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ABSTRACT:

This study investigates the asymptotic expressions of eigenvalues and
eigenfunctions for a fourth-order boundary value problem subject to periodic
boundary conditions. It is also examined in the problem with transmission
boundary conditions at zero. At t =0, one of the transmission boundary
conditions have jump discontinuity. Firstly, asymptotic formulas of
fundamental solutions are found. The asymptotic formulas of the eigenvalues
are computed by the aid of Rouche method. Finally corresponding
eigenfunctions to these eigenvalues are presented.

! Olgun CABRI (Orcid ID: 0000-0002-0690-9667 ), Artvin Coruh University, Hopa Faculty of
Economics and Administrative Sciences, Department of Business Administration, Artvin, Tiirkiye

* Corresponding Author: Olgun CABRI, e-mail: olguncabri@gmail.com

700


https://orcid.org/0000-0002-0690-9667

Olgun CABRI 15(2), 700-705, 2025

On a Fourth Order Problem With Transmission Conditions

INTRODUCTION

Let us consider a fourth-order differential operator

_ Ll(U,),t € (_1:0)

L) = { L,(u),t € (0,1) @
generated by differential equation

Ly(uy) = u§4) +p1(Duy, Ly(up) = ug” + p2(Duy, 2)

where p;(x) € C*[—1,0)and p,(x) € C*(0,1] complex valued functions. Periodic boundary
conditions are considered for the boundary conditions of the operator at t = +1:

U, =u™(-1)—u™@1) =0, m=0,12,3 (3)
with transmission boundary conditions at x = 0

T,(w) = u™(07) —u™(0*) =0, m=0,1,2 4)

Ts(w) = u®(07) —au®0*) =0, m=3. (5)

wherea € R — {-1,1}.

Fourth-order differential equations are widely encountered in numerous fields of applied
mathematics and physics such as fluid mechanical, elasticity problem and structure deformations.
(Korman, 1989; Graef et all, 2003; Amster and Mariani, 2007). The study of positive solutions for
fourth-order boundary value problems has been investigated in various works, including those by (
Gupta, 1988; Agarwal, 1989; Yao, 2004; Liand Wang, 2023).

The linear differential operator of degree n with transmission boundary conditions is first studied
by (Muravei, 1967). In (Cabri, 2019), the focus is on second-order Sturm Lioville problem with
periodic and transmission conditions, where the parameter a takes on the values 1 and -1. In the case
a # +1, It is studied by (Cabri and Mamedov, 2020; Cabri and Mamedov, 2020). The periodic
(antiperiodic) and transmission boundary conditions for the fourth order problem are analyzed by
(Cabri, 2022). Without transmission conditions (Menken, 2010) analyzes the asymptotic properties of
the problem. The case where the boundary conditions are regular but not strongly regular was studied
in the work of (Kerimov and Kaya, 2013).

When a = 1, problem (1)-(5) are analyzed by (Cabri, 2022). This work aims to investigate the
spectral properties of problem (1) subject to both periodic boundary conditions (3) and transmission
boundary conditions (4)-(5). Condition (5) indicates a jump discontinuity in the third derivative.

In this study, to simplify the analysis, it is assumed that

0 1
f py(D)dt = 0, j p, (D)t = 0. @)
-1 0

MATERIALS AND METHODS

By (Naimark, 1967) it is well known that (2) have four linearly distinct solutions u,.(t; s), (r =
1,2 ...4) within the intervals (—1,0) and (0,1) by

4
— pWjst vm,r(t) i 8
ur(trs) =e"J < (ZlS)m + O(SS) ( )
m=0
where v, ,-(x) satisfy following recursive diffferential equation

4vrln,r(t) + 6Wr3v1’r,l—1,r (t) + 4W1? vm—z,r(t) + WTUT(:EB,T (t) + er(t)vm—S,r (t) = 0

where w, are roots of unity and s* = A.
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Utilizing Equation (8) and the results from (Menken, 2010), the functions w,,,(x) in both
intervals are expressed as follows. Within interval (—1,0), vy, -(¢) functions of ui (¢, s) become

1
vi,x) =1, vi(x)=v},@) =0 v](x)= — f p1(2)dz
n

©)
3
vir(t) = 8 (Pl(t) - p1(0_))
Within the interval (0,1), v5, ,(x) functions of uz(t, s) become
2 2 2 1
vi () = 1L, v, (t) =v5,(t) =0,v5,(t) = s p2(2)dz
n
; (10)
Vir(t) =3 (pz(t) - p2(0+))
Within the interval (—1,0), v,(,fl(t) of ul(t,s) obtained by
L
=1 ny®O=v®=0 vi®=-= j p1(2)dz
n
0
(11)
uD(O) = 5o () ~ 22207, 1) = 5P (O ~ 2 pa(0),
3) 3 3
u4'r(t) = —§P1(t) —§P1(0 )
Within the interval (0,1), v,ﬂ?l(t) of u2(¢, s) are found by
1
1
WO =1 WO =u20 =0 v,0 = -— [ nedz
n
3 3 (12)
b0 = 2020 ~2pa(40), vD (W) = ~£pa(0%) — 2 pa(0)

3 3
v (1) = = 5P2(0%) = 5p2(0%).

RESULTS AND DISCUSSION

Theorem 1: Let p,(t) € C*[—1,0)and p,(t) € C*(0,1] complex valued functions. Then, the
eigenvalue problem (1)-(5) has two infinite sequences of eigenvalues, A, ; and A, , (k = M,M +
1,...) where M is a large integer, and these sequences have the following expressions:
m3(1—a)(b+c 1

( )(b+¢) +0 (ﬁ)

— 4
Aea = (k)™ + 2i(1+ a)k

m3(1—a)(b + ) 1
— 4 __ —
Mz = (k1) 2+ ok T o (kZ)'
where b = py(—1) — p,(1),¢ = p;(07) — p,(07).
Proof: To begin proving the theorem, we first need to compute the characteristic determinant. It
can be derived by the aid of asymptotic expression of the fundamental solution. That is
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u1,1(—1) u2,1(—1) u4,1(—1) u1,2(1) uz,z(l) u4‘2(1)
WD w-D w dE o Yo s W
AGs) = WD - WF-n o o WJo
u1,1(0_) u2,1(0_) u4,1(0_) u1,2(0+) u2,2(0+) u4‘2(0+)
o) wHo) . wHo) wWHon wHon .o ulhoh
B0 W) . w0 BN wWHoH . udoh)

For simplicity, let us represent b and ¢ by b = p;(—1) — p,(1),c = p;(—0) — p,(0%). By
simplification of chacteristic determinant, we have following equation

—A(s) Cais 1 2is [ (1—-a)b (27 + 21a)c ( 1 >] [ ( 1 )}
12859_<(e ) v st 1 r st T O\ 210l .
13
_ 1—-a)b (27 + 21a)c (1)}
2s 2s — —
% <(e +e™) [1 + 16(1+ a)s* 16(1+ a)s* 0 s>
) [1 1-a)b (A3 +1la)c 0 ( 1 )]
8(1+a)s* 8(1+ a)s* s>
Multiplying equation by
. 1-a)b (27 + 21a)c 1
2is — —
¢ [1 + 16(1 + a)s* 16(1 + a)s* 0 <s5>] (14)
« 025 [1 (1—a)b (27 + 21a)c 0 ( 1 )]
¢ 16(1+ a)s*  16(1 + a)s* ss))
we get
A(S) — 2s 2 2 2is 2 (15)
12859_[((3 —A)?2 -1+ A% x [(e?s — 4) — 1+ A2).
where
B 1-a)b (1-a) 1
A=1- 16(1+ a)s* 16(1 + a)s* 0 (5_5)
When | s | becomes substantially large, roots of A(s) fulfill following conditions
. 1-a)(b+0) 1
2is J—
e =1+ 4(1 + a)s* +0 (SS)'
(16)

e?s =1+

1- b+ 1
A-a)b+9 (_)
4(1 4+ a)s* s>
By applying Rouche's theorem in (16) and expressing as s = nm + 6, and s = nmi + 6,
asymptotic forms of eigenvalues are found by 4,_, A,,, .
Theorem 2: For boundary value problem (1)-(5), Asymptotic formulas of eigenfunctions are
1
Uy, (£) = sin(nmt) + 0 (—) t € [-1,0) U (0,1],
1 (17)
Uy, () = cos(nmt) + 0 (5) t € [-1,0) U (0,1]
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Proof: If U,(u,) and T, (un(t, Sn,1)) (r = 0,1,2,3) are computed up to order 0(s~>), hence

first component uj ,, (x) of u, ; (x) determined by

uk‘l(t) uk‘z(t) uk,4(t) 0 0 0
U (1) up (1) Uy (51D ugp(1) Uz (1) o Uy, (1)
oo = uﬁ)( 1) ug?( D . w1 <2)(1) <2>(1) - uB@)
RIS Hu 1(07) 0 u0(07) v ug1(07) ugp(0%)  upa(07) L ug,(07)
o) wHo) . wWHo) wWHon wHon . ulhoH
u§31>(o-) ug?(o-) ufjl)(o-) u§13(0+) uNY) . ud M)
This determinant yields
16(b — c)(l — sinhsy,, ) (eiSn1t — gisnat 1
1 () = ' — 18
e (6) S5, 20 +0(s6) (18)
By normalizing the result (18), The eigenfunction corresponding to 4,,, can be written as
1
up 4 (t) = sin(nmt) + 0 (E) ,t € [—1,0) (19)
In a similar manner, second part u.  (t) of u, 1 (t) can be determined by
1
uz , (t) = sin(nmx) + 0 (E) ,t € (0,1] (20)
Similarly, first part ug, ,,(¢) of uy, ,(t) is found by
Uy 1 (L) Un2(t) oo Upa(t) 0 0 0
WD W) uE-n o o W
2 — uﬁ)( 1) u§31>( D . w1 (1)(1) “)(1) - uB@)
1 u1(07)  up(07) o uy,(07) u12(0 ) uz,z(O ) u4,2(0+)
o) uwHo) . WHo) wWHon wHon .o ulhoh
uﬁ)(o-) ug?(o—) . w07 u§13(0+) uH . ud oM
From this determinant, we can derive
16(b — ¢)(1 — sinhs elsnat 4 plsnat 1
(i = s (2R o (1) @)
Sk2 2i
Hence eigenfunction corresponding to 4,,can be expressed as
1
us 5 (t) = cos(nmt) + 0 (z), t € [-1,0) (22)
Second part u , (¢£)of u, ,(t)is obtained by
1
uz ,(t) = cos(nmt) + 0 (;), t € (0,1] (23)
This completes the proof.
CONCLUSION

This work explores the asymptotic formulations of eigenvalues and eigenfunctions of problem
(1)-(5). This approach departs from the framework of strong regularity employed by (Muravei 1967).
When a =1, periodic(antiperiodic) boundary conditions and transmission conditions for fourth-order
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problem are analyzed by (Cabri, 2022). By the using same method, asymptotic formulas of
eigen,values and eigenfunctions are provided whena € R — {-1,1}.

Conflict of Interest
The article authors declare that there is no conflict of interest between them
REFERENCES

Agarwal, R. P. (1989). On fourth order boundary value problems arising in beam analysis. Differential
and Integral Equations, 2(1), 91-110.

Amster, P., & Mariani, M. C. (2007). Oscillating solutions of a nonlinear fourth order ordinary
differential equation. Journal of Mathematical Analysis and Applications, 325, 1133-1141.

Cabri, O. (2019). On the Riesz basis property of the root functions of a discontinuous boundary
problem. Mathematical Methods in Applied Sciences, 6733-6740.

Cabri, O., & Mamedov, Kh. R. (2020). Riesz basisness of root functions of a Sturm-Liouville operator
with transmission conditions. Lobachevskii Journal of Mathematics, 41(1), 1-6.

Cabri, O., & Mamedov, Kh. R. (2020). On the Riesz basisness of root functions of a Sturm-Liouville
operator with transmission conditions. Lobachevskii Journal of Mathematics, 41(9), 1784-1790.

Graef, J. R, Qian, C., & Yang, B. (2003). A three point boundary value problem for nonlinear fourth
order differential equations. Journal of Mathematical Analysis and Applications, 287(1), 217-
233.

Gupta, C. (1988). Solvability of a fourth order boundary value problem with periodic boundary
conditions. International Journal of Mathematics and Mathematical Sciences, 11(2), 275-284.

Kerimov, N. B., & Kaya, U. (2013). Spectral asymptotics and basis properties of fourth order
differential operators with regular boundary conditions. Mathematical Methods in the Applied
Sciences, 36. https://doi.org/10.1002/mma.2827.

Korman, P. (1989). A maximum principle for fourth-order ordinary differential equations. Applied
Analysis, 33, 267-373.

Li, Y., & Wang, D. (2023). An existence result of positive solutions for the bending elastic beam
equations. Symmetry, 15(2), 405. DOI:10.3390/sym15020405.

Menken, H. (2010). Accurate asymptotic formulas for eigenvalues and eigenfunctions of a boundary
value problem of fourth order. Boundary Value Problems.

Muravei, L. A. (1967). Riesz bases in L2(—1; 1). Proceedings of the Steklov Institute of Mathematics,
91, 113-131.

Naimark, M. A. (1967). Linear differential operators, Part I. New York: Frederick Ungar.

Yao, Q. (2004). Positive solutions for eigenvalue problems of fourth-order elastic beam equations.
Applied Mathematics Letters, 17, 237-243.

705


https://doi.org/10.1002/mma.2827

