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ABSTRACT
One of the most important models for the analysis of count data is the Poisson
Regression Model (PRM). The parameter estimates of the PRM are obtained by the
Maximum Likelihood Estimator (MLE). However, MLE is adversely affected in the
presence of multicollinearity, which is known as the approximately linear relationship
between the explanatory variables. Many shrinkage estimators have been proposed
to reduce the effects of multicollinearity in PRMs. As an alternative to other biased
estimators that are already in use in PRMs, we presented a novel estimator in this paper
that is based on the Kibria-Lukman estimator. The superiority of the proposed new
biased estimator over existing biased estimators is given by the asymptotic matrix
mean square error. Furthermore, two separate Monte Carlo simulation studies are
conducted to investigate the performance of the proposed biased estimators. Finally,
real data is used to examine the superiority of the proposed estimator.

Keywords: Mean squared error, multicollinearity, poisson liu estimator, poisson re-
gression, poisson ridge estimator
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1. INTRODUCTION
The Poisson Regression Model (PRM) is a basic model used to analyze count data (Hilbe, 2014). Let 𝑦𝑖 be the

response variable and follow a Poisson distribution with mean 𝜇𝑖 , the probability mass function is defined as

𝑓 (𝑦𝑖) =
𝑒−𝜇𝑖 𝜇𝑦𝑖

𝑖

𝑦𝑖!
, 𝑖 = 1, 2, .., 𝑛 𝑦𝑖 = 0, 1, 2, .... (1.1)

where the canonical log-link function and a linear combination of explanatory variables are used to describe 𝜇𝑖 as
follows: 𝜇𝑖 = exp(𝑥′

𝑖
𝛽) where 𝑥

′
𝑖

is the ith row of model matrix X, which is an 𝑛 × (𝑝 + 1) matrix with p explanatory
variables and 𝛽 is a (𝑝 + 1)× n vector of parameters.

The most popular estimation approach for estimating parameters in PRMs is the Maximum Likelihood method. The
following is the log-likelihood function for PRM:

𝑙 (𝛽) =
𝑛∑︁
𝑖=1

𝑦𝑖𝑥
′
𝑖𝛽 − exp(𝑥′

𝑖𝛽) − log(𝑦𝑖!). (1.2)

The log-likelihood function is maximized to obtain the Maximum Likelihood Estimator (MLE) of 𝛽 , which yields
the following equations:

𝑆 (𝛽) = 𝜕𝑙 (𝛽)
𝜕𝛽

=

𝑛∑︁
𝑖=1

[
𝑦𝑖 − exp

(
𝑥′𝑖𝛽

) ]
𝑥𝑖 = 𝑋 ′ (𝑦 − 𝜇) = 0 (1.3)

where 𝜇 is an 𝑛 × 1 dimensional vector with elements are 𝜇𝑖 = exp
(
𝑥′
𝑖
𝛽
)
, 𝑖 = 1, 2, ..., 𝑛. Since Equation (1.3) is

nonlinear in 𝛽 , the following iteratively reweighted least squares (IRLS) algorithm is used to find the solution of 𝑆(𝛽) :

𝛽𝑀𝐿𝐸 = (𝑋 ′
�̂�𝑋)−1𝑋

′
�̂�𝑍 (1.4)

where Z is a vector with the ith element 𝑧𝑖 = log( �̂�𝑖) + 𝑦𝑖− �̂�𝑖
�̂�𝑖

and �̂� = 𝑑𝑖𝑎𝑔[�̂�𝑖], 𝑖 = 1, 2, ..., 𝑛. The iterations end
when the difference between successive estimates converges or is less than a specified small value, which is usulally
10−8 (Dunn & Smyth, 2018). The logic of the IRLS algorithm for PRM with a canonical link function is summarized
in Table 1 (Hardin & Hilbe, 2018).

Table 1. IRLS estimation algorithm for PRM with canonical link function.
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Table 1: IRLS estimation algorithm for PRM with canonical link function. 

0Dev   

 mean( ) / 2,i iy y    #where y is the response vector whose components are 1,2, , .,iy i n   Initialization of   

 ln    #initialization of   

While abs( Dev  > tolerans) { 

 diag iW    1,2, ,i n      #where W is the weighted matrix. 

   log ii i i iz y      1,2, ,i n    

  1
X WX X WZ      #where Z is a vector with the ith element , 1,2,..., .iz i n   

X   

 exp   

oldDev Dev  

2 { ln( / ) ( )}Dev y y y      

 oldDev Dev Dev   } #Iterate until the change in deviance, log-likelihood, or estimated parameter values between 

two iterations is below a specified level of tolerance, or threshold. 

 
Table 2. The EMSE values of the estimators for the model with p = 2, 4, and 8 

I
D p n   MLE PRE PLE PLTE I PLTE II 

PLTE 
III PKLE PKLTE I PKLTE II 

1 2 10
0 

0.8
5 

5.7538 0.4173 0.612
1 

2.7869 2.9650 0.949
9 

0.4039*
** 

0.3767*
* 

0.3650* 

2 2 10
0 

0.9 6.3544 0.4055 0.584
7 

3.0471 3.2076 0.948
9 

0.3858*
** 

0.3590*
* 

0.3455* 

3 2 10
0 

0.9
5 

10.851
6 

0.4072*
** 

0.486
7 

5.0765 5.2186 0.890
5 

0.4121 0.3873*
* 

0.3670* 

4 2 20
0 

0.8
5 

3.7320 0.4376 0.691
3 

1.8306 2.0112 0.974
9 

0.3808*
* 

0.3790* 0.4124*
** 

5 2 20
0 

0.9 6.6718 0.4123 0.560
3 

3.2277 3.3813 0.925
7 

0.3893*
** 

0.3640*
* 

0.3503* 

6 2 20
0 

0.9
5 

10.445
1 

0.3984*
** 

0.495
5 

5.0736 5.2371 0.938
4 

0.4030 0.3747*
* 

0.3523* 

7 2 50
0 

0.8
5 

4.0880 0.4278 0.674
9 

2.0199 2.2165 0.988
8 

0.3707*
* 

0.3643* 0.3923*
** 

8 2 50
0 

0.9 6.4054 0.4043*
** 

0.579
3 

3.0480 3.2379 0.969
1 

0.4096 0.3762*
* 

0.3570* 

9 2 50
0 

0.9
5 

10.309
2 

0.4273*
** 

0.514
0 

4.8168 4.9829 0.936
0 

0.4371 0.4077*
* 

0.3841* 

1
0 

4 10
0 

0.8
5 

8.7874 0.4113 0.832
2 

3.1125 4.5803 0.979
1 

0.3021*
** 

0.2655*
* 

0.2613* 

1
1 

4 10
0 

0.9 11.819
1 

0.3594*
** 

0.754
6 

4.1368 5.5644 1.048
9 

0.4161 0.2991*
* 

0.2405* 

1 4 10 0.9 33.682 0.3430* 0.505 12.033 13.960 1.269 0.6725 0.3530* 0.2318* 

An important drawback of the MLE is that estimated parameter values become unstable when multicollinearity occurs
(Kibria et al. 2013; Türkan & Özel, 2016; Rashad & Algamal, 2019; Amin et al. 2022; Jadhav, 2022; Alkhateeb &
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Algamal, 2020; Månsson & Kibria, 2020; Lukman et al., 2021; Akay & Ertan, 2022; Ertan & Akay, 2023). The estimates
of model parameters in PRMs, as in linear regression models, are affected by the multicollinearity problem, which
results from the approximately linear relationship between explanatory variables. The variance of MLE increases to
such a degree that the estimates of model parameters become unstable due to multicollinearity between the explanatory
variables Månsson & Shukur (2011), Månsson et al. (2012), Kibria et al. (2015), Asar & Genç (2018), Çetinkaya &
Kaçıranlar (2019), Qasim et al. (2020b), Alheety et al. (2021).

Instead of using the MLE, alternative biased estimators are recommended to alleviate the negative impacts of
multicollinearity. For instance, Månsson & Shukur (2011) defined the Poisson Ridge Estimator (PRE) as follows:

𝛽𝑃𝑅𝐸 =
(
𝑋 ′�̂�𝑋 + 𝑘 𝐼

)−1
𝑋 ′�̂�𝑋𝛽𝑀𝐿𝐸 , 𝑘 > 0, (1.5)

where k is a biasing parameter. The Ridge estimator (RE) proposed by Hoerl & Kennard (1970) for the linear
regression model is generalized by the PRE.

The Poisson Liu Estimator (PLE) is proposed by Månsson et al. (2012), Amin et al. (2021), and Qasim et al. (2020a)
as

𝛽𝑃𝐿𝐸 = (𝑋 ′
�̂�𝑋 + 𝐼)−1(𝑋 ′

�̂�𝑋 + 𝑑𝐼)𝛽𝑀𝐿𝐸 , 0 < 𝑑 < 1, (1.6)

where d is a biasing parameter. The Liu estimator (LE), which Liu (1993) proposed for the linear regression model,
is extended by PLE.

As an alternative to PRE and PLE, two biased estimators have been merged in recent years to produce innovative
estimators with two biasing parameters. The Poisson–Liu-type estimator (PLTE) for PRM is defined in this context by
Algamal (2018) as follows:

𝛽𝑃𝐿𝑇𝐸 =
(
𝑋 ′�̂�𝑋 + 𝑘 𝐼

)−1 (
𝑋 ′�̂�𝑋 − 𝑑𝐼

)
𝛽𝑀𝐿𝐸 , 𝑘 > 0, 𝑑 ∈ 𝑅 (1.7)

where k and d are the biasing parameters, respectively. The PLTE is a generalization of the Liu-type estimator
introduced by Liu (2003). Moreover, Asar & Genç (2018) and Çetinkaya & Kaçıranlar (2019) proposed another
estimator with two biasing parameters, which was defined by Özkale & Kaçıranlar (2007) for linear regression models.
The Poisson Two-Parameter Estimator (PTPE) is defined as follows:

𝛽𝑃𝑇𝑃𝐸 =
(
𝑋 ′�̂�𝑋 + 𝑘 𝐼

)−1 (
𝑋 ′�̂�𝑋 + 𝑘𝑑𝐼

)
𝛽𝑀𝐿𝐸 , 𝑘 > 0, 0 < 𝑑 < 1, (1.8)

where k and d are the biasing parameters, respectively.
However, as an alternative to estimators with two biasing parameters, Akay & Ertan (2022) proposed the improved

Liu-type Estimator (ILTE). The following definitions of ILTE include MLE, PRE, PLE, PLTE, and PTPE:

𝛽𝐼𝐿𝑇𝐸 = (𝑋 ′
�̂�𝑋 + 𝑘 𝐼)−1(𝑋 ′

�̂�𝑋 + 𝑓 (𝑘)𝐼)𝛽∗, 𝑘 > 0, (1.9)

where 𝛽∗ is an estimator of 𝛽 and 𝑓 (𝑘) is a continuous function of k. The ILTE is a generalization of the Liu-type
estimator defined by Kurnaz & Akay (2015) for linear regression models.

Let 𝑓 (𝑘) = −𝑘 and 𝛽∗ = 𝛽𝑀𝐿𝐸 as a special case of the estimator given by (1.9). In the literature, this estimator is
known as Kibria-Lukman type estimator. Aladeitan et al. (2021) defined the Kibria-Lukman-type estimator for PRM
as follows:

𝛽𝑃𝐾𝐿𝐸 =
(
𝑋 ′�̂�𝑋 + 𝑘 𝐼

)−1 (
𝑋 ′�̂�𝑋 − 𝑘 𝐼

)
𝛽𝑀𝐿𝐸 , 𝑘 > 0, (1.10)

where k is a biasing parameter.
Numerous biased estimators for linear regression models have been adapted for use with PRMs in the literature.

In recent investigations, researchers have concentrated on the Kibria-Lukman type estimator (Aladeitan et al., 2021;
Dawoud et al. 2022; Lukman et al., 2023; Akay et al., 2023; Alrweili, 2024). Therefore, in addition to the estimators
given above, in this paper, we focus on the application to PRMs of a new estimator based on the PKLE estimator given
by (1.10). Additionally, as an alternative to the PRE and PLE, our goal in this study is to examine the performance of
this new estimator with a single biasing parameter.
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The remainder of this paper is organized as follows. A new biased estimator is defined, and some of its characteristics
are described in Section 2. The conditions under which the proposed new estimator outperforms ILTE in terms of
the matrix mean squared error are illustrated in Section 3. In Section 4, several estimators are proposed to determine
the biasing parameter. In Section 5, two separate Monte Carlo simulation studies are conducted to evaluate the
performance of the proposed estimator compared to other estimators. A real-world data application is presented in
Section 6 to demonstrate how well the suggested biased estimators function. Finally, the conclusions of the study are
given in Section 7.

2. A NEW KIBRIA-LUKMAN-TYPE ESTIMATOR
For PRMs, we can generalize the Kibria-Lukman estimator given in (1.10) as follows:

𝛽 = (𝑋 ′
𝑊𝑋 + 𝑘 𝐼)−1(𝑋 ′

𝑊𝑋 − 𝑘 𝐼)𝛽∗ (2.1)

where k is the biasing parameter and 𝛽∗ is any estimator of 𝛽. As an approach to the case of nested estimators, we
consider the estimator obtained when 𝛽∗ = 𝛽𝑃𝑅𝐸 as follows:

𝛽𝑃𝐾𝐿𝑇𝐸𝐼 = (𝑋 ′
𝑊𝑋 + 𝑘 𝐼)−1(𝑋 ′

𝑊𝑋 − 𝑘 𝐼) (𝑋 ′
𝑊𝑋 + 𝑘 𝐼)−1𝑋

′
𝑊𝑋𝛽𝑀𝐿𝐸 (2.2)

where k is a biasing parameter. If 𝛽∗ = 𝛽𝑃𝐾𝐿𝐸 , the estimator obtained is as follows:

𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼 = (𝑋 ′
𝑊𝑋 + 𝑘 𝐼)−1(𝑋 ′

𝑊𝑋 − 𝑘 𝐼) (𝑋 ′
𝑊𝑋 + 𝑘 𝐼)−1(𝑋 ′

𝑊𝑋 − 𝑘 𝐼)𝛽𝑀𝐿𝐸 (2.3)

where k is a biasing parameter.
Using the estimator provided in (2.2) and (2.3), we can now determine the asymptotic scalar mean squared error

(SMSE) and the asymptotic matrix mean squared error (MMSE). We indicate 𝛼 = 𝑄′𝛽, Λ = 𝑑𝑖𝑎𝑔
(
𝜆1, ..., 𝜆𝑝+1

)
=

𝑄′ (𝑋 ′�̂�𝑋
)
𝑄, where 𝜆1 ≥ 𝜆2 ≥ ...𝜆𝑝+1 > 0 are the ordered eigenvalues of 𝑋 ′�̂�𝑋, the eigenvectors of 𝑋 ′�̂�𝑋 are

represented by the columns of 𝑄 and the ith element of 𝑄′𝛽 is denoted as 𝛼 𝑗 , 𝑗 = 1, 2, ..., 𝑝 + 1.
The asymptotic SMSE and the asymptotic MMSE of 𝛽 = 𝐴𝛽𝑀𝐿𝐸 are defined as follows:

𝑀𝑆𝐸𝑀 (𝛽) = 𝐸 (𝛽 − 𝛽) (𝛽 − 𝛽)′ = 𝐴(𝛽𝑀𝐿𝐸 − 𝛽) (𝛽𝑀𝐿𝐸 − 𝛽)′𝐴′ + (𝐴𝛽 − 𝛽) (𝐴𝛽 − 𝛽)′ (2.4)

𝑆𝑀𝑆𝐸 (𝛽) = 𝐸 (𝛽 − 𝛽)′ (𝛽 − 𝛽) = (𝛽𝑀𝐿𝐸 − 𝛽)′𝐴′
𝐴(𝛽𝑀𝐿𝐸 − 𝛽) + (𝐴𝛽 − 𝛽)′ (𝐴𝛽 − 𝛽).

The relationship between the MMSE and SMSE is 𝑆𝑀𝑆𝐸 (𝛽) = 𝑡𝑟 (𝑀𝑀𝑆𝐸 (𝛽)) . Because of the relation of 𝛼 =

𝑄
′
𝛽; 𝛽𝑀𝐿𝐸 , 𝛽𝑃𝑅𝐸 , 𝛽𝑃𝐿𝐸 , 𝛽𝑃𝐿𝑇𝐸 , 𝛽𝐼𝐿𝑇𝐸 and 𝛽𝑃𝐾𝐿𝑇𝐸 possess identical SMSE values to �̂�𝑀𝐿𝐸 , �̂�𝑃𝑅𝐸 , �̂�𝑃𝐿𝐸 , �̂�𝑃𝐿𝑇𝐸 , �̂�𝐼𝐿𝑇𝐸

and �̂�𝑃𝐾𝐿𝑇 , respectively.
Using (1.4), (1.5), (1.6), (1.7), (1.9), (1.10), (2.2), and (2.3), we can calculate the MMSE of the considered estimators

as follows:

𝑀𝑀𝑆𝐸
(
𝛽𝑀𝐿𝐸

)
= 𝑄Λ−1𝑄′ (2.5)

𝑀𝑀𝑆𝐸
(
𝛽𝑃𝑅𝐸

)
= 𝑄

(
(Λ + 𝑘 𝐼)−1Λ(Λ + 𝑘 𝐼)−1 + 𝑘2(Λ + 𝑘 𝐼)−1𝛼𝛼′(Λ + 𝑘 𝐼)−1

)
𝑄′ (2.6)

𝑀𝑀𝑆𝐸
(
𝛽𝑃𝐿𝐸

)
= 𝑄

(
(Λ + 𝐼)−1 (Λ + 𝑑𝐼) Λ−1 (Λ + 𝑑𝐼) (Λ + 𝐼)−1 +(𝑑 − 1)2(Λ + 𝐼)−1𝛼𝛼′(Λ + 𝐼)−1

)
𝑄′ (2.7)

𝑀𝑀𝑆𝐸
(
𝛽𝑃𝐿𝑇𝐸

)
= 𝑄

(
(Λ + 𝑘 𝐼)−1 (Λ + 𝑑𝐼) Λ−1 (Λ + 𝑑𝐼) (Λ + 𝑘 𝐼)−1 + (𝑑 − 𝑘)2(Λ + 𝑘 𝐼)−1𝛼𝛼′(Λ + 𝑘 𝐼)−1

)
𝑄′

(2.8)
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𝑀𝑀𝑆𝐸
(
𝛽𝐼𝐿𝑇𝐸

)
= 𝑄

(
(Λ + 𝑘 𝐼)−1 (Λ + 𝑓 (𝑘) 𝐼) Λ−1 (Λ + 𝑓 (𝑘) 𝐼) (Λ + 𝑘 𝐼)−1 + ( 𝑓 (𝑘) − 𝑘)2(Λ + 𝑘 𝐼)−1𝛼𝛼′(Λ + 𝑘 𝐼)−1

)
𝑄′

(2.9)

𝑀𝑀𝑆𝐸
(
𝛽𝑃𝐾𝐿𝐸

)
= 𝑄(Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) Λ−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1𝑄′ + 𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑅

)
𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑅

) ′
where 𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝐸

)
=

(
(Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) − 𝐼

)
𝑄𝛼

(2.10)

𝑀𝑀𝑆𝐸
(
𝛽𝑃𝐾𝐿𝑇𝐸𝐼

)
= 𝑄(Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1Λ(Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1𝑄′

+ 𝑏𝑖𝑎𝑠
(
𝛽𝑃𝐾𝐿𝑇𝐸𝐼

)
𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑇𝐸𝐼

) ′where 𝑏𝑖𝑎𝑠
(
𝛽𝑃𝐾𝐿𝑇𝐸𝐼

)
=

(
(Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1Λ − 𝐼

)
𝑄𝛼

(2.11)

𝑀𝑀𝑆𝐸
(
𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼

)
= 𝑄(Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) Λ−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1𝑄′

+ 𝑏𝑖𝑎𝑠
(
𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼

)
𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼

) ′
(2.12)

where 𝑏𝑖𝑎𝑠
(
𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼

)
=

(
(Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) − 𝐼

)
𝑄𝛼

Let 𝛽1 and 𝛽2 be any two estimators of 𝛽. Then, 𝛽2 is superior to 𝛽1 with respect to the MMSE criterion if and only if
𝑀𝑀𝑆𝐸

(
𝛽1

)
− 𝑀𝑀𝑆𝐸

(
𝛽2

)
is a positive-definite (pd) matrix. If 𝑀𝑀𝑆𝐸

(
𝛽1

)
− 𝑀𝑀𝑆𝐸

(
𝛽2

)
is a nonnegative definite

matrix, then 𝑆𝑀𝑆𝐸
(
𝛽1

)
− 𝑆𝑀𝑆𝐸

(
𝛽2

)
≥ 0. However, the opposite is not always true (Theobald, 1974).

The following theorem can be used to compare the MMSEs of biased estimators.
Theorem 2.1. (Farebrother, 1976). Let c be a nonzero vector and A be a positive-definite matrix, namely 𝐴 > 0. Then,
𝐴 − 𝑐𝑐

′ is a positive-definite matrix iff 𝑐
′
𝐴−1𝑐 ≤ 1.

3. THE SUPERIORITY OF THE PKLTE IN PRMS
In this part, we use the MMSE criterion to compare the PKLTE II and ILTE. As a result, using several 𝑓 (𝑘) functions

allows a more comprehensive assessment of the estimator’s performance.
Theorem.3.1: Let be 𝑘 > 0 and

(
𝜆 𝑗 + 𝑘

)2 (
𝜆 𝑗 + 𝑓 (𝑘)

)2−
(
𝜆 𝑗 − 𝑘

)4
> 0 where 𝑗 = 1, ..., 𝑝+1. Then 𝑀𝑀𝑆𝐸

(
𝛽𝐼𝐿𝑇𝐸

)
−

𝑀𝑀𝑆𝐸
(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

)
> 0 iff

𝑏𝑖𝑎𝑠
(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

) ′
𝑄

(
(Λ + 𝑘 𝐼)−1 (Λ + 𝑓 (𝑘) 𝐼) Λ−1 (Λ + 𝑘 𝐼)−1 (Λ + 𝑓 (𝑘) 𝐼)

− (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) Λ−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1
)−1

𝑄′𝑏𝑖𝑎𝑠
(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

)
< 1

(3.1)
where 𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

)
=

(
(Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ − 𝐼

)
𝑄𝛼.

Proof. Using (2.9) and (2.12), we obtain

𝑀𝑀𝑆𝐸
(
𝛽𝐼𝐿𝑇𝐸

)
− 𝑀𝑀𝑆𝐸

(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

)
= 𝑄 (𝐴𝐴′ − 𝐵𝐵′)𝑄′ + 𝑏𝑖𝑎𝑠

(
𝛽𝐼𝐿𝑇𝐸

)
𝑏𝑖𝑎𝑠

(
𝛽𝐼𝐿𝑇𝐸

) ′
− 𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

)
𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

) ′
= 𝑄

(
(Λ + 𝑘 𝐼)−1 (Λ + 𝑓 (𝑘) 𝐼) Λ−1 (Λ + 𝑘 𝐼)−1 (Λ + 𝑓 (𝑘) 𝐼)

− (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) Λ−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1
)−1

𝑄′

+ 𝑏𝑖𝑎𝑠
(
𝛽𝐼𝐿𝑇𝐸

)
𝑏𝑖𝑎𝑠

(
𝛽𝐼𝐿𝑇𝐸

) ′
− 𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

)
𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

) ′
= 𝑄 𝑑𝑖𝑎𝑔

{
(𝜆 𝑗+ 𝑓 (𝑘 ))2

(𝜆 𝑗+𝑘)2
𝜆 𝑗

− (𝜆 𝑗−𝑘)4

𝜆 𝑗 (𝜆 𝑗+𝑘)4

} 𝑝+1

𝑗=1
𝑄′ + 𝑏𝑖𝑎𝑠

(
𝛽𝐼𝐿𝑇𝐸

)
𝑏𝑖𝑎𝑠

(
𝛽𝐼𝐿𝑇𝐸

) ′
− 𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

)
𝑏𝑖𝑎𝑠

(
𝛽𝑃𝐾𝐿𝑇𝐸 𝐼𝐼

) ′
.

We can observe that 𝐴𝐴′ − 𝐵𝐵′ > 0 if and only if
(
𝜆 𝑗 + 𝑘

)2 (
𝜆 𝑗 + 𝑓 (𝑘)

)2 −
(
𝜆 𝑗 − 𝑘

)4
> 0 where 𝑗 = 1, 2, ..., 𝑝 + 1.

Therefore, 𝐴𝐴′ − 𝐵𝐵′ is the pd matrix. The proof is completed by Theorem 2.1. completes the proof.
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4. SELECTION OF BIASING PARAMETER
In general, the most important parameter affecting the estimator performance is the biasing parameter. However,

many techniques can be used to determine an appropriate statistic for estimating the biasing parameter. In general,
values that minimize the SMSE function with respect to the biasing parameter are usually recommended as estimates
of the biasing parameter. Initially, to find the optimal k for PKLTE I, the function ℎ1(𝑘) = 𝑆𝑀𝑆𝐸 (𝛽𝑃𝐾𝐿𝑇𝐸𝐼 ) is given
as follows:

𝑆𝑀𝑆𝐸 (𝛽𝑃𝐾𝐿𝑇𝐸𝐼 ) =
𝑝+1∑︁
𝑗=1

𝜆 𝑗 (𝜆 𝑗 − 𝑘)2

(𝜆 𝑗 + 𝑘)4 +
𝑝+1∑︁
𝑗=1

𝑘2(𝑘 + 3𝜆 𝑗)2𝛼2
𝑗

(𝜆 𝑗 + 𝑘)4 (4.1)

The derivative of ℎ1 (𝑘) in relation to parameter k is given as follows:

ℎ
′
1(𝑘) =

𝑝+1∑︁
𝑗=1

2𝜆 𝑗 (𝑘 − 3𝜆 𝑗) (𝜆 𝑗 − 𝑘 − 𝑘𝛼2
𝑗
(𝑘 + 3𝜆 𝑗))

(𝑘 + 𝜆 𝑗)5 (4.2)

When it is ℎ′1 (𝑘) = 0, we have the following:

𝑘𝑃𝐾𝐿𝑇𝐸𝐼 (1) = 3𝜆 𝑗

𝑘𝑃𝐾𝐿𝑇𝐸𝐼 (2) = −
1 + 3𝛼2

𝑗
𝜆 𝑗 +

√︂(
1 + 𝛼2

𝑗
𝜆 𝑗

) (
1 + 9𝛼2

𝑗
𝜆 𝑗

)
2𝛼2

𝑗

𝑘𝑃𝐾𝐿𝑇𝐸𝐼 (3) =

−1 − 3𝛼2
𝑗
𝜆 𝑗 +

√︂(
1 + 𝛼2

𝑗
𝜆 𝑗

) (
1 + 9𝛼2

𝑗
𝜆 𝑗

)
2𝛼2

𝑗

(4.3)

where 𝑗 = 1, 2, ..., 𝑝 + 1.
Similarly, the 𝑆𝑀𝑆𝐸 (𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼 ) function of the PKLTE II estimator is as follows:

𝑆𝑀𝑆𝐸 (𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼 ) =
𝑝+1∑︁
𝑗=1

(𝜆 𝑗 − 𝑘)4

𝜆 𝑗 (𝜆 𝑗 + 𝑘)4 +
𝑝+1∑︁
𝑗=1

16𝑘2𝜆2
𝑗
𝛼2
𝑗

(𝜆 𝑗 + 𝑘)4 (4.4)

To determine the optimal k, the derivative of ℎ2(𝑘) = 𝑆𝑀𝑆𝐸 (𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼 ) with respect to k is given as follows:

ℎ′2 (𝑘) =
𝑝+1∑︁
𝑗=1

8
(
𝑘 − 𝜆 𝑗

) (
𝑘2 − 2𝑘𝜆 𝑗 +

(
1 − 4𝑘𝛼2

𝑗

)
𝜆2
𝑗

)
(
𝑘 + 𝜆 𝑗

)5 (4.5)

When it is accepted ℎ
′
2(𝑘) = 0, we have:

𝑘𝑃𝐾𝐿𝑇𝐸𝐼𝐼 (1) = 𝜆 𝑗

𝑘𝑃𝐾𝐿𝑇𝐸𝐼𝐼 (2) = 𝜆 𝑗 + 2𝛼2
𝑗𝜆

2
𝑗 − 2

√︂
𝛼2
𝑗
𝜆3
𝑗

(
1 + 𝛼2

𝑗
𝜆 𝑗

)
𝑘𝑃𝐾𝐿𝑇𝐸𝐼𝐼 (3) = 𝜆 𝑗 + 2𝛼2

𝑗𝜆
2
𝑗 + 2

√︂
𝛼2
𝑗
𝜆3
𝑗

(
1 + 𝛼2

𝑗
𝜆 𝑗

) (4.6)

where the biasing parameter k depends on �̂�2
𝑗
, 𝑗1, 2, ..., 𝑝 + 1. To find the estimators of k, we substitute their unbiased

estimator �̂�2
𝑗
for them for practical purposes. Note that ℎ1(𝑘) and ℎ2(𝑘) are nonlinear functions of k. Numerical methods

are used to minimize the values of these functions relative to k. To determine the approximate minimum values of ℎ1(𝑘)
or ℎ2(𝑘) , we can make some approximations based on the obtained roots. The biasing parameter k can be estimated
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using the following estimators based on the simulation results:�̂� = 𝑚𝑖𝑛(𝜆 𝑗), �̂� = 𝑚𝑒𝑑𝑖𝑎𝑛(𝜆 𝑗), �̂� = 𝑚𝑒𝑎𝑛(𝜆 𝑗) and �̂� =

𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝜆 𝑗 , 𝑞) where q is the probability value used to generate sample quantiles and 𝑗 = 1, 2, ..., 𝑝 + 1.

5. THE MONTE CARLO SIMULATION STUDIES
In this section, we design two simulation designs to investigate the performance of PKLTE over other existing

biased estimators in PRMs. In the first simulation design, we discuss the effects of sample size (n), the number of
the explanatory variables (p) and the degree of the collinearity (𝜌) on the behavior of the PRE, PLE, PLTE, PKLE,
PKLTE I, and PKLTE II. In the second simulation scheme, we examine the behavior of the biasing parameter on the
performances of PRE, PLE, PKLE, PKLTE I, and PKLTE II for each set of (𝑛, 𝜌, 𝑝) . For both simulations, we generate
the explanatory variables by following McDonald & Galarneau (1975), Asar & Genç (2018), & Akay & Ertan (2022):

𝑥𝑖 𝑗 = (1 − 𝜌2) 1
2 𝑤𝑖 𝑗 + 𝜌𝑤𝑖 𝑝+1, 𝑖 = 1, 2, .., 𝑛, 𝑗 = 1, 2, ..., 𝑝 (5.1)

where 𝜌 is defined such that the correlation between any two variables is given by 𝜌2, and𝑤𝑖 𝑗 are independent standard
normal pseudorandom numbers. Three correlation sets are examined, each of which corresponds to 𝜌=0.85,0.90, and
0.95. The number of explanatory variables selected is p=2,4, and 8. The sample sizes n were 100, 200, and 500. The
parameter vector 𝛽 is selected as the normalized eigenvector corresponding to the greatest eigenvalue of X′X for every
set of explanatory variables, so that 𝛽′

𝛽 = 1. In addition, we set the intercept to zero.
In the simulation and application sections, the works of Månsson & Shukur (2011), Månsson et al. (2012), Kibria et

al. (2015), Asar & Genc (2018), Alanaz & Algamal (2018), Qasim et al. (2020a), and Akay & Ertan (2022) are used
for optimal estimates of biasing parameters for PRE, PLE, and PLTE.

For the biasing parameter k in PRE, we used the optimal estimate of k as�̂�𝑃𝑅𝐸 = 𝑚𝑎𝑥

(
1
𝑚 𝑗

)
where

𝑚 𝑗 =

√︄
�̂�2

�̂�2
𝑗

, 𝑗 = 1, 2, ..., 𝑝 and �̂�2 =

∑𝑛
𝑖=1(𝑦𝑖 − �̂�𝑖)2

(𝑛 − 𝑝 − 1) which is given by Kibria et al. (2015).

Based on the results of Qasim et al. (2020a), we use the optimal estimate of d in PLE as

𝑑𝑃𝐿𝐸 = 𝑚𝑎𝑥

(
0, 𝑚𝑖𝑛

(
�̂�2
𝑗
− 1

𝑚𝑎𝑥( 1
𝜆 𝑗
) + �̂�2

𝑚𝑎𝑥

))
Three methods were considered to estimate the biasing parameters k and d of PLTE:

𝑃𝐿𝑇𝐸𝐼 : �̂�𝑃𝐿𝑇𝐸 = 𝑚𝑎𝑥

(
1
𝑚 𝑗

)
where𝑚 𝑗 =

√︄
�̂�2

�̂�2
𝑗

, 𝑗 = 1, 2, ..., 𝑝 and 𝑑𝑃𝐿𝑇𝐸 =

∑𝑝

𝑗=1
1− �̂�𝑃𝐿𝑇𝐸 �̂�

2
𝑗(

𝜆 𝑗+�̂�𝑃𝐿𝑇𝐸

)2∑𝑝

𝑗=1
1+𝜆 𝑗 �̂�

2
𝑗

𝜆 𝑗

(
𝜆 𝑗+�̂�𝑃𝐿𝑇𝐸

)2

𝑃𝐿𝑇𝐸𝐼𝐼 : �̂�𝑃𝐿𝑇𝐸 =
𝜆1 − 100𝜆𝑝

99
and 𝑑𝑃𝐿𝑇𝐸 =

∑𝑝

𝑗=1
1− �̂�𝑃𝐿𝑇𝐸 �̂�

2
𝑗(

𝜆 𝑗+�̂�𝑃𝐿𝑇𝐸

)2∑𝑝

𝑗=1
1+𝜆 𝑗 �̂�

2
𝑗

𝜆 𝑗

(
𝜆 𝑗+�̂�𝑃𝐿𝑇𝐸

)2

𝑃𝐿𝑇𝐸𝐼𝐼 𝐼 : 𝑑𝑃𝐿𝑇𝐸 =
1
2
𝑚𝑖𝑛

{
𝜆 𝑗

1 + 𝜆 𝑗 �̂�
2
𝑗

}
and �̂�𝑃𝐿𝑇𝐸 =

1
𝑝

𝑝∑︁
𝑗=1

𝜆 𝑗 − 𝑑𝑃𝐿𝑇𝐸 (1 + 𝜆 𝑗 �̂�
2
𝑗
)

(𝜆 𝑗 �̂�2
𝑗
)

The k values for PKLE, PKLTE I, and PKLTE II are estimated using �̂� = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒

(
𝜆 𝑗 , 𝑞 =

8𝑝−16
100

)
where p is the

number of variables.
A comparison of the proposed estimators is based on the performance of the estimated MSEs (EMSEs), which are

computed for an estimator 𝛽 of 𝛽 as
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𝐸𝑀𝑆𝐸
(
𝛽
)
=

1
𝑁

𝑁∑︁
𝑟=1

𝑝+1∑︁
𝑗=1

(
𝛽𝑟 𝑗 − 𝛽 𝑗

)2 (5.2)

where 𝛽𝑟 𝑗 denotes the estimate of the j-th parameter in r-th replication, 𝛽 𝑗 are the true parameter values and N is
the number of replications. The experiment is repeated 2000 times by creating response variables for each n, p and 𝜌.
Using the R programing language, we conducted our Monte Carlo simulation studies, and Table 2 presents the results.

Table 2. The EMSE values of the estimators for the model with p = 2, 4, and 8

ID p n   MLE PRE PLE PLTE I PLTE II PLTE III PKLE PKLTE I PKLTE II
1 2 100 0.85 5.7538 0.4173 0.6121 2.7869 2.9650 0.9499 0.4039*** 0.3767** 0.3650*
2 2 100 0.9 6.3544 0.4055 0.5847 3.0471 3.2076 0.9489 0.3858*** 0.3590** 0.3455*
3 2 100 0.95 10.8516 0.4072*** 0.4867 5.0765 5.2186 0.8905 0.4121 0.3873** 0.3670*
4 2 200 0.85 3.7320 0.4376 0.6913 1.8306 2.0112 0.9749 0.3808** 0.3790* 0.4124***
5 2 200 0.9 6.6718 0.4123 0.5603 3.2277 3.3813 0.9257 0.3893*** 0.3640** 0.3503*
6 2 200 0.95 10.4451 0.3984*** 0.4955 5.0736 5.2371 0.9384 0.4030 0.3747** 0.3523*
7 2 500 0.85 4.0880 0.4278 0.6749 2.0199 2.2165 0.9888 0.3707** 0.3643* 0.3923***
8 2 500 0.9 6.4054 0.4043*** 0.5793 3.0480 3.2379 0.9691 0.4096 0.3762** 0.3570*
9 2 500 0.95 10.3092 0.4273*** 0.5140 4.8168 4.9829 0.9360 0.4371 0.4077** 0.3841*
10 4 100 0.85 8.7874 0.4113 0.8322 3.1125 4.5803 0.9791 0.3021*** 0.2655** 0.2613*
11 4 100 0.9 11.8191 0.3594*** 0.7546 4.1368 5.5644 1.0489 0.4161 0.2991** 0.2405*
12 4 100 0.95 33.6826 0.3430** 0.5055 12.0338 13.9604 1.2690 0.6725 0.3530*** 0.2318*
13 4 200 0.85 9.9565 0.3975 0.8404 3.6038 4.8777 1.0626 0.3100*** 0.2621** 0.2490*
14 4 200 0.9 17.4294 0.3327*** 0.6551 6.2684 7.4587 1.1962 0.3395 0.2566** 0.2183*
15 4 200 0.95 29.3244 0.3489*** 0.5191 10.3539 11.4370 1.2341 0.4108 0.2857** 0.2325*
16 4 500 0.85 10.7389 0.3837 0.8153 3.8824 4.3418 1.0971 0.2480*** 0.2356* 0.2387**
17 4 500 0.9 14.9318 0.3411 0.6729 5.1903 5.8912 1.0949 0.2803*** 0.2435** 0.2267*
18 4 500 0.95 34.2084 0.3582*** 0.4690 11.7316 12.3691 1.1561 0.3883 0.2838** 0.2371*
19 8 100 0.85 24.9982 0.353*** 1.4524 7.3804 10.0366 1.1071 0.4055 0.2044** 0.1371*
20 8 100 0.9 33.3556 0.2801** 1.2469 9.9121 13.6827 1.1946 1.0685 0.2989*** 0.1852*
21 8 100 0.95 75.5253 0.2181** 0.7280 22.0949 24.0267 1.6149 1.5832 0.4653*** 0.1764*
22 8 200 0.85 21.1630 0.4074*** 1.5106 6.3536 9.4580 1.0062 0.4180 0.2081** 0.1535*
23 8 200 0.9 37.3296 0.2736*** 1.1506 11.233 13.9802 1.2988 0.7033 0.2419** 0.1458*
24 8 200 0.95 70.3848 0.2282** 0.7576 21.1294 22.5549 1.6376 0.7787 0.3043*** 0.1282*
25 8 500 0.85 24.2082 0.3560 1.3791 7.2097 8.9182 1.0212 0.2346*** 0.1616** 0.1424*
26 8 500 0.9 37.9996 0.2722*** 1.0581 11.2893 12.6393 1.1571 0.3217 0.1766** 0.1337*
27 8 500 0.95 76.1531 0.2428*** 0.6816 22.4592 23.1806 1.4282 0.4454 0.2118** 0.1325*

The estimators with the lowest EMSE values are indicated in the table by bolded numerals. The second and third
smallest EMSE values are denoted by the signs (**) and (***), respectively.

The results obtained in Table 2 are listed below:
1) When p and 𝜌 are kept constant, PRE, PLE, PKLE, and PKLTE II exhibit stable behavior as the number of

observations increases. In contrast, PKLTE I shows a decreasing effect for large variables and high correlation values.
2) When the number of observations (n) and 𝜌 are kept constant, the EMSE values of PRE, PKLTE I, and II decrease

as the number of variables increases, whereas PLE and PKLE increase.
3) When n and p in the model are kept constant, PRE, PKLTE I, and PKLTE II are more robust than the other

estimators as the correlation increases. In contrast, the EMSE of PKLE increased as the correlation increased, whereas
PKLE decreased as the number of observations increased for large observation values.

As a result, when all cases are analyzed, the estimator with the smallest EMSE values is PKLTE II.
In the second simulation scheme, we investigated the performances of PRE, PLE, PKL, PKLTE I, and PKLTE II for

each 𝑛, 𝜌, and 𝑝. The purpose of this simulation is to examine the performances of PRE, PLE, PKLE, PKLTE I, and
PKLTE II at various values of k according to the EMSE values given in (5.2). The second simulation approach did not
estimate the biasing parameter k. Only the EMSE values derived by increasing k values in the [0,1] range by 0.1 are
compared. Depending on these 𝑛, 𝜌, and 𝑝 values, the explanatory variables are generated according to equation (5.1).
The simulation is conducted 2000 times for each k value. Figures 1, 2, and 3 graphically show the results.

The following results can be obtained based on Figures 1-3:
1) The EMSE values of PRE tend to decrease with increasing values of k. On the contrary, PLE tends to increase as

the biasing parameter increases.
2) The EMSE values of PKLE, PKLTE I, and PKLTE II generally decreased faster than in PRE.
3) The EMSE values of the PKLTE I and PRE behave in almost the same way, whereas PKLE and PKLTE II show

an increase in the EMSE values after a certain value of k.
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Figure 1. The EMSE values of PRE, PLE, PKLE, PKLTE I, and PKLTE II as a function k and d where 𝜌=0.85
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Figure 2. The EMSE values of PRE, PLE, PKLE, PKLTE I, and PKLTE II as functions of k and d where 𝜌=0.90
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Figure 3. The EMSE values of PRE, PLE, PKLE, PKLTE I, and PKLTE II as functions of k and d where 𝜌=0.95.
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6. AN EXAMPLE: THE AIRCRAFT DAMAGE DATA
This section examines the performance of PKLTE by considering aircraft damage data. Asar & Genc (2018), Myers

et al. (2012), Lukman et al. (2021), Lukman et al. (2022), Amin et al. (2022), Akay & Ertan (2022), and Ertan & Akay
(2023) also used these data. There are three explanatory variables and thirty observations in this data set. The kind
of aircraft is indicated by the dichotomous explanatory variable (𝑥1) . The bomb load in tons and the total number of
months of aircrew experience the explanatory variables (𝑥2) and (𝑥3), respectively. The number of locations where the
aircraft was damaged is represented by the count variable y.

Asar & Genc (2018), Amin et al. (2022), and Akay & Ertan (2022) described the effects and solutions due to
multicollinerity in the following model: 𝜇 = exp(𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3). The eigenvalues of 𝑋 ′

𝑋 are 2085.2251, 374.8961
and 4.3333. As a result, condition number 219.3654 suggests that there is a problem with multicollinearity among the
explanatory variables. Additionally,𝜆1 = 283543.5, 𝜆2 = 789.85, 𝜆3 = 4.2887 and 𝜆4 = 1.2585 are the eigenvalues
of 𝑋 ′

�̂�𝑋 . The condition number is 474.653, which is significantly greater than 30, suggesting that multicollinearity
continues to have an impact on MLE.

Table 3 summarizes the numerical results for comparing the PKLTEs with the other existing estimators. The average
of the MLE values determined by the bootstrap sampling technique is considered as a true parameter to compute the
SMSE values of the biased estimators. Table 3 shows that compared with the other estimators under consideration,
PKLTEs produce good results in terms of variance and SMSE values.

Table 3. The parameter and SMSE values of the estimators
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Table 3. The parameter and SMSE values of the estimators 

 
0̂  1̂  2̂  3̂  ˆvar  

   ˆSMSE  
   

ˆ
MLE  0.1262 1.5576 2.6710 -1.4157 3.8847  

ˆ
PRE   4ˆ 2.704PREk   0.4200 0.7970 1.2620 -0.5504 0.2329 0.2391 

ˆ
PLE   ˆ 0PLEd   0.2994 1.1554 1.8704 -0.8852 0.6714 0.6736 

I
ˆ
PLTE    6ˆ 2ˆ 12.7044, . 94k d    0.2793 1.1611 1.9365 -0.9646 1.3472 1.3489 

II
ˆ
PLTE    8ˆ 2ˆ .0.1088, 0 3 6k d    0.2329 1.3552 2.1716 -1.0640 0.6947 0.6961 

III
ˆ
PLTE    4ˆ 0ˆ,36.3139 0. 48k d    0.3820 0.1383 0.2081 -0.0787 0.0093 0.0494 

ˆ
PKLE   0.8681k̂   0.4409 0.8377 1.2194 -0.4451 0.5924 0.5998 

ˆ
PKLTE I   0.8681k̂   0.5029 0.6212 0.9187 -0.3035 0.1200 0.1295 

ˆ
PKLTE II   0.8681k̂   0.5649 0.4047 0.6179 -0.1619 0.1109 0.1231 

We now wish to examine, in terms of MMSE, the performance of the PKLTE II and ILTE that were derived from the
selection of different 𝑓 (𝑘) functions. We replace with the estimates obtained from the bootstrap sampling approach.
Let us take 𝑓 (𝑘) = 0.05𝑘 + 0.05 for ILTE. In this instance, 𝑐𝑜𝑣(𝛽𝐼𝐿𝑇𝐸) − 𝑐𝑜𝑣(𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼 ) is the pd matrix for
0 < 𝑘 ≤ 1.499. In addition, the values of k satisfying the inequality in (3.1) are 0 < 𝑘 ≤ 1.245 . Consequently,
𝑀𝑀𝑆𝐸

(
𝛽𝐼𝐿𝑇𝐸

)
− 𝑀𝑀𝑆𝐸

(
𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼

)
is the pd matrix where 0 < 𝑘 ≤ 1.245. Let us take 𝑓 (𝑘) = 0.05𝑘 − 0.01

for another comparison. In this case, 𝑐𝑜𝑣(𝛽𝐼𝐿𝑇𝐸) − 𝑐𝑜𝑣(𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼 ) is pd matrix for 0 < 𝑘 ≤ 1.1679. Additionally,
0 < 𝑘 ≤ 1.1676 are the values of k that satisfy the inequality in (3.1). Thus, 𝑀𝑀𝑆𝐸 (𝛽𝐼𝐿𝑇𝐸) − 𝑀𝑀𝑆𝐸 (𝛽𝑃𝐾𝐿𝑇𝐸𝐼𝐼 ) is
the pd matrix where 0 < 𝑘 ≤ 1.1676.

7. CONCLUSION
In this paper, we propose a new biased estimator for PRMs called PKLTE as an alternative to MLE and other existing

biased estimators in the presence of multicollinearity. The PKLTE is a general estimator that includes PKLE and its
variations. We investigated the properties of PKLTE and proposed several estimators to estimate the biasing parameter.
The performance of the proposed PKLTEs was evaluated using Monte Carlo simulations. The findings demonstrate
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that in the scenario of low-moderate-high multicollinearity, the proposed PKLTE II performs better than the existing
estimators. Additionally, a generic simulation study is provided to compare PRE, PLE, PKLE, PKLTE I, and PKLTE
II. It can be observed that PKLTE I and PKLTE II exhibit a faster decrease in EMSE values than PRE when the biasing
parameter k is varied in the range [0,1]. We can also say that PKLE and PKLTE II reach minimum EMSE values in
this range. Furthermore, the considered estimators were applied to real data, and the results were found to be consistent
with the simulation study. Therefore, based on the simulation and application results, PKLTE II is recommended when
there is multicollinearity in PRMs.
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