuous attributes procedure 
(Isaaks and Srivastava, 1989). Ordinary kriging is an interpolation method estimating surface data from point 
data, based on the distances between sampling points (Rutter et al., 1991) and minimizing the estimation 
variance (Li and Heap, 2011). Evaluating the accuracy of modeling predictions in environmental sciences 
becomes important.  The objective of this study was to predict soil carbon content using kriging methods and 
to assess the accuracy of the estimation through various performance metrics. 
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Material and Methods 
The study site was in semi-arid climate condition which is highly grazed site in North-Central Anatolia, Corum 
province in Turkey (Figure 1). The study area is 10 ha and the altitude is 1650 m above sea level. The area is 
flat and nearly middle slope (0-5%) in the northwest border of the Corum Plain. Long-term (2013-2023) 
annual average temperature of the study area is 12.30 oC. This region is defined by a semi-arid climate, with 
an average annual precipitation of 371.65 mm. 

 
Figure 1. Location of the study area. 

Soil sampling and analysis 

Field sampling was conducted between May and July 2021 in a natural grassland, with 150 experimental 
points randomly selected. Soil samples were collected as both undisturbed and disturbed from a depth of 0-
20 cm. Soil texture was determined using the hydrometer method (Bouyoucous, 1951). Soil pH and electrical 
conductivity (EC) were measured using a 1:2.5 soil-water ratio following the method of Hendershot et al. 
(2007), and the calcium carbonate content (% CaCO3) was determined according to Kacar (1994). Bulk density 
(BD) was measured using cylindrical cores (100 cm³) from a 0-20 cm soil depth, as described by Blake and 
Hartge (1986). Soil organic matter (SOM) content was analyzed using the Walkley-Black wet digestion method 
(Nelson and Sommers, 1982), while organic carbon was determined by oxidizing carbon with an acidic 
dichromate solution, as this method is both simple and requires minimal equipment (Nelson and Sommers, 
1982). Soil organic carbon stock was calculated by considering soil bulk density, organic carbon concentration, 
and soil depth, using the formula provided in Equation 1 (Lu and Liao, 2017). 

SOCstock= 100 × SOC × BD × (1-CF) × (Top-Bottom) (1) 

In Equation (1), SOCstock is the soil organic carbon stock (ton/ha), SOC is the SOC content (wt. %), BD is the 
bulk density (g cm-3), CF is the proportion of coarse fragments (vol. %), (Top-Bottom) is the thickness of the 
given sampling soil depth (cm) and 100 is used for unit conversion. 

Spatial modelling 

Descriptive statistics were calculated with SPSS 11.0. Following Lark (2000) holds the view that necessary 
transformations should be made in non-normally distributed data sets to make a successful geostatistical 
modeling. Although necessary transformations were made according to Webster's (2001) criteria in order to 
better model the data that did not show normal distribution, semivariogram models were not affected. For 
this reason, geostatistical modeling was continued without transforming the data sets. Ordinary kriging (OK) 
was used because it provides the best linear unbiased estimate of the predicted spatial variable while 
minimizing the variance of the prediction errors. Unlike other interpolation methods, OK takes into account 
the spatial autocorrelation between sample points, meaning that it considers how values at one location are 
related to values at nearby locations (Isaaks and Srivastava, 1989). The geostatistical software GS+ was 
employed to examine the spatial structure of the data for soil properties as well as to model the 
semivariogram..Variable lag distances were also applied for semivariogram selection, ensuring a minimum of 
ten lags with at least 30 data pairs in each lag.. In determining the most suitable semivariogram, it was decided 
that the R2 (coefficient of determination) should be close to 1, and RSS (residual sum of squares) and nugget 
value should be close to 0. (Isaaks and Srivastava, 1989). An experimental semivariogram was generated by 
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calculating semivariance values for each pair of sample points and then averaging these values across 
increasing lag intervals (h).  

Each point in a semivariance was calculated from Equation (2): 

γ(h) =
1

2𝑁 (ℎ)
∑ [𝑧(𝑥𝑖 + ℎ) − 𝑧𝑥𝑖]2

𝑁

İ=1
 

(2) 

Where 𝑧(𝑥𝑖 + ℎ) is the z value at location (𝑥𝑖 + ℎ), 𝑧𝑥𝑖 is the z value at a location separated from xi by distance 
h and N is number of sampling pairs separated by distance h (lag) (Webster and Oliver, 2008). After 
determining the appropriate semivariogram model, cross-validation analysis was used to determine accuracy 
of the interpolation technique by graphing the predicted values with the observed values. An unknown sample 
point in kriging is calculated as seen in equation (3) as: 

𝑧0=∑ 𝑧𝑖×w (3) 

where z0 is a known predicted value, 𝑧𝑖  is observed value. The parameter w is kriging weight (Isaaks and 
Srivastava 1989). The errors calculated by subtracting observed values from predicted values were used to 
evaluate performance OK (Burrough and McDonnell, 1998). Spatial distribution maps for each variable were 
created using the best parameters obtained from the semivariogram models and cross-validation process. The 
geostatistical extension of ArcGIS 10.2.1 was utilized to generate kriging maps of soil properties. 

Results and Discussion  
Descriptive statistics 

Descriptive statistics for SOCstock  and other soil properties are given Table 1. SOC and SOCstock contents were 
% 2.45, 43.27 (ton ha-1) at 20 cm soil depth, respectively. On the other hand, in contrary with our results, some 
researchers observed that SOCstock was higher (Szatmári et al., 2019; Zhu et al., 2019; Li  et al., 2022; Ma et al., 
2023). According to Webster (2001), bulk density, CaCO3 (%), and EC are positively skewed, while clay (%) is 
negatively skewed. Webster defined a distribution with skewness greater than ±1.0 as strongly skewed. These 
strong positive skewness-values indicate proportional effect, wherein the variability is greater in sample 
points with high values compared to those with low values corrupting spatial modeling. Modeling 
performance increases significantly when the distribution of variable follows a normal or near-normal 
distribution.  

Table 1. Descriptive statistics for the soil variables (N:150) 

Soil variable Min Max Mean Std dev Skewness Kurtosis CV% DT 

BD (g cm-3) 1.03 1.58 1.18 0.08 1.00 1.90 6.78 NN 

Sand (%) 24.00 64.00 43.46 7.22 0.18 0.19 16.61 NN 

Clay (%) 4.00 44.00 32.85 5.51 -0.84 3.96 16.77 NN 

Silt (%) 7.00 49.00 23.70 5.71 -0,12 3,30 24.09 NN 

Stoniness (%) 0.00 40.00 25.00 0.09 0.13 -0.75 35.81 NN 

CF (%) 60.00 100.00 75.00 0.09 -0.13 -0.75 11.79 NN 

CaCO3 (%) 0.89 8.27 2.04 1.26 2.35 0.19 61.76 NN 

OM (%) 2.51 5.49 4.23 0.87 -0.52 -1.06 20.57 NN 

SOC (%) 1.46 3.19 2.45 0.50 -0.52 -1.06 20.41 NN 

SOCstock (ton ha-1) 23.46 65.36 43.28 9.01 0.20 -0.37 20.81 NN 

pH 6.34 7.19 6.70 0.16 0.32 -0.19 2.39 N 

EC (ds m-1) 0.026 0.231 0.088 47.85 1.07 0.71 53.89 NN 

N—Number of soil samples, Min—Minimum value, Max—Maximum value, Std dev—Standard deviation, CV—Variation of coefficient, 
DT—Distribution type, N—Normal distribution, NN—Abnormal distribution, BD—Bulk density, CF—proportion of coarse fragments, 
OM—Organic matter, SOC—Soil organic carbon, SOCstock—Soil organic carbon stock, EC—Electrical conductivity, CV—Variation of 
coefficient. 

It is common for SOC data to be positively skewed (Liang et al., 2019; Szatmári et al., 2019, 2021; Wang et al., 
2021). However, in this study area, the SOC data exhibited a slight negative skew.Regarding Table 1, the values 
of variation coefficient vary between 2.39% and 61.76%, and among all soil properties examined, CaCO3 (%) 

was a more variable soil property than others. According to (Cambardella et al., 1994), the coefficient of 
variation (CV) can be categorized into three groups: low (<15%), medium (15% to 35%), and high (>35%). 
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The CV of SOCstock in different studies was represented by high (Rodríguez Martín et al., 2016; Szatmári et al., 
2021; Li et al., 2022) unlike our study.  

Geostatistical analyses characteristics of the SOC and its components 

Semivariogram analysis was applied separately to quantify the spatial structure of SOCstock and other soil 
properties The semivariogram charts related to the soil properties under investigation are presented in Figure 
2. The spatial distribution SOCstock and SOC were better described with spherical model (Figure 2). In other 
studies, quite different nugget values for SOC have been reported, such as Mishra et al. (2009) 294.5, 294.5, Li 
et al. (2023) 0.33 and Kingsley et al. (2021) 0.19. 

    
Figure 2. Semivariograms of soil properties 

The high nugget value observed for SOCstock implies a substantial level of random variance within the study 
area. This indicates that samples taken from nearby and distant locations exhibit distinct values. The higher 
sill value for SOCstock (77.56), compared to stoniness (0.007) and bulk density (0.007), suggests greater 
variability between sampling points and lower prediction accuracy at finer scales (Table 2). 

Table 2. Semi-variogram parameters of soil properties of the grassland (Turkıye) 

Soil parameters Model type 
Nugget 

Co 
Sill 

Co + C 
Range 
A0 (m) 

Spatial 
dependence (%) 

RSS R2 

SOCstock (ton ha-1) Spherical 21.6 77.56 25.00 27.84 228 0.89 
BD (g cm-3) Spherical 0.001 0.007 27.00 12.82 1.32E-06 0.92 
SOC (%) Spherical 0.09 0.257 21.00 194.55 3.29 0.97 
Stoniness (%) Exponential 0.0037 0.007 21.00 52.85 1.34E-06 0.62 

SOCstock: Soil organic carbon stock, BD: Bulk density, SOC: Soil organic carbon, RSS: Residual sum of squares, R2: Coefficient of 
determination 

A nugget-to-sill ratio of <25% signifies strong spatial dependence, typically due to intrinsic factors like soil 
texture and mineralogy; 25-75% indicates moderate dependence from both intrinsic and extrinsic factors; and 
>75% suggests weak spatial dependence, often due to extrinsic factors such as uncontrolled grazing and 
hoofprints (Cambardella et al., 1994). According to this classification, spatial variations of soil SOCstock, SOC, 
BD, and stoniness were characterized as moderately, strongly, weakly, and moderately spatially dependent, 
respectively (Table 2). This dependency was not large enough to confirm geostatistical methods to predict 
examined soil properties, irrespective of the sampling intervals. The nugget/sill ratio for SOC% was 194.55, 
indicating a very weak spatial dependency according to reported by (Blackburn et al., 2022).  Table 2 results 
indicate minimal nugget effect, suggesting that variation is not due to sampling error but rather to short-range 
spatial variability beyond the sampling intervals. 

The nugget-to-sill ratio represents the interaction between random and structural factors, reflecting the 
proportion of spatial heterogeneity due to autocorrelation within the overall spatial heterogeneity (Li et al., 
2021). Structural factors such as climate, parent material, terrain, and soil composition contribute to 
significant spatial correlation among spatial variables. Conversely, random factors like fertilization, grazing 
and cultivation contribute to a reduction in spatial correlation. To better understand spatial dependence can 
best be treated under three distinct types using percentage of nugget/sill ratio (Cambardella et al., 1994). 
Although nugget values of SOCstock was high, its spatial dependence was at a moderate level which might be 
attributed to extrinsic factors like soil forming processes and intrinsic factor like uncontrolled grazing. As 
regards range is the maximum distance over which spatial dependence or autocorrelation exists. Range 
distances are presented in Table 2 reveals that there has been a slight decreased respectively in the range 
distance of soil properties. Range distances were indicated that the optimum sampling interval did not vary 
greatly among different soil properties. According to Rossel and McBratney (2008), R² values are classified as 
follows: ≥0.81 is very good, 0.61–0.80 is good, 0.41–0.60 is moderate, and <0.40 is weak (Viscarra Rossel et 

Lag (m) 
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al., 2016). According to the definition above, the R2 values obtained for SOCstock, SOC, and BD were higher. 
Consistent with this, researchers have reported similar results (Rostaminia et al., 2021; Zhang et al., 2022).  

Kriging 

Spatial distribution maps obtained using ordinary kriging was presented in Figure 2. The maps illustrating 
spatial distribution facilitated the assessment of both the extent and magnitude of soil properties in the study 
area. A gradual increase in SOCstock was noted from the northeast to the southwest of the study area, with the 
percentage of SOCstock ranging from 29.88% to 58.71% in the 0-20 cm soil depth (Figure 3). The similar 
observation was also reported by Liu et al (2023). Compared to the spatial structure of SOCstock, stoniness and 
bulk density displayed a non-uniform distribution.   

 
Figure 3. Spatial distribution maps for soil properties 

As can be seen in Table 3, different metrics of interpolation performance were calculated to evaluate the fitting 
accuracy of the models. According to the data, the absolute value of the Mean Error (ME) was far from 0, while 
Root Mean Square Error (RMSE) and Mean Square Error (MSE) exhibited the biggest values.  

Table 3. Metrics used to assess the performance of spatial interpolation methods 

Performance Metrics SOCstock BD  SOC  Stoniness  
ME -0.16 0.003 0.004 0.005 
MPE 4.28 0.71 5.18 16.79 
MAE 7.70 0.06 0.43 0.07 
MSE 87.90 0.008 0.26 0.007 
RMSE 9.37 0.08 0.51 0.08 
RMAE 0.18 0.05 0.20 0.37 
MSRE 35.92 0.23 1.86 0.36 
RMSSE 39.52 30.60 1.35 1.37 
RRMSE 24.41 7.10 26.04 49.95 
ASE 6.34 1.08 1.56 0.50 
MAPE 18.99 5.69 20.25 37,36 
Willmott's D 0.23 0.38 0.28 0.27 
EF 0.98 0.99 0.98 0.96 

 

The magnitude of these metrics is contingent upon the unit or scale of the primary variable being considered. 
For instance, the magnitude of MAE is typically less than 1% for soil organic matter, but it can beyond 100 mm 
for rainfall or even exceed 1000 mm for tropical regions. The unit of measurement for variables can influence 
the magnitude of these metrics of performance (Li and Heap, 2011). Therefore, it becomes essential to 
compare the performance of kriging methods across various studies, especially when variables are observed 
in different units or scales. This problem is tackled by introducing two new performance metrics: Relative 
Mean Absolute Error (RMAE) and Relative Root Mean Square Standardized Error (RRMSE). These metrics of 
performance aim to mitigate the impact of measurement units and maintain sensitivity regardless of changes 
in units or scale. Model accuracy is classified as excellent if RRMSE is below 10%, good if RRMSE is between 
10% and 20%, fair if RRMSE is between 20% and 30%, and poor if RRMSE exceeds 30% (Despotovic et al., 
2016). Based on this classification, model accuracy of soil SOCstock, BD, SOC, and stoniness were characterized 
as fair, excellent, fair, poor, respectively. The mean percent error (MPE) suggests a superior model as its value 

https://ejss.fesss.org/10.18393/ejss.1558316


Ü.Yılmaz and S.S.Kavaklıgil Eurasian Journal of Soil Science 2025, 14(1), 1  - 8 

 

6 

 

 

approaches zero, indicating improved accuracy. RMSE provides an observe of error size, but the main problem 
with RMSE is its sensitivity to outliers, as it assigns significant weight to large errors. This means that the 
presence of several large errors can cause the value of RMSE to increase. RMSE is a commonly used metric for 
assessing modeling performance, and similar to the findings of (Rostaminia et al., 2021), our study obtained a 
high RMSE value (3.37) for SOCstock suggesting the model's prediction accuracy is low. A value of RMSSE 
greater than 1 means the model underpredicts values observed in this study. The reason why RMSE takes a 
value greater than 1 the model underpredicts the observed values in this study. RMSE and MAE are considered 
to comparable metrics, offering predicts of the average error; however, they do not offer insights into the 
relative magnitude of the average difference or the characteristics of the differences that make them up. 
Nevertheless, some researchers argue that RMSE and MAE are among the most comprehensive indicators of 
model performance as they summarize the average disparity between observed and predicted values in their 
respective units (Willmott, 1982). The value of MAE was closest to ASE therefore, we can draw a conclusion 
from the Table 3 mentioned that a model was considered better Mean Square Error (MSE) values approach 
zero and Root Mean Square Error (RMSE) was smaller. According to this, the highest values observed for MSE 
and RMSE indicate that the accuracy of interpolation is the poorest. Considering Table 3, ASE < RSME means 
the model underpredicts the observed values. MSE encounters similar limitations to RMSE, whereas MAE 
demonstrates reduced sensitivity to extreme values and indicates the extent to which the predict can be in 
error. RMSE and MAE are some of the most effective observes for evaluating model performance, as they 
encapsulate the average discrepancy between the units of observed and predicted values. MSE shares the 
same limitations as RMSE, while MAE is less affected by extreme values and indicates the extent to which the 
predict can be in error. 

ME is employed to assess the level of deviation in the predicted value, with predictions being more stronger 
as the value approaches zero (Wang et al., 2021). The smallest ME suggests that the predicted value is closest 
to the observe values. ME is employed for determining the degree of bias in predicts and is often referred to 
as “bias”(Hohn, 1991) but it should be used cautiously as an indicator of accuracy. Although MAE is less 
affected by extreme values and indicates the degree to which the estimate may be inaccurate. The main 
weakness with ME is that negative and positive predicts counteract each other and the resultant ME tends to 
be lower than observe error. Meanwhile, it would be optimal if the Mean Error (ME) and Mean Square Error 
(MSE) approached zero. However, there was a noticeable numerical deviation in MSE from the value of 1. The 
agreement index, known as Willmott's D, is scaled according to the magnitude of the variable, maintains 
average information, and does not magnify outliers (Willmott, 1982). The closer Willmott's D is to 1, the more 
accurate the method is considered. There have been proposed by some researcher (Greenwood et al., 1985), 
an accuracy measurement known as model efficiency (EF). The fact that the EF metric value is close to zero 
indicates that the average value of observations is more reliable than predictions. (Li and Heap, 2011). 

As far as the Mean Absolute Percentage Error (MAPE) is concerned, it is a good metric used to assess model 
performance in the presented stud. Regarding the Mean Absolute Percentage Error (MAPE), it serves as a 
valuable metric for evaluating model performance in the study presented. MAPE is often considered one of 
the most effective indicators among error metrics (Moreno  et. al., 2013; Gunal  et. al., 2023). The MAPE value 
< 10% indicates highly accurate (excellent estimator), while the value 10-20 % indicates moderately accurate 
(good predictor), and if the value ranges 20-50 % the model's accuracy is considered low, but its outputs are 
still acceptable (Lewis, 1982). According to this classification model accuracy of soil BD, SOC, SOCstock, and 
stoniness were characterized as high, moderately, low estimation, respectively (Table 3). The (%) MAPE value 
of stoniness was higher than other soil properties. The results can be attributed to the significant variability 
in the data, as the MAPE error metric exhibits very low tolerance for extreme values.  

Conclusion  
The soil organic carbon is a soil property characterized by high spatial variability, yet it is relatively 
straightforward to observe. One potential explanation for this phenomenon is the diverse range of plant 
communities and soil properties found within grasslands. Additionally, certain soil properties exhibit 
considerable variability over short distances due to uncontrolled grazing practices. As a result, estimating 
carbon sequestration in grasslands can be more challenging compared to cultivated agricultural areas. The 
limiting factors of this study include that the random sampling design has led to a low success rate in 
geostatistical modeling of soil organic carbon. This study indicated that SOCstock and SOC vary significantly over 
very short distances. We evaluated the advantages and disadvantages of different spatial performance metrics 
can be used to estimate SOCstock effectively and efficiently in terms of accuracy. The unit of measurement and 
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the high variability of the examined soil properties are important factors that should be considered in 
geostatistical modeling. The observations should include at least MAPE, RRMSE or RMSE to compare the 
model success across different variables in dissimilar units. The MAPE is a performance evaluation metric that 
effectively mitigates the impact of measurement units. Here, we recommend that future studies clearly report 
in their publications information about why the metrics used in model performance evaluation are used and 
their advantages and disadvantages. Additionally, future studies should consider using systematic sampling 
and increasing sample density to improve the accuracy of SOC predictions. 
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