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ABSTRACT:  

This study investigates the asymptotic expressions of eigenvalues and 

eigenfunctions for a fourth-order boundary value problem subject to periodic 

boundary conditions. It is also examined in the problem with transmission 

boundary conditions at zero. At    , one of the transmission boundary 

conditions have jump discontinuity. Firstly, asymptotic formulas of 

fundamental solutions are found. The asymptotic formulas of the eigenvalues 

are computed by the aid of Rouche method. Finally corresponding 

eigenfunctions to these eigenvalues are presented. 
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INTRODUCTION 

Let us consider a fourth-order differential operator 

 ( )  {
  ( )   (    )

  ( )   (   )
         (1) 

generated by differential equation 

  (  )    
( )

   ( )     (  )    
( )

   ( )                (2) 

where   ( )    ,    )and   ( )    (   - complex valued functions. Periodic boundary 

conditions are considered  for the boundary conditions of the operator at     : 

  ( )   ( )(  )   ( )( )                          (3) 

with transmission boundary conditions at     

  ( )   ( )(  )   ( )(  )                        (4) 

  ( )   ( )(  )    ( )(  )           .         (5) 

where         *    +  

Fourth-order differential equations are widely encountered in numerous fields of applied 

mathematics and physics such as fluid mechanical, elasticity problem and structure deformations. 

(Korman, 1989; Graef et all, 2003; Amster and Mariani, 2007). The study of positive solutions for 

fourth-order boundary value problems has been investigated in various works, including those by ( 

Gupta, 1988; Agarwal, 1989; Yao, 2004;  Li and Wang, 2023). 

The linear differential operator of degree   with transmission boundary conditions is first studied 

by (Muravei, 1967). In (Cabri, 2019), the focus is on second-order Sturm Lioville problem with 

periodic and transmission conditions, where the parameter   takes on the values 1 and -1. In the case 

    , It is studied by (Cabri and Mamedov, 2020; Cabri and Mamedov, 2020). The periodic 

(antiperiodic) and transmission boundary conditions for the fourth order problem are analyzed by 

(Cabri, 2022). Without transmission conditions (Menken, 2010) analyzes the asymptotic properties of 

the problem. The case where the boundary conditions are regular but not strongly regular was studied 

in the work of (Kerimov and Kaya, 2013). 

When    , problem (1)-(5) are analyzed by (Cabri, 2022). This work aims to investigate the 

spectral properties of problem (1) subject to both periodic boundary conditions (3) and transmission 

boundary conditions (4)-(5). Condition (5) indicates a jump discontinuity in the third derivative. 

In this study, to simplify the analysis, it is assumed that 

∫   ( )     ∫   ( )     
 

 

 
 

  

         (7) 

 

MATERIALS AND METHODS  

By (Naimark, 1967) it is well known that (2) have four linearly distinct solutions   (   ) (  

     ) within the intervals (    ) and (   ) by 

  (   )       (∑
    ( )

(   ) 

 

   

)   (
 

  
)         (8) 

where     ( ) satisfy following recursive diffferential equation 

     
 ( )      

       
   ( )      

        ( )           
( )

 ( )     ( )      ( )    

where    are roots of unity and       
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Utilizing Equation (8) and the results from (Menken, 2010), the functions     ( ) in both 

intervals are expressed as follows. Within interval (    ),     
 ( ) functions of   

 (   ) become 

    
 ( )        

 ( )      
 ( )         

 ( )   
 

  
 ∫   ( )  

  

 

 

    
 ( )  

 

 
(  ( )    ( 

 )) 

        (9) 

Within the interval (   ),     
 ( ) functions of   

 (   ) become 

    
 ( )        ( )      

 ( )        
 ( )   

 

  
 ∫  ( )  

 

 

 

    
 ( )  

 

 
(  ( )    ( 

 )) 

                            

(10) 

Within the interval (    ),     
( )( ) of   

 (   ) obtained by 

    
( )( )        

( )( )      
( )( )     (   )

( ) ( )   
 

  
 ∫   ( )  
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 )      
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  ( 

 )  

    
( )( )   

 

 
  ( )  

 

 
  ( 

 ) 

     (11) 

Within the interval (   ),     
( ) ( ) of   

 (   ) are found by 

    
( )

( )        
( )

( )      
( )

( )        (   )
( )

( )   
 

  
 ∫  ( )  

 

 

 

    
( )( )  

 

 
  ( )  

 

 
  (  )     

( )( )   
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  ( 

 ) 

    
( )

( )   
 

 
  ( 

 )  
 

 
  ( 

 )  

     (12) 

RESULTS AND DISCUSSION  

Theorem 1: Let   ( )    ,    )and   ( )    (   - complex valued functions. Then, the 

eigenvalue problem (1)-(5) has two infinite sequences of eigenvalues,      and      (        

   ) where   is a large integer, and these sequences have the following expressions:  

     (  )  
  (   )(   )

  (   ) 
  (

 

  
)  

  

     (  )  
  (   )(   )

  (   ) 
  (

 

  
)  

where     (  )    ( )     ( 
 )    ( 

 ). 

Proof: To begin proving the theorem, we first need to compute the characteristic determinant. It 

can be derived by the aid of asymptotic expression of the fundamental solution. That is 
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For simplicity, let us represent   and    by     (  )    ( )     (  )    ( 
 ). By 

simplification of chacteristic determinant, we have following equation 
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 ((          ) [  
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(13) 
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)]  

Multiplying equation by 

    [  
(   ) 

  (   )  
 

(      ) 

  (   )  
  (

 

  
)]
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(      ) 
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(14) 

we get 

  

 ( )

     
 ,(     )      -  ,(      )      )  

(15) 

where  

    
(   ) 

  (   )  
 

(   ) 

  (   )  
  (

 

  
)  

When     becomes substantially large, roots of  ( ) fulfill following conditions 

       
(   )(   )

 (   )  
  (

 

  
)  

 

       
(   )(   )

 (   )  
  (

 

  
)  

(16) 

 By applying Rouche's theorem in (16) and expressing as         and           

asymptotic forms of eigenvalues are found by    
,    

  

Theorem 2: For boundary value problem (1)-(5), Asymptotic formulas of eigenfunctions are  

   
( )     (   )   (

 

 
)    ,    )  (   -  
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)    ,    )  (   - 

(17) 
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Proof: If   (  ) and   .  (      )/ (         ) are computed up to order  (   ), hence 

first component     
 ( ) of     ( ) determined by 
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This determinant yields 
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  (   )(          )

    
 (
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) (18) 

By normalizing the result (18), The eigenfunction corresponding to    
 can be written as 

    
 ( )     (   )   (

 

 
)    ,    ) (19) 

In a similar manner, second part     
 ( ) of     ( ) can be determined by 
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)    (   - (20) 

Similarly,  first part  (   )
 ( ) of     

 ( ) is found by 
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From this determinant, we can derive 

    
 ( )  

  (   )(          )

    
 (

               

  
)   (

 

  
) (21) 

Hence eigenfunction corresponding to    
can be expressed as 

    
 ( )     (   )   (

 

 
)    ,    ) (22) 

Second part     
 ( )of     ( )is obtained by 

    
 ( )     (   )   (

 

 
)    (   - (23) 

This completes the proof. 

CONCLUSION 

This work explores the asymptotic formulations of eigenvalues and eigenfunctions of problem 

(1)-(5). This approach departs from the framework of strong regularity employed by (Muravei 1967).  

When   1, periodic(antiperiodic) boundary conditions and transmission conditions for fourth-order 
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problem are analyzed by (Cabri, 2022).  By the using same method, asymptotic formulas of 

eigen,values and eigenfunctions are provided when         *    +  
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