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ABSTRACT

In this paper, the approximate solutions of the time fractional Harry Dym equation with frac-
tional derivative in the Caputo sense are obtained by using the Residual power series method 
(RPSM). This equation is a significant dynamical equation that occurs in a variety of physical 
systems. The suggested method provides good accuracy for the approximate solution when 
compared numerically with the exact solution. The effectiveness of the proposed method is 
also illustrated with the aid of numerical results. These results indicate that the RPSM is a 
power, useful, and applicable for determining the solutions of the time Hary Dym equation. 
Some of these results are illustrated by 2D and 3D graphics. Besides, the proposed method can 
be applied to many different differential equations due to its ease of use and reliability.
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INTRODUCTION 

The Harry Dym equation is in the form

was first studied by Kruskal and Moser and is referred 
to an unpublished work of Harry Dym. This equation is 
entirely integrable nonlinear evolution equation linked to 
the traditional string problems [1]. More detailed informa-
tion about these problems can be seen in [2-5]. The Harry-
Dym equation is also closely related to the Korteweg-de 
Vries equation [6]. In the literature, numerous methods 
have been utilized to solve this equation. The solution 
methods for the Harry Dym equation are moving frame 
[7], Adomian decomposition [8], He’s variational iteration 

[8], direct integration [8], power series [8], residual power 
series [8], Bäcklund transform [9], new iterative method 
[10], haar wavelet [11], homotopy perturbation [12], recon-
struction of variational iteration [12], Darboux transforma-
tion [13], and nonlinear steepest decent [14].

Recently, it has become very popular for scientists to 
obtain solutions of the fractional differential equations. 
These equations are widely used to model problems in 
viscoelasticity, turbulence, electrical networks, nonlinear 
biological systems, control theory, thermodynamics, fluid 
dynamics, signal processing, and so on [15-20]. The time 
fractional Harry Dym equation is one of the most import-
ant of them. So far, many researchers have used various 
analytical and numerical methods to obtain the time frac-
tional Harry Dym equation. These methods are Adomian 
decomposition [21,22], homotopy perturbation Sumudu 
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transform [22], Elzaki transform technique [23], Lie sym-
metry group analysis [24], similarity [25,26], homotopy 
analysis [27,28], Lie classical [29], homotopy perturbation 
[30], Mohand homotopy perturbation transform scheme 
[31], reduced differential transform [32], finite difference 
[33], q-homotopy analysis [34], and optimal system [35]. 
However, it is seen that the time fractional Harry Dym 
equation has not yet been solved with the RPSM.

The RPSM, proposed by Abu Arqub in 2013, is an effi-
cient approach to obtain the approximate solutions of the 
different differential equations. These solutions are gained 
without the need for linearization, discretization, or per-
turbation. The RPSM does not require comparing the 
coefficients of the corresponding terms and does not need 
a recursion relation. By selecting an appropriate value for 
the initial guesses approximations, the proposed method 
can be also directly applied to the equations. Besides, 
with this method, high precision is achieved by utilizing 
less time and small calculations. Moreover, by minimiz-
ing the residual error, the suggested method provides an 
easy way to achieve the convergence of the series solution. 
Furthermore, the RPSM relies on derivation, which is more 
accurate and much easier than integration. This is the basis 
of most other solution methods. In addition to all these, the 
proposed method suggests obtaining infinite series solu-
tions with iterated operations. 

In the present paper, the RPSM is used to get the approx-
imate solutions of the time fractional Harry Dym equation 
of the form

  (1)

by the initial condition

  (2)

where  is the Caputo fractional derivative of order β 
with respect to the time variable t. When β = 1, Eq. (1) turns 
into the standard Harry Dym equation. The exact solution 
for the Harry Dym is

The plan of this paper is as follows. In Section 2, the 
definitions and theorems of the Caputo derivative and the 
fractional power series are mentioned. In Section 3, the 
basic idea of the RPSM is expressed. In Section 4, the RPS 
solutions for the time fractional Harry Dym equation are 
obtained by suggested method. Besides, the efficiency and 
the reliability of this method are demonstrated by table and 
figures. In Section 5, the Conclusions are given.

Preliminaries
There are numerous definitions of fractional operators, 

such as Grunwald-Letnikov, Caputo, Riemann-Liouville, 
Hadamard, Wely, and Marchaud in the literature. In this 

part, Caputo’s definition is utilized since the derivative of 
a constant is zero and the initial conditions for the frac-
tional differential equations with Caputo derivative take the 
familiar manner of integer order differential equations. The 
definition of Caputo derivative is defined as follows:

Definition 1. [36] The time fractional derivative of u(x, 
t) in Caputo form is described as

The definition and theorems for the fractional power 
series are given below. Details of them can be found in [37].

Definition 2. [37] A power series expansion of the 
manner

is called the fractional power series about t0. Here, t is a 
variable and the cm’s are constants.

Theorem 1. [37] Assume that g is a fractional power 
series representation at t0 of the manner

If  are continuous on , then coeffi-
cients cm are expressed as

where R is the radius of convergence and 

Theorem 2. [37] Assume that u(x, t) has a multiple frac-
tional power series representation at t0 of the manner

If  are continuous on , then  
gm(x) are expressed as
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Here, , and  
that Rc is radius of convergence of the fractional power 
series .

Basic Idea of the RPSM
In this section, to demonstrate the basic idea of the 

RPSM, we examine a general nonlinear fractional differen-
tial equation by the initial condition of the manner

  
(3)

where  represents the fractional derivative in the 
Caputo sense, N is nonlinear differential operator and R is 
linear differential operator. This method suggests the solu-
tion for Eq. (3) as a fractional power series for t = 0. Assume 
the solution takes the following form:

The ul(x, t) is also expressed as

  

(4)

Then, the 0-th RPS approximate solution of u(x, t) is 
given as

Eq. (4) can be written as 

  

(5)

The residual function for Eq. (3) is expressed as

Therefore,  is stated as

  (6)

Some significant relations of the suggested method are 
as follows and it can be seen in [38-42].

  
(7)

 

Substituting the ul(x, t) in Eq. (6) and calculating the 
 of  for l = 1, 2..., the suggested method 

is clearly expressed. Then, applying the relation (7), the fol-
lowing equation

  
(8)

is solved to obtain the gm(x) with m = 1, 2..., l in Eq. (5).

Approximate Solutions of the Fractional Harry Dym 
Equation By RPSM

In this segment of the study, we utilize the RPSM to gain 
the RPS solutions for Eq. (1) by the initial condition (2).

Let us consider the residual function for Eq. (1) as

Therefore,   is written as

  (9)

To determine the g1(x), we write l = 1 in Eq. (9) and we 
have

From Eq. (5) for l = 1, we get

Hence,

From Eq. (8), we find the , and 
therefore

Thus, we get

To determine g2(x), we write l = 2 in Eq. (9) and we have

From Eq. (5) at l = 2, we get
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Hence, 

From Eq. (8), we find , and therefore

Thus, 

To determine g3(x), we write l = 3 in Eq. (9) and we get

From Eq. (5) at l = 3, we have

Thus,

From Eq. (8), we gain , and therefore

Hence, 

Using the same operation for l = 4, we get

In Table 1, the u4(x, t) solution is gained for β = 0.25, 
β = 0.50, β = 0.75, and β = 1 with the different values of 
t and x. Besides, the exact solution is compared with the 
u4(x, t) solution for β = 1 in this table. From Table 1, it can 
be seen that the absolute error gets smaller as the value of 
t decreases.

For 0 ≤ t ≤ 1 and -30 ≤ x ≤ 0 at β = 1, the comparison of 
the u4(x, t) and the exact solution is illustrated in Figure 1. 
When equal parameters are used, it is seen that the u4(x, t) 
solution has nearly the same shape as the exact solution in 
this figure.

In Figure 2, the geometrical behavior of the u4(x, t) with 
3D plot for 0 ≤ t ≤ 5, 0 ≤ x ≤ 1, and the different values 

Figure 1. The plot of the u4(x, t) and exact solution.
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Table 1. Comparing the u4(x, t) solution and the exact solution with the different values of t and x.

β = 0.25 β = 0.50 β = 0.75 β = 1
x t u4(x, t) u4(x, t) u4(x, t) u4(x, t) Exact solution Absolute error
-10 0.2

0.4
0.6
0.8
1

6.83852
6.78388
6.74698
6.71828
6.69446

6.92921
6.84877
6.78650
6.73363
6.68676

6.99774
6.91334
6.83880
6.76987
6.70475

7.04522
6.96966
6.89370
6.81731
6.7405

7.04522
6.96966
6.89370
6.81731
6.7405

1.35745x10-10

4.39464x10-9

3.37672x10-8

1.44003x10-7

4.44810x10-7

-5 0.2
0.4
0.6
0.8
1

4.75697
4.69016
4.64474
4.60926
4.57968

4.86719
4.77026
4.69472
4.63019
4.57266

4.94936
4.84856
4.75904
4.67584
4.59684

5.00586
4.91607
4.82544
4.73396
4.64159

5.00586
4.91607
4.82544
4.73396
4.64159

1.20481x10-9

3.93112x10-8

3.04515x10-7

1.30959x10-6

4.08059x10-6

0 0.2
0.4
0.6
0.8
1

1.99562
1.87560
1.78945
1.71927
1.65869

2.18286
2.02852
1.90202
1.78884
1.68342

2.30909
2.15777
2.01889
1.88536
1.75398

2.39222
2.26110
2.12609
1.98673
1.84251

2.39222
2.26110
2.12605
1.98658
1.84202

1.21435x10-7

4.12452x10-6

3.33870x10-5

1.50729x10-4

4.95747x10-4

5 0.2
0.4
0.6
0.8
1

2.75042
2.82387
2.87013
2.90395
2.93043

2.62131
2.74355
2.83355
2.90641
2.96788

2.51370
2.64987
2.76562
2.86895
2.96320

2.43513
2.56166
2.68511
2.80569
2.92353

2.43513
2.56167
2.68515
2.80586
2.92402

1.92919x10-7

5.83621x10-6

4.20345x10-5

1.68489x10-4

4.90352x10-4

10 0.2
0.4
0.6
0.8
1

5.26849
5.32758
5.36687
5.39709
5.42196

5.16913
5.25941
5.32792
5.38516
5.43522

5.09107
5.18845
5.27289
5.34972
5.42122

5.03561
5.12435
5.21232
5.29956
5.38608

5.03561
5.12435
5.21232
5.29956
5.38609

1.40554x10-9

4.41275x10-8

3.28892x10-7

1.36081x10-6

4.07902x10-6

 
(a) (b)

(c) (d)

Figure 2. 3D plot of the u4(x, t): (a) u4(x, t) for β = 0.25, (b) u4(x, t) for β = 0.50, (c) u4(x, t) for β = 0.75, (d) u4(x, t) for β = 1.
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of β is illustrated by suggested method. Besides, the same 
solution with 2D plot for t = 5 and -10 ≤ x ≤ 10 is demon-
strated in Figure 3. The solution at β = 0.25 is showed with 
the blue line, the solution at β = 0.50 is showed with the 
orange line, the solution at β = 0.75 is showed with the 
green line, and the solution at β = 1 is showed with the red 
line in this figure. All plots in figures are illustrated by the 
aid of Mathematica 11.3.

For β = 1, the third order term solution u3(x, t) of the 
RPSM, homotopy perturbation Sumudu transform method 
(HPSTM) [22], Adomian decomposition method (ADM) 
[22], and exact solution are compared in Table 2. It is 
observed from this table that the RPSM solution performed 
a high accuracy agreement with the ADM and HPSM solu-
tion. It is also seen that the accuracy increases as the order 
of the approximation increases.

CONCLUSION

In this study, the RPSM was utilized for obtaining the 
approximate solutions of Eq. (1). These solutions were 
illustrated by numerically and graphically for the different 
values of β, t and x. By comparing the approximate solu-
tion and the exact solution, the accuracy and efficiency 
of the suggested method were demonstrated. When equal 

parameters were selected, it was observed that the approxi-
mate solution had almost the same shape as the exact solu-
tion. The proposed method was compared numerically 
with the HPSTM and the ADM by table. It was seen from 
this table that the RPSM made a good agreement with this 
methods. It is seen from the approximate solutions that 
only a few iterates were used by the proposed method. With 
these iterates, an infinite series solutions can be found. The 
accuracy of the RPSM increases as the order of these solu-
tions increases. Besides, this method does not need a lot 
of time and computer memory. The RPSM indicates strong 
performance with less computation than other methods in 
the literature. Moreover, the RPSM does not require trans-
formation, linearization, discretization, or perturbation. 
Furthermore, the suggested method can be used to get 
approximate solutions of different kinds of fractional par-
tial differential equations. 
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