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A BST R AC T  

The research presented covers the synthesis of data analysis, machine learning, and explainable 

artificial intelligence principles. The study investigates chaotic transformations that affect the 

performance and interpretability of artificial intelligence models in complex systems. Three 

different chaotic systems were used to transform features in the dataset, including Lorenz, Chen, 

and Rossler. These transformed datasets were then analyzed using various machine learning 

algorithms such as Random Forest, Decision Tree and CatBoost. Performance metrics were 

calculated to evaluate the effectiveness of each combination. Based on these findings, it was 

observed that the Rossler chaotic system and CatBoost algorithm gave the best results with %99 

accuracy, 0.9997 recall and 0.9997 f1 score. The effects of the transformed data on class labels were 

elucidated using different explainable artificial intelligence models such as ELI5, DALEX and 

SHAP. Weighted impact analysis outputs were obtained in the range of 3.5 in the SHAP model, 

0.035 in the DALEX model and 0.2796 in the ELI5 model. Among the Explainable Artificial 

Intelligence models, the ELI5 model, which has a more precise range of values, provided the most 

consistent explanation in our study. Future studies aim to improve the understanding and prediction 

capabilities of the model by integrating more chaotic systems and machine learning algorithms. 

Additionally, investigating the robustness of the proposed approach across various datasets and 

problem domains is anticipated to provide broader applicability and reliability. 

Keywords: Chaotic Systems, Machine Learning, Explainable Artificial Intelligence (XAI) ,  Chaos 

Theory , Chaotic transformations.

1 Introduction 

Artificial intelligence (AI) systems have witnessed remarkable advancements, permeating various 

domains ranging from predictive analytics to decision-making processes. As these systems become 

increasingly sophisticated, there arises a critical need for understanding their inner workings and 
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reasoning processes, especially in complex, non-linear systems. Explainable Artificial Intelligence 

(XAI) emerges as a pivotal area of research, aiming to unravel the black-box nature of AI models and 

provide interpretable insights into their decision-making mechanisms. 

In the domain of financial analysis, [2] explored credit risk management through the lens of machine 

learning and explainable artificial intelligence (XAI). Similarly, [12] investigated chaotic time series 

analysis employing machine learning methods. Their study elucidated the application and understanding 

of machine learning techniques and explainable artificial intelligence in the context of data altered by 

chaotic processes. 

In this context,this research focuses on the convergence of machine learning (ML) and explainable 

artificial intelligence (XAI), particularly when applied to datasets manipulated through chaotic 

transformations. Chaotic systems, characterized by their sensitivity to initial conditions and inherent 

unpredictability, pose significant challenges for conventional analytical approaches. Such 

transformations have been increasingly recognized for their potential to enhance feature representation 

by capturing intricate, non-linear dependencies within data. In this study, chaotic transformations are 

systematically assessed not only as a means of data augmentation but also as a mechanism for improving 

model robustness. The empirical results demonstrate that applying chaotic dynamics to feature spaces 

leads to notable improvements in classification performance, particularly in high-dimensional and 

complex datasets. The impact of these transformations is quantified through comprehensive 

performance metrics, including accuracy, precision, recall, and F1-score, thereby elucidating their 

efficacy in optimizing machine learning model performance. 

The transformation of data set attributes begins by using three different chaotic systems: Lorenz, Chen, 

and Rossler. Subsequently, the transformed data undergoes analysis employing various ML algorithms, 

including Random Forest, Decision Tree, and CatBoost. Performance metrics such as accuracy, 

precision, recall, and f1-score are computed to evaluate the efficacy of each combination. 

The foundation of this research lies in the synthesis of concepts from chaos theory, machine learning, 

and explainable AI principles. By elucidating the effects of chaotic transformations on ML model 

performance, we aim to enhance understanding and transparency in decision-making processes within 

complex systems. Moreover, our study contributes to the burgeoning field of XAI by offering insights 

into the interpretability challenges posed by chaotic dynamics. 

To contextualize this work within the existing literature, we draw upon a comprehensive review of 

related studies. Prior research has investigated the use of machine learning techniques to extract 

dynamical information from time series data of chaotic systems [1], proposed hybrid forecasting 

schemes combining knowledge-based models and machine learning techniques [11], and explored the 

application of deep learning methods such as convolutional neural networks (CNNs) in predicting 

chaotic time series data [5]. 

Furthermore, studies have investigated the use of echo state networks (ESNs) [17], symbolic regression 

combined with reinforcement learning [6], and recurrent neural networks (RNNs) and long short-term 

memory (LSTM) networks [7] for predicting the behavior of chaotic systems. Additionally, research 

has explored the use of generative adversarial networks (GANs) for generating synthetic data from 

chaotic systems [18] and hybrid approaches combining physics-informed neural networks (PINNs) with 

machine learning techniques for solving inverse problems in chaotic systems [15]. Moreover, recent 

studies have investigated the application of evolutionary algorithms for optimizing the performance of 
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machine learning models in predicting chaotic time series data [16] and the use of attention mechanisms 

in RNNs for capturing long-range dependencies in chaotic time series data [3]. 

In addition to these references, recent works have explored the interpretability of ML models in chaotic 

systems, including the application of SHAP (Shapley additive explanations) values for understanding 

feature importance in chaotic datasets [10], the use of local interpretable model-agnostic explanations 

(LIME) for explaining individual predictions in chaotic systems [13], and the development of surrogate 

models to approximate the behavior of complex ML models in chaotic systems [8]. Moreover, studies 

have investigated the use of self-explaining models (SEMs) and model-agnostic meta-explanation 

methods (MAMEs) for providing global and local explanations of ML model decisions in chaotic 

environments [4]. Additionally, research has explored the integration of domain knowledge into ML 

models for enhancing interpretability in chaotic systems [9] and the development of visualization 

techniques for exploring the behavior of ML models in high-dimensional chaotic datasets [14]. 

2 Materials and Method 

2.1 Dataset In Used 

The dataset utilized in this study comprises 55,944 data entries, structured into columns representing X, 

Y, and Z spatial coordinates, a time variable, and corresponding class labels. These class labels are 

categorized into three distinct groups: 1, 2, and 3, with 19,359 entries labeled as class 1, 18,003 as class 

2, and 18,585 as class 3. This dataset was collected from a robotic arm operating under various 

movement conditions, including stable operation, irregular fluctuations, and external disturbances, 

categorized into three distinct classes. The choice of a robotic arm dataset is motivated by its inherently 

dynamic and non-linear nature, which aligns well with the study’s focus on chaotic system 

transformations.  

The dataset was generated from a laboratory-controlled robotic arm system, specifically designed to 

simulate and monitor operational states under varying conditions. This robotic system was programmed 

to replicate real-world scenarios with varying movement patterns and performance anomalies, which 

were categorized into three distinct classes. The high-dimensional and non-linear nature of the dataset 

reflects the dynamic interactions of the robotic arm's components, making it an ideal candidate for 

applying chaos theory principles. The structured variability within the data ensures its alignment with 

the study's objective of assessing the performance and interpretability of machine learning algorithms 

under chaotic transformations.  

2.2 Chaotic Systems 

Chaos theory, a field with roots in mathematics and physics, explores the behavior of nonlinear 

dynamical systems characterized by sensitivity to initial conditions and deterministic randomness, 

challenging traditional views of predictability. Emerging as a groundbreaking discipline in the late 20th 

century, chaos theory reveals the complex dynamics of seemingly disordered systems, revealing 

fundamental patterns and structures in fields ranging from physics to economics. In this study, chaotic 

systems are used to transform the X-Y-Z data in the data set. The transformation of dataset attributes in 

this study employs three chaotic systems—Lorenz, Chen, and Rossler—chosen for their distinct 

characteristics and broad applications in chaos theory. The Lorenz system provides structured chaos, the 

Chen system offers insights into variations in chaotic behavior, and the Rossler system delivers simpler, 

periodic-like attractors that align well with high-dimensional datasets. These systems were selected for 
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their representativeness in chaos theory, while alternative systems like the Chua circuit and Hénon map 

were excluded due to limited generalizability to this study's context. Chaos synchronization, an 

important concept within this domain, further demonstrates how chaotic systems can be coupled to 

achieve coordinated behavior despite their intrinsic unpredictability [19]. Additionally, understanding 

the distinction between true chaos and random behavior is crucial, as chaotic systems exhibit 

deterministic structures that can be exploited for system control and data transformation tasks, unlike 

purely stochastic processes [20]. 

2.2.1 Dataset In Used 

The Lorenz system, introduced by Edward Lorenz in 1963 as a simplified atmospheric convection 

model, is a set of three coupled ordinary differential equations exhibiting chaotic behavior, as seen in 

Equations 1, 2, and 3. Due to its sensitivity to initial conditions and the emergence of the Lorenz 

attractor, it has been extensively studied in the fields of chaos theory and nonlinear dynamics. Despite 

its original application in atmospheric science, the Lorenz system has found applications in various 

fields such as physics, engineering, and cryptography. With a certain degree of uncertainty, this system 

serves as a fundamental example of determined chaos and is commonly utilized to analyze the behavior 

of nonlinear dynamical systems. 

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥) 

(1) 

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦 

(2) 

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧 

(3) 

In Equation 1, the change of x over time depends on the difference between y and x, and this difference 

is controlled by the parameter σ. Equation 2 describes how the change of y over time is proportional to 

the difference between x and ρ, as well as to y itself, where ρ represents the system’s Rayleigh number 

influencing its chaotic behavior. Equation 3 illustrates the change of z over time, which is proportional 

to the product of x and y, and also to the parameter β, controlling the rate of change of z. These equations 

collectively elucidate how the variables x, y, and z evolve over time, demonstrating the complex 

behavior of the Lorenz system. 

2.2.2 Chen Chaotic System 

The Chen system is a set of three coupled ordinary differential equations (ODEs) that exhibits chaotic 

behavior (as seen in Equations 4, 5, and 6). Proposed by Tian-ming Chen in 1999, the Chen system is 

notable for its simple structure and its applications in secure communication systems and image 

encryption. From a mechanical perspective, the generation of chaos in the Chen system is closely related 

to the interaction of inertial, internal, dissipative, and external torques, highlighting the system’s 

underlying physical dynamics [21]. Furthermore, the Chen system has contributed to the development 

of generalized Lorenz-like systems, which expand the theoretical framework of chaotic attractors and 
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offer more complex behaviors for advanced engineering applications [22]. Due to its chaotic nature, the 

Chen system has found applications in secure communication systems and image encryption. Its simple 

structure and chaotic dynamics make it suitable for various applications in cryptography and secure data 

transmission. 

𝑑𝑥

𝑑𝑡
= 𝑎(𝑥 − 𝑦) 

(4) 

𝑑𝑦

𝑑𝑡
= (𝑐 − 𝑎)𝑥 − 𝑥𝑧 + 𝑐𝑦 

(5) 

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝑏𝑧 

(6) 

In Equation 4, the change of x over time depends on the difference between y and x, and this difference 

is controlled by the parameter σ. This equation illustrates the interaction between the system's first and 

second states. 

In Equation 5, the change of y over time is proportional to the difference between x and ρ, as well as to 

y itself. Here, the parameter ρ represents the system's Rayleigh number and influences its chaotic 

behavior. This equation explains the interaction between the system's second state and its first state, as 

well as itself. 

In Equation 6, the change of z over time is proportional to the product of x and y, and also to the 

parameter β. The parameter β controls the rate of change of z. This equation illustrates the interaction 

between the system's third state and its first and second states. 

2.2.3 Rossler Chaotic System 

The Rossler system is a set of three coupled ordinary differential equations (ODEs) proposed by Otto 

E. Rossler in 1976, exhibiting chaotic behavior. These equations, denoted as equations 7, 8, and 9, have 

been extensively studied in the fields of chaos theory and nonlinear dynamics, finding various 

applications in physics and engineering. Notably, through the application of feedback control 

mechanisms, the hyperchaotic behavior of the Rossler system can be effectively regulated, allowing the 

system to stabilize at desired states such as fixed points and limit cycles [23]. Additionally, the Rossler 

system has been employed as a theoretical model in chronotherapy studies, where its response to external 

perturbations helps simulate the effects of therapeutic interventions on biological rhythms [24]. Its 

chaotic nature makes it a significant model for understanding complex dynamics in nonlinear systems. 

𝑑𝑥

𝑑𝑡
= −𝑦 − 𝑧 

(7) 

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝑎𝑦 

(8) 
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𝑑𝑧

𝑑𝑡
= 𝑏 + 𝑧(𝑥 − 𝑐) 

(9) 

In Equation 7, the rate of change of variable x over time depends on variables y and z. The term z(r) 

indicates that z is a function of r, representing an interaction between the first variable of the system and 

the second and third variables.  

In Equation 8, the rate of change of variable y over time is dependent on variables x and ay. The 

parameter a controls the complexity of the system. This equation elucidates the interaction between the 

second variable and the first variable, along with its own influence. 

In Equation 9, the rate of change of variable z over time is determined by variables b, z, x, and c. 

Parameters b and c regulate the equilibrium point and symmetry of the system, respectively. This 

equation illustrates the interaction of the third variable with the first and second variables, as well as 

with the parameters. 

2.3 Machine Learning Algorithms 

2.3.1 Random Forest (RF) 

Random Forest is an ensemble learning algorithm and is commonly used for classification and 

regression problems. This algorithm combines multiple decision trees to merge their results. Each 

decision tree is trained by randomly sampling the dataset and selecting features randomly. The results 

are obtained by averaging the predictions of each tree or by using a voting method. This typically ensures 

high accuracy and resilience to overfitting. Since its initial proposal by Breiman in 2001, Random Forest 

has gained significant popularity due to its high accuracy and adaptability across various domains [25]. 

Furthermore, recent advancements have focused on improving its theoretical foundations, parameter 

selection strategies, and variable importance measures, making it a powerful tool even in high-

dimensional data environments [26]. Random Forest has a wide range of applications and can be 

successfully utilized in complex datasets. 

2.3.2 Decision Tree 

The Decision Tree, a machine learning model used in classification and regression problems, analyzes 

the features of the dataset to create a series of decision rules, which are then used to classify data samples 

or predict numerical values. Starting from the root node, it selects the most significant feature at each 

split point and divides the dataset accordingly. This process is typically repeated until the subsets 

become as homogeneous as possible, often guided by specific criteria such as information gain or Gini 

impurity. Decision trees are fundamental components of hierarchical supervised learning models, where 

entropy-based measures and effective splitting algorithms play a critical role in optimizing tree 

structures [27]. Despite their interpretability, a single decision tree may be prone to overfitting, hence 

they are often combined with ensemble learning methods. In advanced applications, such as image 

labeling and computer vision tasks, decision trees have also been integrated into complex graphical 

models like Decision Tree Fields (DTF), enabling the modeling of rich and complex label structures 

[28]. The equation used in the Decision Tree algorithm is provided in Equation 10. 
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 𝑓(𝑥) =
1

𝑁
∑ 𝑓𝑖(𝑥)𝑁

𝑖=1  (10) 

The Gini coefficient evaluates how much misclassification exists in the data samples at a specific node. 

This coefficient is calculated by subtracting the sum of the squares of the probabilities of each class at 

the node from 1. A low Gini coefficient signifies a more homogeneous node, indicating less confusion 

and a higher level of purity. Therefore, at each split point of the decision tree, a lower Gini coefficient 

is targeted, as it represents a better division and clearer classification. 

2.3.3 CatBoost 

CatBoost is a machine learning algorithm that performs particularly well on datasets containing 

categorical variables. It is based on the gradient boosting method and is used for both classification and 

regression problems. CatBoost stands out for its ability to handle categorical variables directly, 

eliminating the need for automatic transformation of such data. It offers a balanced trade-off between 

speed and accuracy, providing fast training times on large datasets while maintaining high levels of 

accuracy. Recent studies highlight CatBoost’s strengths in managing heterogeneous data efficiently and 

its sensitivity to hyperparameter tuning, which plays a critical role in achieving optimal performance 

across diverse domains [29]. Additionally, it excels in dealing with data imbalance and preventing 

overfitting. With its user-friendly API and automatic hyperparameter tuning, CatBoost reduces the need 

for manual adjustments. These features make CatBoost a preferred algorithm for complex datasets and 

it finds applications across various domains. For example, in environmental modeling, CatBoost has 

demonstrated superior predictive accuracy and computational efficiency in estimating reference 

evapotranspiration, outperforming traditional models such as Random Forest and Support Vector 

Machines under various meteorological conditions [30]. Hyperparameter tuning was conducted for the 

CatBoost model to ensure optimal performance. The learning rate was set to 0.03, the depth parameter 

to 6, and the number of boosting iterations to 500. These values were determined through a grid search 

optimization process using five-fold cross-validation. The feature importance ranking obtained from 

CatBoost further confirmed that chaotic transformations significantly influenced classification 

performance. 

2.4 Explainable AI (XAI) 

Explainable Artificial Intelligence (XAI) is defined as the ability of artificial intelligence models to 

explain their decision-making processes and outcomes in a comprehensible manner to humans. The goal 

of XAI is to increase the reliability, acceptability, and usability of artificial intelligence systems by 

allowing us to understand their decisions transparently. This can be achieved through various 

techniques, such as using simple models, evaluating feature importance rankings, and interpreting 

gradients for deep learning models. A wide range of state-of-the-art methods, including LIME, SHAP, 

Integrated Gradients, and Causal Models, have been developed to enhance interpretability across 

different AI applications, providing practitioners with practical tools for model explanation [31]. 

Explainable artificial intelligence is crucial in domains where critical decisions are made and regulatory 

requirements exist. Despite significant progress, challenges remain in achieving universally accepted 

explainability standards, and current research continues to explore new frameworks and methodologies 

to improve transparency, especially in complex machine learning models [32]. The structure of 

explainable artificial intelligence models is given in Figure 1.  
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Figure 1. Working Structure of XAI 

In Figure 1, there are the fundamental components of interpretable artificial intelligence models: the 

user interface and the explanation engine. The user interface is the interface through which users interact 

with the model, displaying its predictions and decisions. The explanation engine, on the other hand, 

serves as a module that explains the model's decisions and predictions. The explanation engine 

elucidates to the user which features are decisive in the model's decision-making process and how these 

features influence the predictions. Texts representing the essential components of interpretable artificial 

intelligence models are also present in the figure. Among these components are the user interface, 

explanation, and explanatory engine. This way, the visual representation enhances users' understanding 

of artificial intelligence systems, thereby increasing trust and transparency in decision-making 

processes, leading to more equitable outcomes. 

2.4.1 SHapley additive exPlanations (SHAP) 

SHAP (SHapley Additive exPlanations) is a technique used for explainable artificial intelligence 

models, serving as an interactive method to explain model predictions. SHAP relies on concepts from 

cooperative game theory to compute the contribution of each feature to the predicted outcome. This 

method utilizes Shapley values to calculate the impact of each feature combination on the predicted 

outcome and combines these values to elucidate the contribution of each feature. Due to its compatibility 

with various machine learning models, SHAP has a wide range of applications and can be used in 

conjunction with various visualization techniques to provide interpretability. Recent advancements have 

introduced improved SHAP techniques, including novel feature importance metrics and the concept of 

feature packing, which groups similar features to enhance the comprehensibility of complex models 

without requiring model reconstruction [35]. By providing detailed and understandable explanations, 

SHAP enhances the reliability of machine learning models, making it crucial in domains where critical 

decisions are made and regulatory requirements exist. Additionally, SHAP facilitates the acceptance of 

artificial intelligence systems, contributing to broader societal acceptance. 

        The foundation of the SHAP framework lies in the calculation of Shapley values borrowed from 

cooperative game theory. Mathematically, the SHAP value 𝜙𝑖(𝑓, 𝑥) representing the contribution of 

feature i to the prediction for instance x, is calculated using the equation found in Formula 11. 
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𝜙𝑖(𝑓, 𝑥) = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖}, 𝑥) − 𝑓(𝑆, 𝑥)

𝑆⊆𝑁{𝑖}

 
(11) 

In Formula 11, N represents the set of all features, while S represents a subset of features excluding 

feature i. 𝑓(𝑆 ∪ 𝑖, 𝑥) and 𝑓(𝑆, 𝑥)  respectively denote the model's output when the feature set S is 

augmented with feature i, and when only the feature set S is considered. 

 

Figure 2. Working Structure of SHAP 

Figure 2 illustrates the basic components that succinctly explain the operation of the SHAP (Shapley 

Additive Explanations) model. On the left side, the 'Features' section lists the features representing the 

input data to the model, with each feature representing an input data point. On the right side, a decision 

tree and the prediction scores for each leaf are displayed. The figure also includes Shapley values 

indicating the contribution of each feature to the model's prediction. Additionally, interactions between 

features are shown with arrows, enabling the understanding of how one feature affects another. This 

visualization assists in comprehending the decisions and predictions of the SHAP model, providing a 

visual representation of the final predictions and the factors influencing these predictions. 

2.4.2 DALEX 

DALEX (modelkit) is an R package developed for interpretable artificial intelligence models. This 

package offers various tools to facilitate understanding of machine learning model behaviors. It includes 

a consistent set of model-agnostic explainers that help decompose predictions, assess variable 

importance, and analyze conditional responses, allowing users to explore and compare black-box 

models regardless of their internal structures (Biecek, 2018) [33]. DALEX provides visualization and 

interpretation tools to comprehend how a model generates predictions, the impact of features on 

predictions, and the model's decision algorithm. Additionally, DALEX can be used to evaluate the same 

model on different data subsets, compare model performance, and determine the model's confidence 

interval. Moreover, in the context of evolutionary computation, an alternative DALex framework—

Diversely Aggregated Lexicase selection—has been introduced to improve selection efficiency and 

computational performance, particularly in symbolic regression and deep learning tasks (Ni et al., 2024) 

[34]. Therefore, DALEX serves as an important tool for providing interpretability, reliability, and 
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comprehensibility, making machine learning model decision processes more transparent. The working 

structure of DALEX is provided in Figure 3. 

 

Figure 3. Working Structure of Dalex 

In Figure 3, a diagram is presented representing the analysis of the model's performance, components, 

profile, and diagnosis using a model-agnostic language. Utilizing Model-Agnostic Language (MAL), 

explanations from different models are analyzed and interpreted. These explanations illustrate the 

model's performance in terms of specific metrics, its components and their functions, the types of data 

on which the model is trained, and its intended uses, as well as the errors the model may make and how 

they can be corrected. 

2.4.3 Explain like I’m 5 (ELI5) 

ELI5 (Explain Like I'm 5) is a Python library developed for interpretable artificial intelligence models. 

This library aims to simplify the behaviors of complex machine learning models. ELI5 provides user-

friendly interfaces and visualization tools to understand a model's predictions and decisions. 

Additionally, it offers information such as feature importance rankings and model weights to better 

comprehend how the model operates. ELI5 serves as a significant tool for understanding and gaining 

confidence in interpretable artificial intelligence models, playing a role in increasing the 

understandability of machine learning models, which is increasingly demanded. 

The working structure of the ELI5 model is provided in Figure 4 



ÖZKURT et al. 
Combining Chaotic Transformations And Machine Learning Algorithms: Evaluating Explainable Artificial Intelligence Model Perfo rmance 

 

International Journal of Data Science and Applications (JOINDATA) 8(1), 45-61, 2025 55 

 

Figure 4. Working Structure of ELI5 

In Figure 4, the schematic diagram of the Explainable AI model, ELI5, is depicted, illustrating the 

components of the X-Y-Z-Class variables present in the utilized dataset. These components, originating 

from the database, are visualized to demonstrate their effects on the Class Labels in the X-Y-Z 

components, in accordance with the ELI5 model. This schematic elucidates the relationships between 

the X-Y-Z variables and their corresponding Class Labels, facilitating the interpretability and 

transparency of the AI model within the context of the study. 

3 Results and Discussion 

3.1 Accuracy 

Accuracy measures the proportion of correctly classified instances among all instances in the dataset. 

The equation used to calculate accuracy is given in Equation 12. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

(12) 

3.2 Precision 

Precision evaluates the accuracy of positive predictions made by the model. It indicates the proportion 

of correctly predicted positive instances among all instances predicted as positive. The equation used to 

calculate precision is defined in Equation 13. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(13) 
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3.3 Recall (Sensitivity) 

Recall, also known as sensitivity or true positive rate, measures the ability of the model to correctly 

identify positive instances. It represents the proportion of correctly predicted positive instances out of 

all actual positive instances. The equation used to calculate recall is defined in Equation 14. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑒𝑠
 

(14) 

3.4 F1-Score 

The F1-score is a metric that provides a harmonic mean between precision and recall, balancing between 

these two metrics. It considers both false positives and false negatives and is particularly useful when 

classes are imbalanced. The equation used to calculate the F1-score is defined in Equation 15. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(15) 

These evaluation metrics play a crucial role in assessing the performance of classification models and 

guiding further improvements in model accuracy and reliability. 

After the data set used in our study was passed through various chaos systems, it was put into various 

machine learning algorithms and results were obtained from the performance evaluation metrics 

accuracy, precision recall and f1-score. This result is shown in table 1. In light of these results, among 

the compared machine learning algorithms, the CatBoost algorithm exhibited the most positive 

performance according to accuracy, precision, recall and F1-score performance metrics. Results 

specifically attributed to the Catboost algorithm are indicated with an asterisk (*) in Table 1. 

Table 1. Performance measurement of Chaotic Transformed Database (DB) Models 

Model                          Accuracy                  Precision                     Recall                   F1-Score 

                                   Random Forest            0.9684                        0.9680                   0.9680 

DB Chen                    Decision Tree              0.9606                        0.9601                   0.9601 

                                   CatBoost                      0.9429                        0.9423                   0.9423 

                                   Random Forest            0.3359                        0.3357                   0.3357 

DB Lorenz                 Decision Tree              0.3408                        0.3409                   0.3408 

                                   CatBoost                     0.3410                         0.3424                   0.3406 

                                  Random Forest            0.9995                         0.9995                    0.9995   

DB Rossler                Decision Tree              0.3408                         0.9992                   0.9992 

                                   CatBoost                     *0.9997                       *0.9997                 *0.9997 
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Figure 5. ELI5 weights for class labels 

In Figure 5 attributes x, y, z are symbolized as x0, x1, x2, respectively. Figure 5 shows the effects of x-

y-z data on class labels in the data set used in the study, explained by the ELI5 explainable artificial 

intelligence model.In the ELI5 annotated artificial intelligence model, for the all class values, the effect 

of the x attribute   was observed as 0.4069 , the effect of the y attribute   was 0.2978 , the effect of the z 

attribute  was 0.1273 .According to the weight outputs in Figure 5, it is the y column data that has the 

most impact on the class labels. 

 

Figure 6. Dalex weights for class labels 

Figure 6 shows the effects of x-y-z data on class labels in the data set used in the study, explained by 

the Dalex explainable artificial intelligence model.In the DALEX annotated artificial intelligence model, 

for the all class values, the effect of the Rossler X was observed as 0.023 , the effect of the Rossler Y  

was -0.009 , the effect of the Rossler Z  was 0.026 . According to the weight outputs in Figure 6, the z 

column data that has the most positive impact on the class labels is the y column data that has the most 

negative impact. 

 

 

Figure 7. SHAP weights for class labels 
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Figure 7 shows the effects of x-y-z data on class labels in the data set used in the study, explained by 

the Shap explainable artificial intelligence model. Class labels 1-2-3 in the data set are symbolized as 0-

1-2, respectively.In the SHAP annotated artificial intelligence model, for the all class values, the average 

effect of the Rossler X was observed as 5, the  average effect of the Rossler Y  was 7, the average effect 

of the Rossler Z  was 3.5 . According to the average weight outputs in Figure 7, it is the y column data 

that has the most impact on the all class labels. 

4 Conclusion 

In this study, x-y-z column data was transformed using Lorenz, Chen, and Rossler chaotic systems, then 

analyzed with Random Forest, Decision Tree, and CatBoost algorithms. Among these, the Rossler-

CatBoost combination achieved the best results with 99.97% accuracy, 0.9997 recall, and 0.9997 F1-

score, attributed to Rossler’s periodic attractors improving data separability and CatBoost’s efficiency 

in handling complex features. To facilitate the interpretability of chaotic transformations, multiple 

Explainable Artificial Intelligence (XAI) methodologies, including SHAP, DALEX, and ELI5, have 

been employed. Each of these approaches provides distinct advantages in elucidating model decision-

making processes. SHAP, rooted in cooperative game theory, assigns equitable contributions to 

individual features, offering a granular perspective on feature importance. DALEX, by contrast, enables 

a comparative analysis of models through a model-agnostic framework, facilitating performance 

attribution and profiling across different datasets. ELI5, while more structured in its interpretative 

approach, exhibits greater stability across multiple runs, mitigating variance in feature importance 

assessments. Notably, it has been observed that SHAP, despite its fine-grained explanations, exhibits 

sensitivity to chaotic perturbations, leading to increased variance in high-dimensional datasets. DALEX, 

although effective for cross-model comparisons, necessitates careful contextualization when applied to 

dynamically transformed feature spaces. ELI5, while slightly less adaptable, has demonstrated superior 

consistency in feature importance estimation, rendering it particularly suitable for chaotic 

transformations. These findings underscore the necessity of integrating multiple XAI methodologies to 

obtain a more holistic understanding of model behavior within chaotic systems. Unlike SHAP and 

DALEX, ELI5 provided a more structured interpretability approach, making it particularly useful for 

chaotic data transformations.The effects of transformed data on class labels were analyzed using these 

XAI models (Figures 4, 5, and 6). SHAP produced explanations in the 3.5 range, DALEX in 0.035, and 

ELI5 in 0.2796, with ELI5 yielding the most interpretable results. 

To enhance the robustness and generalizability of the proposed methodology, future investigations will 

focus on the integration of additional chaotic systems and advanced machine learning algorithms. In 

order to assess the broader applicability of chaotic transformations, preliminary evaluations have been 

conducted on an alternative dataset comprising financial time-series data, where high volatility and non-

linearity are prevalent. The findings indicate that the application of chaotic transformations yields 

improvements in predictive accuracy, particularly in domains characterized by non-stationary patterns. 

However, the magnitude of performance enhancement is observed to vary across different chaotic 

systems, suggesting that the efficacy of such transformations is highly dependent on dataset 

characteristics and underlying structural dynamics. These results highlight the necessity of domain-

specific optimization strategies for selecting appropriate chaotic systems in accordance with data 

complexity and model requirements. Future research will systematically investigate the adaptability of 

chaotic transformations across diverse application domains, ensuring that their effectiveness is 

rigorously validated in real-world scenarios. Beyond technical contributions, the findings have potential 

applications in financial forecasting, encryption, healthcare diagnostics, and autonomous systems. 
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Chaotic transformations could improve prediction accuracy in volatile markets, enhance cryptographic 

security, and support AI-driven decision-making in critical fields. 

Ethical and informed consent for data used 

During this research, ethical principles and guidelines were adhered to when explaining machine 

learning algorithms with explainable artificial intelligence models while comparing them on an 

industrial robot arm dataset. 
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