
 

*Corresponding Author, e-mail: nurcan.vardar@altinbas.edu.tr 

Research Article GU J Sci, Part A, 11(4): 701-710 (2024) 10.54287/gujsa.1558391 

Gazi University 

Journal of Science 

PART A: ENGINEERING AND INNOVATION 

http://dergipark.org.tr/gujsa 

Machine Learning Approaches for Differentiating Thermophilic and Mesophilic 

Lipases 

Nurcan VARDAR-YEL1*  

1 Altınbaş University, Vocational School of Health Services, Medical Laboratory Techniques Program, İstanbul, Türkiye 

 

Keywords Abstract 

Mesophilic 

Thermophilic 

Lipase 

Machine Learning 

Differentiating thermophilic proteins from their mesophilic counterparts presents a significant challenge, 

yet achieving this distinction is crucial for the rational design of more stable proteins. In this study, a 

systematic analysis was performed on 3,715 unreviewed bacterial lipase enzymes obtained from the 

UniProt web server and screened according to their Tm values. Furthermore, a tree was constructed 

using the MEGA 11 program and lipase sequences from different families were selected. The final 

dataset consists of 88 mesophilic proteins and 123 thermophilic proteins were used. We found that Ile, 

Leu, aliphatic index, hydropathy, aliphatic amino acids, hydrophobic amino acids, tiny amino acids, and 

small amino acids are the key variables distinguishing thermophilic from mesophilic lipase proteins. 

These findings suggest that amino acid composition is crucial in differentiating these two groups. 
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1. INTRODUCTION 

One of the features that make protein thermostability an important issue in both biochemical and 

biotechnological research is its ability to increase reaction rate and efficiency at high temperatures. (Rigoldi et 

al., 2018). Unfortunately, few proteins are stable at high temperatures, resulting in the need for accurate 

methods to predict whether a protein is globally thermodynamically stable from its primary sequence. The key 

elements that are correlated with high protein thermostability are salt bridges, dipeptide patterns, ion pairs, and 

amino acid content (Kumar et al., 2000; Gromiha et al., 2002; Lin & Chen, 2011; Ahmed et al., 2022). For 

example, thermophilic proteins often have higher levels of residues like Ile, Arg, Glu, Lys, and Pro, while Ser, 

Asn, Gln, Thr, and Met are lower compared to mesophilic proteins (Gromiha & Suresh, 2008; Feng et al., 

2020). As a result, the identification of protein thermostability-driving forces in sequence features have been 

utilized to develop methods which predict thermophilic properties from amino acid coupling patterns and 

dipeptide compositions (Das & Gerstein, 2000; Liang et al., 2005; Zhang & Fang, 2006a; 2006b; 2007; Lin & 

Chen, 2011). Additionally, single point mutations also modulate thermostability, which emphasizes the need 

for careful sequence analysis (Capriotti et al., 2004; 2005; Gromiha, 2007; Montanucci et al., 2008; Tian et 

al., 2010; Li et al., 2012; Marabotti et al., 2021). Numerous structural characteristics, including disulfide bonds, 

hydrophobic interactions, pi-pi and cation-pi interactions and salt bridges are fundamental in defining 

thermostability and should be evaluated when designing proteins and enzymes (Loladze et al., 1999; Razvi & 

Scholtz 2006; Strickler et al., 2006; Vardar-Yel et al., 2024). Thermophilic organisms are useful for industrial 

applications because they produce high-functioning enzymes and can withstand temperatures between 41°C 

and 122°C (Das & Gerstein, 2000). Proteins that are particularly thermophilic were searched for to identify 

the contributions of sequence and structural features associated with thermostability (Mrozek & Małysiak-
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Mrozek, 2011; Dao et al., 2017; Charoenkwan et al., 2021). Increased levels of non-polar amino acids in 

thermostable enzyme structures are believed to enhance the hydrophobicity of proteins, which attracts them to 

the catalytic pocket and increases their rigidity. Furthermore, thermostable enzymes exhibit a greater number 

of hydrophobic and disulfide linkages. These characteristics facilitate conformational folding and provide 

enzymes with a more rigid structure (Li et al., 2005; Hussian et al., 2023). Additionally, stronger electrostatic 

contacts in a protein's outer regions lead to more ion pair interactions when amino acids have a greater charge. 

In thermophilic proteins as opposed to their mesophilic counterparts, these electrostatic forces play a larger 

role in maintaining the stability of the folded form. This shows that in order to keep proteins stable at high 

temperatures, electrostatic interactions are essential (Dominy et al., 2004; Hussian et al., 2023). In their study, 

Zhou et al. (2008) examined the differences in amino acid composition between mesophilic and thermophilic 

proteins, highlighting key features in thermophilic proteins such as increased hydrophobicity, decreased 

uncharged polar residues, elevated charged and aromatic residues, specific amino acid coupling patterns, and 

distinct amino acid preferences (Zhou et al., 2008). Other studies have isolated specific patterns of cavity 

dipeptide specific to thermophilic protein sequences (Wijma et al., 2013). This level of comparison is highly 

helpful since it provides detailed information about the major impacts of packing, hydrophobic interactions, 

disulfide bridges, and aromatic interactions on protein thermostability (Christensen & Kepp, 2013). The ability 

to distinguish between mesophilic and thermophilic proteins with accuracy has been demonstrated by machine 

learning methods such as support vector machines, decision trees, neural networks, and logistic functions (Ding 

et al., 2004; 2010; Zhang & Fang, 2006a; 2006b; 2007; Gromiha & Suresh, 2008; Lin & Chen, 2011; Ai et al., 

2012; Albayrak & Sezerman, 2012; Chakravorty et al., 2017; Feng et al., 2020). In this study, two distinct 

algorithms, Support Vector Machines (SVM) and Decision Trees, have been used to analyze the differences 

between thermophilic and mesophilic lipase enzymes from bacteria that are unreviewed from the Uniprot 

database. 

2. MATERIAL AND METHOD 

2.1. The Dataset 

3715 unreviewed bacterial lipase enzymes from the Uniprot web server were screened for Tm values. 

Redundancies were removed using the CD-HIT (Cluster Database at High Identity with Tolerance) algorithm 

and erroneous sequences were eliminated. Furthermore, a tree was constructed using the MEGA 11 program 

and lipase sequences from different families were selected (Tamura et al., 2021). The final dataset consists of 

88 mesophilic proteins and 123 thermophilic proteins were used. Lipase enzymes screened from different 

thermophilic and mesophilic bacterial sources are listed in Table 1. Enzymes from various thermophilic and 

mesophilic bacterial organisms, identified under names such as triacylglycerol lipase, monoacylglycerol lipase, 

carboxylesterase, esterase, alpha/beta hydrolase, lipase, and Lipase EstA, were screened (Table 1). A 

comprehensive analysis was conducted on 38 distinct variables, including amino acid composition, sequence 

length, aliphatic index, instability index, net charge, hydropathy, molecular weight (Da), and the number of 

various amino acid groups. These groups consisted of charged (DEKHR), aliphatic (ILV), aromatic (FHWY), 

polar (DERKQN), neutral (AGHPSTY), hydrophobic (CFILMVW), positively charged (KRH), negatively 

charged (DE), as well as tiny (ACDGST), small (EHILKMNPQV), and large (FRWY) amino acids. Data was 

collected from the COPid-Calculate Composition of Whole Protein and Tm Predictor website (Kumar et al., 

2008; Ku et al., 2009). 

2.2. Cross Validation 

The correctness of results determines the success of systems developed for any objective. The most common 

approach is k-fold cross-validation (Alataş et al., 2023). Here, an original dataset is divided into k subsets of 

roughly equal size. The system trains itself in k-1 subsets and tests itself in the remaining one. The hypothesis' 

validity is indicated by the average of the error value throughout the course of these k experiments. 

For this experiment, a value of k equated to 5 was used as the size of the dataset was of medium scale, and 

more than that would have required additional computational power. This method has been used to compensate 

for the inadequacies of the test-train split method. Finally, the dataset was split into a training and testing set 

in a 7:3 ratio. The accuracy derived from this split was measured and the results were compared with those 

developed by the cross-validation method. 
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Table 1. Lipase enzymes screened from different thermophilic and mesophilic bacterial sources 

Thermophilic protein Source Mesophilic protein Source 

Triacylglycerol lipase Geobacillus sp. GHH01 Triacylglycerol lipase Streptococcus downei  

Triacylglycerol lipase Geobacillus stearothermophilus Triacylglycerol lipase Cupriavidus necator 

Triacylglycerol lipase Geobacillus thermoleovorans Lipase Rhodococcus sp. 

Monoacylglycerol lipase Thermus thermophilus Lipase1 Streptomyces ambofaciens 

Monoacylglycerol lipase Geobacillus thermopakistaniensis  Triacylglycerol lipase Mycolicibacterium fortuitum 

Monoacylglycerol lipase Chloroflexi bacterium Lipase EstA  Limnohabitans sp. 

Monoacylglycerol lipase Thermoflexales bacterium Triacylglycerol lipase Pseudomonas fluorescens 

Carboxylesterase Geobacillus stearothermophilus Esterase/lipase lipF Mycobacterium tuberculosis  

Carboxylesterase Geobacillus thermodenitrificans Monoacylglycerol lipase Bacillus sp. 

Carboxylic ester hydrolase Geobacillus thermodenitrificans Lipase2 Staphylococcus aureus 

GDSL-family esterase Geobacillus thermodenitrificans Lipase Pseudomonas sp. 

Triacylglycerol lipase 
Geobacillus thermoleovorans 

(Bacillus thermoleovorans) 
Triacylglycerol lipase Escherichia coli 

Triacylglycerol lipase Geobacillus zalihae Triacylglycerol lipase Staphylococcus epidermidis 

Esterase-lipase Thermochaetoides thermophila Triacylglycerol lipase Staphylococcus sp.  

Monoacylglycerol lipase Thermoflexales bacterium Triacylglycerol lipase Bacillus anthracis 

Monoacylglycerol lipase Thermosipho africanus    

Alpha/beta hydrolase Aquifex aeolicus   

2.3. Machine Learning Algorithms 

The algorithms used for the study were chosen in relation to the dataset used, looking for algorithms that work 

well with the limited amount of data available, can deal effectively with imbalanced class problems, are robust 

to outliers, and can be applied to a large number of data structures. Furthermore, the machine learning 

applications used in this study were implemented using scikit-learn, a free software library for the Python 

programming language. The anaconda suite (https://www.anaconda.com/download), which includes a chosen 

collection of Python packages, is the simplest method to obtain Python, the core packages, and Jupyter 

Notebook. 

2.3.1. Random Forest (RF) 

Numerous tree classifiers are used in combined machine learning methods like Random Forest. Each tree votes 

once for the popular class, and the final classification result is calculated by adding up all of the tree classifier 

ratings. The characteristics of RF are high classification accuracy, robust tolerance to noise and outliers, and 

resistance to overfitting (Liu et al., 2012). 

2.3.2. Decision Tree (DT) 

Due to their structured, reliable and user-friendly nature, Decision Trees have been widely applied to both 

classification and regression problems. Other reasons supporting its popularity are its interoperability with 

other systems and the existence of understandable concepts. DTs are constructed in a top-down manner: they 

start with the most general data and are progressively specialized. The methodology applied for their 

construction and the starting point for tree building are the main factors taken into account in the application 

of DTs (Kotsiantis, 2013) 
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2.3.3. Performance Evaluation Metrics 

Table 2 displays the confusion matrix of the multiple categorization results. 

Table 2. The confusion matrix of the outcomes. Cell1=TN: True Negative; Cell2=FP: False Positive; 

Cell3=FN: False Negative; Cell4=TP: True Positive 

P
re

d
ic

te
d

 V
al

u
es

 
0: Mesophilic 

TN             Cell 1 FP                 Cell 2 

1: Thermophilic 
FN              Cell 3 TP                Cell 4 

 
0: Mesophilic 1: Thermophilic 

 

 Real Values 

As a result, Equations 1-4 were used to calculate a range of metrics that were utilized to assess the performance 

of the algorithm. These metrics include accuracy, precision (P), recall (R), the F-score, and the area under the 

ROC curve (AUC). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 𝐹 𝑠𝑐𝑜𝑟𝑒 =
2(𝑅 ∗ 𝑃)

𝑅 + 𝑃
 (4) 

In this context, the terms TP, FP, TN, and FN represent specific classifications within the data analysis process. 

TP means true positives, where thermophiles are positively identified as thermophiles. FP or false positives 

are where mesophiles are classified as thermophiles. TN stands for true negatives, which are the number of 

mesophiles correctly identified as mesophiles, while FN stands for false negatives, which are cases where 

thermophiles are classified as mesophiles. The AUC was calculated from a plot of the relationship between 

the false positive rate on the x-axis and the true positive rate on the y-axis. This allows a visual and quantitative 

assessment of how well the algorithm discriminates between thermophiles and mesophiles according to the 

thresholds used for classification. 

3. RESULTS AND DISCUSSION 

This study compared the effectiveness of different machine learning techniques in discriminating between 

mesophilic and thermophilic proteins with amino acid composition as the main feature for classification. 

Several criteria were used to compare the performance of machine learning algorithms in this study: precision 

(%), accuracy (%), F1 score (%), recall (%), AUC values (%) and corresponding ROC curves (%). In this 

study, multiclass classification was used to predict the dependent variables of mesophilic and thermophilic 

bacterial lipase groups. These two dependent variables were treated as two different outputs. The confusion 

matrices obtained from both machine learning methods are shown in Figure 1. The first and fourth cells show 

the correctly predicted values, while the remaining cells show the incorrectly predicted values. 

https://doi.org/10.54287/gujsa.1558391
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Figure 1. Confusion matrix for RF and DT used in the prediction of mesophilic and thermophilic bacterial 

lipase enzyme.  

The results demonstrated that the majority of machine learning techniques exhibited an accuracy of 

approximately 99.5% in differentiating between thermophilic and mesophilic proteins. The results 

demonstrated that the random forest and decision tree approaches exhibited a high degree of similarity in this 

regard. Therefore, based on this finding, there is no significant difference in the performance of any of these 

machine learning algorithms. 

ROC curves offer a very insightful approach for excellent visualization of the balance of sensitivity and 

specificity in a model with respect to the total predictive power of the classes presented in the model. For 

multi-class classification problems, an ROC curve can be constructed as a one-to-one approximation where 

each class is compared with all other classes. Thus, the number of ROC curves is equal to the number of classes 

used. In this case, the structure of the ROC curve was the same for both classes, indicating equal prediction 

performance. Figure 2 shows the ROC curve of DT. 

 

Figure 2. ROC curve for classes 0, 1 and 2 with Decision Tree algorithms. 
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A widely adopted approach for assessing model performance in classification tasks is the evaluation of 

accuracy, largely due to its simplicity and intuitive interpretation. Accuracy is calculated by taking the ratio of 

the total number of correct predictions to the overall number of predictions made by the model. Following the 

training-test split (7:3) and 10-fold cross-validation for the RF and DT algorithms, the accuracy values were 

calculated as 1. Following the evaluation of the ROC curve, AUC, and accuracy metrics, it was concluded that 

the Random Forest (RF) and Decision Tree (DT) algorithms demonstrated the highest effectiveness for 

machine learning classification of class 0 and class 1, corresponding to mesophilic and thermophilic categories 

within the dataset. As a result, the link between the features in the dataset and the living temperature classes 

were analyzed using the RF approach since both algorithms gave similar results. The feature importance values 

of the final model are shown in Figure 3. 

 

Figure 3. Feature importance results for Random Forest 

The prediction involving thermophilic bacterial lipase enzymes resulted in the aliphatic index having the most 

dominant percentage contribution. This is probably to be expected because most of the analyzed protein data 

is normally filtered according to this parameter and thus proves that machine learning serves as a self-

correcting function that produces excellent results. The aliphatic amino acids (I, L, V) also emerge as crucial, 

ranking second with a value of 18%. The association between the aliphatic index and aliphatic amino acid 

composition with thermostability is well-documented in numerous studies (Ikai, 1980; Ponnuswamy et al., 

1982; Pack & Yoo, 2004; Wu et al., 2009; Sahoo et al., 2019). 

Furthermore, the importance of hydrophobic amino acids (CFILMVW), Leu amino acid, and small amino 

acids (EHILKMNPQV) were found to be 8.7%, 9%, and 9%, respectively. Factors with lesser effects included 

Ile amino acid at 5.1%, hydropathy at 3.7%, and tiny amino acids (ACDGST) at 3.8%. These findings are 

consistent with those of previous studies. For example, Lin and Chen (2011) observed that individual amino 

acids such as glutamic acid, lysine and isoleucine play a crucial role in contributing to the thermostability of 

proteins. Indeed, related to this view, their research has shown that such amino acids significantly influence 

the structure of thermophilic proteins, allowing them to maintain their functionality at relatively high 

temperatures. In another study, Gromiha and Suresh (2008) compared the amino acid compositions between 

mesophilic and thermophilic proteins. They showed that compared to mesophilic proteins, thermophilic 

proteins had more charged residues such as Lys, Arg, Glu and Asp. They also found that among the 

hydrophobic residues, especially Val and Ile were more abundant in thermophilic proteins than in mesophilic 

proteins. 

https://doi.org/10.54287/gujsa.1558391
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Numerous studies have emphasized that amino acid composition, dipeptide composition are distinguishing 

factor between thermophilic, mesophilic and psychrophilic proteins (Ding et al., 2004; 2010; Dominy et al., 

2004; Zhang & Fang, 2006a; 2006b; 2007; Gromiha & Suresh, 2008; Lin & Chen, 2011; Ai et al., 2012; 

Albayrak & Sezerman, 2012; Chakravorty et al., 2017; Feng et al., 2020; Wang et al., 2020; Charoenkwan et 

al., 2021). However, a major difference in our study lies in the fact that we concentrated specifically on 

mesophylic and thermophilic bacterial-originated lipase proteins and non-protein types in general. In this way, 

our focused approach enabled an exploration that is going to be much more in-depth with regard to certain 

property and characteristic changes experienced by lipase proteins within these different thermal 

environments. 

The results obtained in the lipase proteins and in the machine-learning studies need to strongly correlate with 

each other, which generally goes on to show that the mesophilic, thermophilic, and psychrophilic proteins 

present a high correlation among them. It can thus be stated that the data in question provides compelling 

evidence of the precision and reliability of the results obtained. The fact that our findings are consistent with 

some of the most advanced computational studies validates our methodology of research and further testifies 

to how amino acid compositions feature prominently in dictating thermal stability and functionality in lipase 

enzymes. 

4. CONCLUSION 

This study identifies the effective factors distinguishing mesophilic and thermophilic bacterial lipase enzymes. 

The results revealed that both machine learning algorithms demonstrated nearly identical accuracy, achieving 

a ten-fold cross-validation accuracy of 99% on a dataset consisting of 3,715 unreviewed bacterial lipase entries. 

According to feature importance results, Ile, Leu, aliphatic index, hydropathy, aliphatic amino acids, 

hydrophobic amino acids, tiny amino acids, and small amino acids are variables able to differentiate the 

thermophilic from the mesophilic lipase proteins. Therefore, this observation may indicate the role of amino 

acid composition in the differentiation of these two groups. The results obtained align with the results of 

previous studies comparing mesophilic and thermophilic proteins by machine learning. 
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