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Abstract − In this paper, we study a weakly singular Volterra integral equation of the second
kind with the kernel K(x, t) =

(
t

x

)ν 1
t

, for some ν > 0 and x ∈ [0, X]. The powerful homotopy
perturbation method (HPM) is initially applied to find a solution to the integral equation
for ν > 1. We then consider the interesting case where 0 < ν < 1. Applying the homotopy
perturbation method constructed by a convex homotopy or other series-related methods produces
unwanted results for this case. In this study, we propose conditions to be imposed to overcome
this issue. In addition, for completeness, we investigate all cases where ν ∈ R. Some numerical
examples are provided to confirm the simplicity and applicability of the applied methods.

Subject Classification (2020): 45H05, 65H20

1. Introduction

Second-kind Volterra integral equations with weakly singular kernels have numerous applications in
different branches of science, such as mathematical physics, engineering, electrochemistry, etc. [1–3].
In this study, we consider a weakly singular Volterra integral equation of the form:

ϕ(x) −
∫ x

0
K(x, t)ϕ(t) dt = f(x) (1.1)

where K(x, t) =
(

t

x

)ν 1
t

for some ν > 0 and x ∈ [0, X]. Some form of this equation arises from certain
heat conduction problems with mixed boundary conditions [4, 5]. An important feature distinguishing
this equation from other equations is the presence of singularity at x = 0 as ν > 0 and at t = 0, for
all x > 0 as 0 < ν < 1. Indeed, this feature prevents the application of conventional analytical and
numerical methods. This is one reason making this case harder to handle than the other cases.

A rather different perturbation technique has been proposed by He [6]. Unlike many perturbation
methods, it does not require a small parameter in the equation. Instead, it combines a basic idea
of the perturbation method and the homotopy concept from topology to deform a hard problem
into an easy-to-solve problem. Many scientists and engineers have been working on improving and
developing this technique further [7–9]. In [10], the author described an analytical technique for
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non-linear problems. This method depends on both the homotopy in topology and the Taylor series.
Unlike perturbation techniques, this technique’s applicability is based on not requiring small or large
parameters in the equation. Some examples are provided to compare the proposed method with
existing perturbation techniques. In [11], the author directly applied He’s homotopy perturbation
method to compute certain integrals. This technique is very simple and quite effective for evaluating
certain difficult integrals.

Many classical approaches to calculating certain integrals or obtaining new formulas usually require
numerical integration. Fortunately, He’s homotopy perturbation method needs only basic differentiation
to derive the integration formulas. In [12], the authors proposed a new method to solve a Volterra
integral equation with a weakly singular kernel in the reproducing kernel space. By manipulating the
equation, they first obtained a new equivalent equation and its solution is a series in the reproducing
kernel space. In addition, some numerical examples are worked out to demonstrate the accuracy
of the present method. In [13], the authors analyzed the discrete superconvergence properties of
spline collocation solutions for some particular Volterra integral equation with the weakly singular
kernel. In particular, the attainable convergence orders at the collocation points are examined for
certain choices of the collocation parameters. Some examples are proposed to compare the introduced
method with some existing perturbation techniques. In [14], the author considered second-kind Volterra
equations with weakly singular kernels. As the kernels admit simple forms, they found analytic solution
expressions and proved existence, uniqueness, and smoothness properties. In [15], the authors proposed
a numerical solution using a combination of wavelets and block pulse functions. In particular, the
second Chebyshev wavelets are used to construct the operational matrix for fractional integration.
Then, using the disjoint property of block pulse functions, they solved a weakly singular Volterra
equation, including Abel’s equations. In [16], the authors used orthogonal triangular functions for
constructing solutions for weakly singular Volterra integral equations. They utilized some operational
matrices to bring the system to a system of algebraic equations. By solving this algebraic system, a
numerical solution is obtained. In [17], the authors considered two standard techniques, namely the
Adomian decomposition method (ADM) and the variational iteration method (VIM), to solve the
Volterra integral equation with a weakly singular kernel in the reproducing kernel space. Both methods
provide convergent series solutions for this equation as ν > 1. However, when considering the case
where 0 < ν < 1, we believe it needs more attention since the convergence of the resulting series is not
obvious. We propose a method for how to overcome this issue by imposing some conditions on the
small parameter p and ν.

As it is noted in [14] as ν ≤ 0, to have a meaningful integration, a solution of (1.1) must, together
with its certain derivatives, vanish at t = 0. Therefore, this requirement can be used to reduce the case
of ν ≤ 0 to that of ν > 0. This article aims to investigate all possible choices of ν. As stated in the
previous section, the case ν ≤ 0 can be reduced to the case ν > 0 under some mild conditions. Thus,
we consider only the case where ν > 0 and focus mainly on the case where 0 < ν < 1. In addition to
the aforesaid studies, interested readers are recommended to read [3, 18–23].

The rest of the paper is organized as follows: In section 2, the homotopy perturbation method is
reviewed, and important points that make the equation more useful are pointed out. Section 3 is
organized in a way that all possible cases for ν, which means for all real numbers R, are analyzed. The
obtained results from this study and the results from the literature for other cases are stated. The
prime focus is on the case where 0 < ν < 1. In section 4, a pair of numerical examples is investigated
thoroughly. The examples are taken from the literature to be able to compare and discuss the results
that are obtained using different methods. Section 5 is the final section of the article and it provides a
conclusion of the study.
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2. Preliminaries

This section provides the following theorem, which contributes to understanding the rest of the paper
and is cited in some parts.

Theorem 2.1. [14] Assume that ν > 1. if the function f belongs to C[0, X], then the integral equation

ϕ(x) +
∫ x

0
K(x, t)ϕ(t) dt = f(x), x ∈ (0, X]

where K(x, t) = 1√
π

1√
ln(x/t)

(
t

x

)ν 1
x

has a unique solution ϕ ∈ C[0, X]. Moreover, if for an integer

m ≥ 1, f ∈ Cm[0, X], then ϕ ∈ Cm[0, X].

On the other hand, for any f ∈ C[0, X], the integral equation

ϕ(x) −
∫ x

0
K(x, t)ϕ(t) dt = f(x), x ∈ (0, X]

where K(x, t) =
(

t

x

)ν 1
t

has a unique solution ϕ ∈ C[0, X]. Furthermore, if for an integer m ≥ 1, f ∈
Cm[0, X], then ϕ ∈ Cm[0, X].

For X > 0 and m a nonnegative integer, Cm[0, X] represents the space of the real-valued continuous
functions whose derivatives of order up to m are continuously extendable to the endpoints x = 0 and
X. For convenience, C0[0, X] is denoted by C[0, X].

3. Review of the Homotopy Perturbation Method (HPM)

We plan to reserve this section for reviewing the HPM. This technique was originally introduced
by J.J.He [6, 24, 25] and was further investigated by many scientists. We illustrate the basic idea
through an integral equation, which is what we needed throughout the article. In most basic terms,
the HPM could be described as a combination of the traditional perturbation method and homotopy
technique in topology. The basic idea is to successfully deform a hard problem into an easy-to-solve
problem. With HPM, this is usually achieved by obtaining a rapidly convergent series at the end
of the process. Otherwise, the series representation is used to gain the approximate solutions. This
powerful combination has been successfully applied to obtain analytical or numerical solutions for
many problems arising from different branches of science [26–29]. To explain the basic idea of the
HPM, consider a general integral equation as

I(u) = 0 (3.1)

where I is an integral operator. Then a convex homotopy with an embedding parameter p ∈ [0, 1] could
be defined by

H(v, p) = (1 − p)F (v) + pI(v), p ∈ [0, 1]

where F(v) is a functional operator with a known solution, say v0. As it can be easily observed that

H(v, p) = 0 (3.2)

implies
H(v, 0) = F (v) and H(v, 1) = I(v)

Notice that as the embedding parameter monotonically increases from 0 to 1, then the trivial problem
(H(v,0)=F(v)=0) deforms to the original problem (I(v)=0) [6, 25]. The parameter p can also be
considered as an expanding parameter since it is used to obtain

v = u0 + pu1 + p2u2 + p3u3 + . . . (3.3)
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As p → 1, (3.3) becomes an approximate solution of (3.1). That is,

u = lim
p→1

v = u0 + u1 + u2 + u3 + . . . (3.4)

For most of the cases, (3.4) will be a convergent series and the rate of convergence will be based on
I(u) [10]. For a more thorough treatment of this method, the reader is referred to [6, 24,25,30].

4. Main Section

This section presents for cases.

4.1. Case: ν ≤ 0

This case can be reduced to the case ν > 0. In [14], it’s noted that to make the integration valid, a
solution of (1.1) with its certain derivatives must vanish at t = 0. This condition in turn could be used
to reduce the case of v ≤ 0 to the case of v > 0. Hence, we will not investigate this case further and
focus on the remaining cases.

4.2. Case: 0 < ν < 1

In this section, we consider the important case where 0 < ν < 1. As stated before, the application of
the homotopy perturbation method constructed by a convex homotopy or other series-related methods
produces unwanted results (divergent series, etc.). In this study, we propose conditions to be imposed
to overcome this issue.

Theorem 4.1.
If 0 < ν < 1 and p = 1 −

√
1 − ν, then 0 < p < ν

The motivation here is that when constructing the convex homotopy, we impose a condition on the
small parameter p so that we overcome the issue we faced before. Notice that it is still true that
0 < p < 1. To be more precise, we construct the homotopy with p being 1 −

√
1 − ν.

We consider the following the Volterra integral equation with a weakly singular kernel

u(x) = f(x) +
x∫

0

tν−1

xν
u(t) dt, 0 < ν < 1, x ∈ [0, X] (4.1)

where f(x) = 1 + x.

Following the theorem stated above, a homotopy can be readily formed as follows:

H(u, p) = (1 − p)F (u) + pL(u) = 0

(1 − p) (u(x) − f(x)) + p

u(x) − f(x) −
x∫

0

tν−1

xν
u(t) dt

 = 0 (4.2)

where p = 1 −
√

1 − ν.

As p traces the path along 1 −
√

1 − ν, 0 < ν < 1, (4.2) takes following form

lim
p→0+

H(u, p) = u(x) − f(x) = 0, (initial approximation)

lim
p→1−

H(u, p) = u(x) − f(x) −
x∫

0

tν−1

xν
u(t) dt = 0, (approximate solution).
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This is simplified as

u(x) − f(x) − p

x∫
0

tν−1

xν
u(t) dt = 0 (4.3)

If we use the embedding parameter p as an expanding parameter, i.e.,

u(x) = v0 + pv1 + p2v2 + . . . (4.4)

we can replace u(x) with (4.4) and take the limit as

lim
p→1−

u(x) = v0 + v1 + v2 + . . . .

The obtained series converges most of the cases.

Substituting (4.4) into (4.3), we obtain

v0 + pv1 + p2v2 + . . . − f(x) − p

 x∫
0

tν−1

xν

(
v0 + pv1 + p2v2 + . . .

)
dt

 = 0

Combining the like terms and setting them equal to zero yield

p0 : v0 = f(x) = 1 + x,

p1 : v1 =
x∫

0

tν−1

xν
v0(t) dt =

x∫
0

tν−1

xν
(1 + t) dt = 1

ν
+ 1

ν + 1x

p2 : v2 =
x∫

0

tν−1

xν
v1(t) dt =

x∫
0

tν−1

xν
( 1
ν

+ 1
ν + 1 t) dt = 1

ν2 + 1
(ν + 1)2 x

...

pk+1 : vk+1 =
x∫

0

tν−1

xν
vk(t) dt =

x∫
0

tν−1

xν
( 1
νk

+ 1
(ν + 1)k

t) dt = 1
νk+1 + 1

(ν + 1)k+1 x

Therefore, the solution with embedding parameter p admits the following form:

u(x) = v0 + pv2
1 + p2v2 + . . . ,

= 1 + x + p

(1
ν

+ 1
ν + 1x

)
+ p2

( 1
ν2 + 1

(ν + 1)2 x

)
+ . . .

=
(

1 + p

ν
+ p2

ν2 + . . .

)
+
(

1 + p

ν + 1 + p2

(ν + 1)2 + . . .

)
x

= ν

ν − p
+ ν + 1

ν + 1 − p
x

Note that the last step follows from that geometric series converges since the following inequalities∣∣∣∣pν
∣∣∣∣ < 1 and

∣∣∣∣ p

ν + 1

∣∣∣∣ < 1

guaranteed by the theorem given above. Thus, taking the limit as p → 1, we have

lim
p→1−

u(x) = ν

ν − 1 + ν + 1
ν

x

This is indeed the exact solution of (4.1).
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4.3. Case: ν = 1

In this case, we consider

u(x) = f(x) +
x∫

0

tν−1

xν
u(t) dt (4.5)

becomes

u(x) = f(x) +
x∫

0

1
x

u(t) dt

for some function f . The question of existence and uniqueness boils down to that of a second kind
Volterra integral equation. For the sake of completeness, let us restate the following theorem.

Theorem 4.2. [14] Suppose that ν = 1. Suppose also that f ∈ C1[0, T ] and f(0) = 0. Then the
solutions of (4.5)

u(x) = α0 + f(x) +
x∫

0

1
t
f(t) dt

where α0 ∈ R.

We also want to note that a necessary condition for the existence of a solution to (4.5) is that f(0) = 0.

4.4. Case: ν > 1

This is the other main case we consider in this study. We first construct a homotopy and then follow
the steps described in HPM. The following example is worked out and it will be seen that HPM works
out perfectly and produces exact solutions for many examples.

Example 4.3. [12,17] We first consider finding the solutions of the following Volterra integral equation
with a weakly singular kernel

u(x) = f(x) +
x∫

0

tν−1

xν
u(t) dt, ν > 1, x ∈ [0, X] (4.6)

where f(x) = 1 + x.

A homotopy can be readily formed as follows:

H(u, p) = (1 − p)F (u) + pL(u) = 0

or

(1 − p) (u(x) − f(x)) + p

u(x) − f(x) −
x∫

0

tν−1

xν
u(t) dt

 = 0

This is simplified as

u(x) − f(x) − p

x∫
0

tν−1

xν
u(t) dt = 0 (4.7)

If we use the embedding parameter p as an expanding parameter, i.e.,

u(x) = v0 + pv1 + p2v2 + . . . (4.8)

we can replace u(x) with (4.8) and take the limit as

lim
p→1

u(x) = v0 + v1 + v2 + . . . .

The obtained series converges most of the cases.
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Substituting (4.8) into (4.7), we obtain

v0 + pv1 + p2v2 + . . . − f(x) − p

 x∫
0

tν−1

xν

(
v0 + pv1 + p2v2 + . . .

)
dt

 = 0

Combining the like terms and setting them equal to zero yield

p0 : v0 = f(x) = 1 + x

p1 : v1 =
x∫

0

tν−1

xν
v0(t) dt =

x∫
0

tν−1

xν
(1 + t) dt = 1

ν
+ 1

ν + 1x

p2 : v2 =
x∫

0

tν−1

xν
v1(t) dt =

x∫
0

tν−1

xν

(1
ν

+ 1
ν + 1 t

)
dt = 1

ν2 + 1
(ν + 1)2 x

...

pk+1 : vk+1 =
x∫

0

tν−1

xν
vk(t) dt =

x∫
0

tν−1

xν

( 1
νk

+ 1
(ν + 1)k

t

)
dt = 1

νk+1 + 1
(ν + 1)k+1 x

Therefore, the solution with embedding parameter p admits the following form:

u(x) = v0 + pv2
1 + p2v2 + . . .

= 1 + x + p

(1
ν

+ 1
ν + 1x

)
+ p2

( 1
ν2 + 1

(ν + 1)2 x

)
+ . . .

=
(

1 + p

ν
+ p2

ν2 + . . .

)
+
(

1 + p

ν + 1 + p2

(ν + 1)2 + . . .

)
x

= ν

ν − p
+ ν + 1

ν + 1 − p
x

Note that the last step follows from that geometric series converges since both∣∣∣∣pν
∣∣∣∣ < 1 and

∣∣∣∣ p

ν + 1

∣∣∣∣ < 1

Taking the limit as p → 1, we have

lim
p→1

u(x) = ν

ν − 1 + ν + 1
ν

x

This is indeed the exact solution of (4.6).

5. Numerical Examples

In this section, we elaborate on examples of various values of ν. To be able to compare the results we
choose the examples from the literature.

Example 5.1. [17] We first consider the following Volterra integral equation with a weakly singular
kernel

u(x) = f(x) +
x∫

0

tν−1

xν
u(t) dt, x ∈ [0, X] (5.1)

where f(x) = 1 + (ν+1)2

ν(ν+2)x2.
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For the sake of brevity, we start with the case where ν > 1. A homotopy can be formed as follows:

H(u, p) = (1 − p)F (u) + pL(u) = 0

or

(1 − p) (u(x) − f(x)) + p

u(x) − f(x) −
x∫

0

tν−1

xν
u(t) dt

 = 0

This is simplified as

u(x) − f(x) − p

x∫
0

tν−1

xν
u(t) dt = 0 (5.2)

If we use the embedding parameter p as an expanding parameter, i.e.,

u(x) = v0 + pv1 + p2v2 + . . . (5.3)

we can replace u(x) with (5.3) and take the limit as

lim
p→1

u(x) = v0 + v1 + v2 + . . .

The obtained series converges most of the cases.

Substituting (5.3) into (5.2), we obtain

v0 + pv1 + p2v2 + . . . − f(x) − p

 x∫
0

tν−1

xν

(
v0 + pv1 + p2v2 + . . .

)
dt

 = 0

Combining the like terms and setting them equal to zero yield

p0 : v0 = 1 + (ν + 1)2

ν(ν + 2)x2

p1 : v1 =
x∫

0

tν−1

xν
v0(t) dt =

x∫
0

tν−1

xν

(
1 + (ν + 1)2

ν(ν + 2) t2
)

dt = 1
ν

+ (ν + 1)2

ν(ν + 2)2 x2

p2 : v2 =
x∫

0

tν−1

xν
v1(t) dt =

x∫
0

tν−1

xν

(
1
ν

+ (ν + 1)2

ν(ν + 2)2 t2
)

dt = 1
ν2 + (ν + 1)2

ν(ν + 2)3 x2

...

pk+1 : vk+1 =
x∫

0

tν−1

xν
vk(t) dt =

x∫
0

tν−1

xν

(
1
νk

+ (ν + 1)2

ν(ν + 2)(k+1) t2
)

dt = 1
νk+1 + (ν + 1)2

ν(ν + 2)k+2 x2

Therefore, the solution with embedding parameter p admits the following form:

u(x) = v0 + pv2
1 + p2v2 + . . .

= 1 + (ν + 1)2

ν(ν + 2)x2 + p

(
1
ν

+ (ν + 1)2

ν(ν + 2)2 x2
)

+ p2
(

1
ν2 + (ν + 1)2

ν(ν + 2)3 x2
)

+ . . .

=
(

1 + p

ν
+ p2

ν2 + . . .

)
+ (ν + 1)2

ν(ν + 2)

(
1 + p

ν + 2 + p2

(ν + 2)2 + . . .

)

= ν

ν − p
+ (ν + 1)2

ν(ν + 2)
(ν + 2)

(ν − p + 2)x2

(5.4)
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Note that the last step follows from that geometric series converges since both∣∣∣∣pν
∣∣∣∣ < 1 and

∣∣∣∣ p

ν + 2

∣∣∣∣ < 1

Taking the limit as p → 1, we have

lim
p→1

u(x) = ν

ν − 1 + ν + 1
ν

x2

This is indeed the exact solution of (5.1).

For the case where 0 < ν < 1, we follow the steps proposed in 3.2 Case above.

The algorithm produces the same results up to (5.4). The only issue that one needs to pay special
attention is that whether the geometric series that produced as a result is convergent or not. The
construction of the homotopy gives a convergent geometric series since the following inequalities∣∣∣∣pν

∣∣∣∣ < 1 and
∣∣∣∣ p

ν + 2

∣∣∣∣ < 1

still hold.

Thus as we pass to the limit;

u(x) = lim
p→1−

ν

ν − p
+ (ν + 1)2

ν(ν + 2)
(ν + 2)

(ν − p + 2)x2 = ν

ν − 1 + ν + 1
ν

x2

For the case ν = 1, a necessary condition for existence of a solution fails since f(0) = 1.

Example 5.2. [17] We first consider the following Volterra integral equation with a weakly singular
kernel

u(x) = f(x) +
x∫

0

tν−1

xν
u(t) dt, x ∈ [0, X] (5.5)

where f(x) = xα(1 + x) and α is any constant satisfying both ν + α > 0 and ν + α − 1 ̸= 0.

A homotopy can be readily formed as follows:

H(u, p) = (1 − p)F (u) + pL(u) = 0

or

(1 − p) (u(x) − f(x)) + p

u(x) − f(x) −
x∫

0

tν−1

xν
u(t) dt

 = 0

This is simplified as

u(x) − f(x) − p

x∫
0

tν−1

xν
u(t) dt = 0 (5.6)

If we use the embedding parameter p as expanding parameter, i.e.,

u(x) = v0 + pv1 + p2v2 + . . . (5.7)

we can replace u(x) with (5.7) and take the limit as

lim
p→1

u(x) = v0 + v1 + v2 + . . .

The obtained series converges most of the cases.

Substituting (5.7) into (5.6), we obtain

v0 + pv1 + p2v2 + . . . − f(x) − p

 x∫
0

tν−1

xν

(
v0 + pv1 + p2v2 + . . .

)
dt

 = 0
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Combining the like terms and setting them equal to zero yield

p0 : v0 = xα(1 + x)

p1 : v1 =
x∫

0

tν−1

xν
v0(t) dt =

x∫
0

tν−1

xν

(
1 + (ν + 1)2

ν(ν + 2) t2
)

dt = 1
ν

+ (ν + 1)2

ν(ν + 2)2 x2

p2 : v2 =
x∫

0

tν−1

xν
v1(t) dt =

x∫
0

tν−1

xν

(
1
ν

+ (ν + 1)2

ν(ν + 2)2 t2
)

dt = 1
ν2 + (ν + 1)2

ν(ν + 2)3 x2

...

pk+1 : vk+1 =
x∫

0

tν−1

xν
vk(t) dt =

x∫
0

tν−1

xν

(
1
νk

+ (ν + 1)2

ν(ν + 2)(k+1) t2
)

dt = 1
νk+1 + (ν + 1)2

ν(ν + 2)k+2 x2

Therefore, the solution with embedding parameter p admits the following form:

u(x) = v0 + pv2
1 + p2v2 + . . . ,

= 1 + (ν + 1)2

ν(ν + 2)x2 + p

(
1
ν

+ (ν + 1)2

ν(ν + 2)2 x2
)

+ p2
(

1
ν2 + (ν + 1)2

ν(ν + 2)3 x2
)

+ . . .

=
(

1 + p

ν
+ p2

ν2 + . . .

)
+ (ν + 1)2

ν(ν + 2)

(
1 + p

ν + 2 + p2

(ν + 2)2 + . . .

)

= ν

ν − p
+ (ν + 1)2

ν(ν + 2)
(ν + 2)

(ν − p + 2)x2

(5.8)

Note that the last step follows from that geometric series converges since both∣∣∣∣pν
∣∣∣∣ < 1 and

∣∣∣∣ p

ν + 2

∣∣∣∣ < 1

Taking the limit as p → 1, we have

lim
p→1

u(x) = ν

ν − 1 + ν + 1
ν

x2

This is indeed the exact solution of (5.5).

For the case where 0 < ν < 1, we follow similar steps as explained in Case 3.2 above.

|p
ν

| < 1 and | p

ν + 2 | < 1

still hold.

For the case ν = 1, a necessary condition for existence of a solution fails as α ≤ 0. i.e., f(0) ̸= 0.

As α > 0, it follows from the Theorem 4.2 that

u(x) = α0 + f(x) +
x∫

0

1
t
f(t) dt

= α0 + α(α + 2)xα+1 + (α + 1)2xα

α(α + 1)
where α0 ∈ R.
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6. Conclusion

Singular Volterra integral equations and in particular weakly singular Volterra integral equations have
appeared in many applications from various areas. Unlike weakly singular Volterra equations, numerous
methods exist for applying singular Volterra integral equations. In this article. We aim to contribute
to filling this gap. We initially use the homotopy perturbation method (HPM) when ν > 1 in the
weakly singular Volterra integral equation. We then propose adjusting HPM to overcome an issue
raised as 0 < ν < 1. For completeness, we explain and describe what to do for the remaining cases
for ν (i.e., ν ≤ 0 and ν = 1). We elaborate on some examples to show the simplicity and efficiency of
the proposed algorithm. Lastly, we want to emphasize that the idea and methodology presented in
this article demonstrate that constructing an effective homotopy equation is the most crucial aspect
of HPM. For future studies, modifications of HPM can be explored more systematically to develop
variations that yield better results than HPM when applied to different types of linear and nonlinear
integral equations, including all kinds of Fredholm and Volterra integral equations.
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[28] J. H. He, Homotopy perturbation method for solving boundary value problems, Physics Letters A
350 (1-2) (2006) 87–88.

[29] D. D. Ganji, M. Nourollahi, E. Mohseni, Application of He’s methods to nonlinear chemistry
problems, Computers & Mathematics with Applications 54 (7-8) (2007) 1122–1132.

[30] A. Wazwaz, Linear and nonlinear integral equations methods and applications, 1st Edition,
Springer, Berlin, 2011.


	Introduction
	Preliminaries
	Review of the Homotopy Perturbation Method (HPM)
	Main Section
	Case: 0
	Case: 0<<1
	Case: =1
	Case: >1

	Numerical Examples
	Conclusion

