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Abstract

This paper is about the operators defined between Koéthe spaces whose associated matrix
is a Hankel matrix. After demonstrating how these operators are defined, the conditions
for their continuity and compactness are given. It is shown that the backward and for-
ward shift operators are mean ergodic and Cesaro bounded by establishing a relationship
between the backward and forward shift operators and Hankel and Toeplitz operators on
power series spaces.
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1. Introduction

A finite or infinite matrix is called a Hankel matriz if its entries are constant along
each skew-diagonal, that is, the matrix (ap,,) is Hankel if @y, n, = amgn, whenever
m1+n1 = mo+no. Hankel matrices are significant for several reasons and there are many
applications in various fields such as signal processing, control theory, and numerical anal-
ysis. Hankel matrices also serve as functional mathematical tools with diverse applications
in engineering and computer science.

Hankel and Toeplitz operators defined on the Hardy space of the unit disk, H?(ID), can
be viewed as operators with infinite Hankel and infinite Toeplitz matrices, respectively,
with respect to the standard orthonormal basis of H?(D). A few years ago, Toeplitz
operators, whose ”associated” matrix is Toeplitz, were defined for more general topological
vector spaces. For instance, in [4], Domanski and Jasiczak developed the analogous theory
for the space of A(R) real analytic functions on the real line. In [5], Jasiczak introduced
and characterized the class of Toeplitz operators on the Fréchet space of all entire functions
O(C).

In [5], Jasiczak defined a continuous linear operator on O(C) as a Toeplitz operator
if its matrix is a Toeplitz matrix. The matrix of an operator is defined with respect to
the Schauder basis (2™)nen,. The space of all entire functions O(C) is isomorphic to the
power series space of infinite type A (n). By taking inspiration from Jasiczak paper [5],
the author defined the Toeplitz operators on more general power series spaces of finite
or infinite type. In this paper, with the same idea, we will define the operators whose
associated matrix is an infinite Hankel matrix between Kéthe spaces, especially power
series spaces. We will construct some conditions for the continuity and compactness of
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these operators. In the final section, it is shown that the backward and forward shift
operators are mean ergodic and Cesaro bounded by establishing a relationship between
the backward and forward shift operators and the Hankel and Toeplitz operators on power
series spaces.

2. Preliminaries

In this section, after establishing terminology and notation, we collect some basic facts
and definitions that are needed in the sequel. We will use the standard terminology and
notation of [7].

A complete Hausdorff locally convex space E whose topology is defined by a countable
fundamental system of seminorms (||-||x)ken is called a Fréchet space. A matrix (an k)knen
of non-negative numbers is called a Kéthe matrix if it satisfies the following conditions:

1. For each n € N there exists a k € N with a, ; > 0.
2. ank < ap 41 for each n,k € N.

For a K6the matrix (ank)n ken, the space

K(ank) = {x = (Tp)nen : ||z|lx = Z |zplan, < oo forall ke N}

n=1
is called a Kothe space. Every Kothe space is a Fréchet space. From Proposition 27.3 of
[7], the dual space of a Kéthe space is isomorphic with

(K (an)) = {y — (Yo )ners

Grothendieck-Pietsch Criteria (Theorem 28.15 in [7]) states that a Kéthe space K (ap, )
is nuclear if and only if for every k € N, there exists a [ > k so that

ooanlc
Zi’<oo.

n=1 9ni

sup |yna, 1| < +oo for some k € N}.
neN ’

For a nuclear Kothe space, the system ||z||; = sup,cy |Zn|an i, & € N forms an equivalent
system of seminorms to the fundamental system of seminorms |zl = Y02 |zn|ank,
k e N.

Let o = (), be a non-negative increasing sequence with nh—>Holo oy = 00. The power

series space of finite type is defined by

A (o) = {x = (@n)pen : N2l = Z |z e kO < oo for all k € N}

n=1

and the power series space of infinite type is defined by

Ay (@) == {a: = (@Tn)pen : zll; = Z |2 €89 < 00 for all k € N} .

n=1
The power series spaces form an important family of Kothe spaces and they contain the
spaces of all holomorphic functions on C¢ and D¢,
O(CY) = Aso(n)  and  O(D?) = Ay(na)

where D is the unit disk in C and d € N.
Let E and F be Fréchet spaces. A linear map T : F — F is called continuous if for
every k € N there exists p € N and C};, > 0 such that

|Tz||x < Crpllz|lp

for all z € E. A linear map T : E — F' is called compact if there exists a neighborhood U
of zero in E such that T'(U) is precompact in F.
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In this paper, we fixed the symbol e,, to denote the sequence
(0,0,...,0,1,0,...)

where 1 is in the n*” place and 0 is in the others.
We will use the following Lemma to determine the continuity and compactness of op-
erators defined between Kothe spaces.

Lemma 2.1. Let K(ay, ) and K(by ) be Kothe spaces.

a. T : K(ani) = K(bnk) is a linear continuous operator if and only if for each k
there exists m such that

T
sup [ Tenllk < 00

neN HenHm

b. If K(by 1) is Montel, then T : K(ay ) — K(by ) is a compact operator if and only
if there exists m such that for all k

[ Ten |k
neN HenHm

Proof. Lemma 2.1 of [1]. O

< 00

A Fréchet space E is Montel if each bounded set in FE is relatively compact. Every

power series space is Montel, since for every subsequence «;, , the limit lim Tk =Tm)%G) g
k—o00

zero with r, = —% in the case of finite-type power series spaces and rp = k in the case of
infinite-type power series spaces for every k € N and m > k, see Theorem 27.9 of [7].

The next proposition says that the continuity condition is sufficient to ensure that linear
operators defined only on the basis elements are well-defined.

Proposition 2.2. Let K(an), K(byr) be Kothe spaces and (an)nen € K(bni) be a
sequence. Let us define a linear map T : K(an ) — K(by i) such as

o0
Te, = a, and Tx = Z xnTen

n=1
for every x =302 xpe, and n € N. If the continuity condition
[Ten |k

neN |lenlm

Vk € N dm e N

< 0

holds, then T is well-defined and continuous operator.
Proof. Proposition 2.2 of [3]. O

In this paper, we will call an operator which is defined between Ko&the spaces as a
Hankel operator if its matrix is a Hankel matrix defined with respect to the Schauder
basis (en)nen. We will concentrate on Hankel operators defined between power series
spaces and determine the conditions that give us the continuity and compactness of these
operators.

3. Hankel operator defined between Ko6the spaces

Let 6 = (05,)nen, be any sequence. The Hankel matrix defined by 6 is

O 01 02 03
01 02 03 04
Oy 03 04 05

03 04 05 0O¢
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We aim to define an operator Hy : K(ap ) — K (b, ) by taking Hge, as the nt" column
of the above matrix, that is,

S
H9€n = (enfla ena enJrl, ce ) = Z 0j+n72€j
j=1

provided that Hge,, € K (by 1) for everyn =1,2,.... Therefore, for every z = > 7% | xpe, €
K (an,k), the operator Hy can be written as
(e.)
Hox = Z T, Hype,. (3.1)
n=1

Actually, we cannot confirm that the operator Hy : K (an 1) — K (b 1) is well-defined as we
cannot guarantee that the series 02 x, Hpe,, converges in K (b, ) for every x € K (an ).
Proposition 3.1 asserts that Hy will be well-defined, provided that the condition for its
continuity is satisfied. In this section, we will share some conditions under which this
operator can be appropriately defined between power series spaces and in those instances,
we will analyze its continuity and compactness.

As a direct consequence of Proposition 2.2, we have the following;:

Proposition 3.1. The operator Hg : K(ay ) — K (b, ) is well-defined and continuous if
and only if Hye,, € K(by ) for every n € N and the continuity condition

Hgey,
Vk e N dm e N supw

neN  lenllm

holds.

Remark 3.2. When Hy defines a continuous linear operator, it can be especially said
that
H961 = (90,01,92, . ) = (9
is always in K (b, ).
As mentioned in Remark 3.2 the sequence 0 lies in the range space of Hankel operator
Hy. In the proposition below we will demonstrate that the sequence 6 should be in the
dual space of the domain space of Hankel operator Hy.

Proposition 3.3. Let K(an ), K(by ) be Kothe spaces. Assume that Hy : K(ay, ) —
K (bnk) is a continuous linear operator whose associated matriz is a Hankel matriz given
by a sequence 0, then 6 € (K (anx))’

Proof. Let Hy : K(any) — K(byi) be a continuous linear operator whose associated
matrix is a Hankel matrix given by a sequence 6. Then we have the formula

00
Hyep, = (en—lu enu 0n+17 c ) = Z 9j+n—2€j-
=1

for every n € N. By Lemma 2.1, for all k£ € N there exist m € N and C' > 0 such that

(o)
[Hoenll =Y 104n—21bjkx < Clleallm = Canm Vn € N.
j=1
Then, we have that for all n,j € N
10j+n—2[bj < Canm- (3.2)

Since (by i )n ken is Kothe matrix, there exists a kg € N such that by 5, # 0. Hence there
exist mo € N and Cp > 0 such that

Co
b1

sRO

This says that 6 € (K (an))’ O

10p—1] < @n,my Vn € N.
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3.1. Hy between power series spaces

In this subsection, we examine the continuity and compactness of Hankel operators from
a Kothe space to a power series space. Initially, we will start with the case that the range
space is a power series space of infinite type A ().

Proposition 3.4. Let K(ay, ) be a Kéthe space and 6 € Ao (53). If the condition
IJmgeN, C>0 Anmy > C Vn eN (3.3)
holds, then Hy : K(an ;) — Aoo(B) is well-defined, continuous and compact.

Proof. Let us assume that 6 € A (f) and the condition (3.3) holds. This gives us that
for every k € N there exists a D > 0 such that

> 0o
[Hoenllk = 10jen—2le® <> 10 n_o|e"itnt
Jj=1 j=1

1
<10l < Fl0lkanmo < Danmq
for every n € N. This says that Hge,, € K(by ) for every n € N and for every k € N

[ Hoen |k
sup —————
neN |l€nllmo
Then Hy is well-defined and continuous from Proposition 3.1. Since every power series

space is a Montel space and mg does not depend on k, Hy is also compact from Lemma
2.1. O

By a direct consequence of Proposition 3.4 we can give the following theorem:

Theorem 3.5. For every 0 € Ao (53), the Hankel operator Hy from any infinite type power
series space Noo(at) to Aso(B) is continous and compact.

Now we want to write a weaker condition on the matrix of K(a,, ) in Proposition 3.4.

Proposition 3.6. Let K(ay, ) be a Kothe space and 6 € Ao (B). Assume that the following
condition holds:

Vk € N dImeN,C>0 ek < Capm Vn € N. (3.4)
Then Hy : K(ank) = Moo (B) is well-defined and continuous.
Proof. Let 0 € A (B). Since f is increasing, max{f;, fn} < Bjtn—1 and fj + B, <

203;4n—1 for all j,n € N. By using the condition (3.4), for every k € N there exist m € N
and C' > 0 such that

e.¢] oo
[Hoenllk =3 185n-2le™ < 3 [fn-ale® it eH =20

j=1 j=1
D

<D 10jnnleitntem o = ||| e < C16]|kam,n

—

]:
and then Hye, € Ay (f) for every n € N and
[ Hoen||
sup ———
neN  |lenllm
Proposition 3.1 says that Hy is well-defined and continuous. O

Proposition 3.7. Let K(ay ) be a Kothe space and 6 € Ao (B). Assume that the following
condition holds:

IJneN VkeN 3C>0 e * < Capm Vn € N. (3.5)
Then Hy : K(ank) = Aoo(B) is compact.
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Proof. We can use the same idea in Proposition 3.6. Let 8 € Ao (3). Since f is increasing,
max{S;, Bn} < Bjyn—1 and B; + By < 2Bj4n—1 for all j,n € N. By using the condition
(3.5), there exists an m € N so that for every k € N, there exists a C' > 0 such that

o0 oo
[ Hoenllr =D 10j4n-2le™ <> 0j1no|e® Pitn1ehBi=2Pin1)
= j=1

o0
<Y 05n—ale®Prn=tem 0 = 9] e < O|6]|kam,n
j=1

and then we have

H,
sup 7" 0€nlli < 00
neN  |l€nllm
Lemma 2.1 says that Hy is compact. ]

As a direct consequence of Proposition 3.6 and Proposition 3.7 we can give the following
theorem:

Theorem 3.8. Let B,a be two nonnegative increasing sequences that tend to infinity.
Assume that there exist A, B > 0 such that

an < Ap, + B (3.6)

for all m € N. Then, for every 6 € Ax(B), the Hankel operator Hy : A(a) = Ao(B) is
well-defined, continous and compact.

Proof. Let us assume that there exist A, B > 0 satisfying o, < AS, + B for all n € N.
Then for all m, k € N we write

1 B 1 B
a2 <o, - <B, <
mAan A~ Aan A S On < Kb
and B 1
_ < Z _ -
kﬁn*A mAan

for all n € N. Then for all m € N satisfying /7 > mA and for all k£ € N, there exists a
C > 0 such that X
efkﬂn S C’efﬁan

for every n € N. This says that the conditions in (3.4) and (3.5) are satisfied. From
Proposition 3.6 and 3.7, Hp : Aq(a) = Ax(f) is well-defined, continuous and compact. [

Now, we will explore the continuity and compactness of the Hankel operator Hy, when
the range space is a power series space of finite type A1 (). To this, we require the stability
condition on the sequence 8. A sequence S is called stable if

sup Pon < 0. (3.7)
neN /Bn

Proposition 3.9. Let 8 be a stable sequence, K(ay ) be a Kithe space and 6 € Aq(B).
Assume that the following condition holds:

VkeN 3ImeN,C>0 erPn < Capn YneN.  (3.8)
Then Hp : K(apnk) — A1(B) is well-defined and continuous.
Proof. Let 6 € A1(B). Since f3 is stable, there exists an M € N, M > 1 such that
Ban < M By, Vn € N.

Since [ is increasing we have the following: Let j,n € N. If j4+n—1=2tor j+n—1=2¢t—1
for some t € N, then

Bjtn—1 < Por < M By < M max{B,, 5} < M(Bn+ B;)
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since t < max{n,j} and § is increasing. Therefore, we have

Bjtn—1 < M (B, + B;) (3.9)

for all j,n € N. By using the condition in (3.8), we can write that for every k € N there
exist m € N and C' > 0 such that

[o.¢] o0
[ Hyenlls = 3 8j1n—ole ¥ < 3" [0;4n_ole™ mrtn-1 ¢ (GrBisn—1-5)
j=1 j=1
1 O 1 1
< ew Y |fjpn—sle” MR < ek |6] agy, < Ca
j=1
and then Hye, € A1(f) for every n € N and
| Hoen ||k
neN ||€nHm

From Proposition 3.1, Hy is well-defined and continuous. ]

By modifying the condition in (3.8), we can establish a condition for the compactness
of the operator Hy : K(an 1) — A1(5).

Proposition 3.10. Let  be a stable sequence, K(ay ) be a Kithe space and 6 € Aq(B).
Assume that the following condition holds:

ImeN VkeN 3C>0 eBn < Capn Vn e N. (3.10)
Then Hg : K(an ) — A(B) is compact.
Proof. 1t follows similar steps to the proof of Proposition 3.9. O

As a consequence of Proposition 3.6 and Proposition 3.7 we can give the following
theorem:

Theorem 3.11. Let B, a be two nonnegative increasing sequences that tend to infinity.
Assume that 5 is stable and there exist A, B > 0 such that

Bn < Aay, + B (3.11)

for all n € N. Then, for every 0 € A1(B), the Hankel operator Hy : Ao(a)) — A1 (B) is
well-defined, continous and compact.

Proof. Let assume that there exist A, B > 0 satisfying 8, < Aa,, + B for all n € N. Then
for all m,k € N we write

1
Eﬁnﬁﬂnﬁz‘lan—l—BgmAan—i—B

for all n € N. Then for all m € N satisfying n > mA and for all k£ € N, there exists a
C > 0 such that )

ekPn < Cemon
for every n € N. This says that the conditions in (3.8) and (3.10) are satisfied. From
Proposition 3.9 and 3.10, Hy : A1(a) — Ay () is well-defined, continuous and compact.

([
Now we will consider the operators Hy : A1(o) = K (by, 1) for 6 € (A1(a))’.
Proposition 3.12. Let 6 € (A1(«)). Assume that the following conditions hold:
VmeN e mw® € K(bnp), (3.12)
VmeN 3seN,C>0 e m™ <Cby, Vn € N. (3.13)

Then Hp : Ai(a) = K(by k) is well-defined and continuous. If K(by, 1) is Montel, then Hy
18 compact.
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Proof. Since « is increasing, max{oj,an} < @jin—1 and a; + o < 20541 for all
j,n € N. Let § € (A1(«))’. Then there exist mg € N and C; > 0 such that

1
0, —1] < Cre” M0 ™"

for every n € N. (3.13) gives us that there exist and s € N and a Cy > 0 such that

g,
e mo < C2bs,n

for every n € N. By using these and the conditions (3.12), we can write that for every
k € N there exists a ('3 > 0 such that

[Hpenllk =D 10j1n—2lbpe < C1Y_e mo™ 1y
= j=1

> 1
< Cre 0 Y e TNy, ;= C1Csbyplle” 270" ||), = Csllen|s
Jj=1

and then

H,
sup 7" oenlk < 00
neEN Hean

Hy is well-defined and continuous by Proposition 2.2. Since s does not depend on k, Hy
is compact provided that K (b, ) is Montel. O

Proposition 3.12 gives us the following result:

Theorem 3.13. Let A1(B) be a nuclear power series spaces of finite type. Assume that
there exist A, B > 0 such that
Bn < Aa,, + B (3.14)

for all n € N. For every 6 € (A1(«)), the Hankel operator Hy : Ai(a) — A1(B) is
well-defined, continous and compact.

Proof. Let assume that there exist A, B > 0 satisfying 38, < Aa, + B for all n € N. Then

for all m € N we write B

1 5, < 1 n
mA"" = m* T A
for all n € N. If we choose an s € N satisfying s > mA, then there exists a C > 0 such
that ) )
e—ﬁan S Ce—;ﬂn
for every n € N. Then (3.13) is satisfied. Furthermore we have
—La, —1p
supe m e k' < 400
neN
for every m,k € N, then = A1 (pB) for every m € N. Proposition 3.12 says that
Hy : A1(a) — A1(B) is well-defined, continuous and compact for every 6 € (A1(«))’. O

3.2. S-tameness of the family of Hankel operators

A grading on a Fréchet space E consists of a sequence of seminorms {|| - ||, }nen that are
increasing, which means that for every x € E, the inequalities ||z]|; < ||z]2 < |lz|3 < ...
hold. This sequence also determines the topology of the space. Every Fréchet space can
be given a grading, and a graded Fréchet space is simply a Fréchet space equipped with
such a grading. In this paper, we will assume that all Fréchet spaces discussed are graded.

A pair of graded Fréchet spaces (F, F) is said to be tame if there exists an increasing
function ¢ : N — N such that for any continuous linear operator T : £ — F', there exists
an N € N and C > 0 satisfying || Tz[|, < C||x[ s, for all z € £ and n > N. A Fréchet
space F is considered tame if the pair (E, E) is tame. The concept of tameness provides
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a way to control the continuity of operators. Dubinsky and Vogt introduced the tame
Fréchet spaces in [2] and used it to identify a basis in complemented subspaces of certain
infinite-dimensional power series spaces.

The author focused specifically on a subset of operators rather than considering all
operators defined on a Fréchet space and gave the definition of the S-tameness in [3] as
follows:

Definition 3.14. Let S : N — N be a non-decreasing function. A family of linear
continuous operators A C L(E, F) is called S-tame if for every operator 7' € A there exist
ko € N and C > 0 such that

1Tk < Clla]lsk) Vo € E k> k.

We would like to note that if a family A of linear, continuous operators is S;-tame and
Si(n) < Sz(n) for sufficiently large n € N, then it is obvious that the family A is also
So-tame.

The author characterized the S-tameness of a family of operators defined by Toeplitz
matrices between power series spaces in [3]. Here, we will discuss the S-tameness of a
family of operators defined by Hankel matrices between power series spaces.

Firstly we want to emphasize that a family of compact operators is I-compact where
I : N — N is the identity. Let us assume that A is a family of compact operators from
K(agy) to K(bgy). Then for every T' € A, there exists a m € N such that for all & > m
there exists a C' > 0 such that

[Tzl < Cllzflm < Cllzlx

for all z € K(ay). This means that the family A is I-tame.
Now we want to address the I-tameness of the family of operators defined by Hankel
matrices between power series spaces.

1. Hyp: Aoo(@) = Axo(B) is compact for every 6 € Ax(5) by Theorem 3.5. Then the
family
A={Hp: Aoo(a) = Axc(B) | 0 € Axc(B)}

is I-tame.
2. Hp : AMi(a) = Ax(B) is compact for every 3, a satisfying the condition (3.6) by
Theorem 3.8. Then, the family

B ={Hp: Ai() = Ass(B) | 0 € Ass(B)}

is I-tame.
3. Hyp: Asc(a) = A1(B) is compact for every a and stable [ satisfying the condition
(3.11) by Theorem 3.11. Then, the family

C={Hp: Aos(a) = A1 (B) [ 0 € Mi(B)}

is I-tame.

4. Hy : Ai(a) = Aq(f) is compact for every [3, a satisfying the condition (3.14) and
0 € (A1(«))" provided that A;(3) is a nuclear power series space of finite type by
Theorem 3.13. Then, the family

D ={Hp: A(a) = A1(B) | 0 € (A1())'}

is I-tame.
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4. The interactions of Toeplitz and Hankel operators with shift operators

In section 3, a Hankel operator Hp : K(a, ) — K (b, ), which we associated with a
Hankel matrix

O 01 02 03
01 02 03 04
Oy 03 04 05

Os 64 05 66
corresponding to a sequence 6 = (6,,)nen, was defined as

)
Heen = (enfla Qn, 9n+1> s ) = Z 0j+nf2ej
7j=1

for all n € N. We discussed the necessary conditions for such an operator to be well-defined
between power series spaces in section 3.

Similarly, in [3], a Toeplitz operator Ty : K (ank) — K(b,) whose associate matrix is
a lower triangular Toeplitz matrix

6 0 0 O
01 6 0 O
0y 61 6 O

03 02 01 6o

corresponding to a sequence 6 = (6,,)nen, was defined as
oo
Taen = (07 o 707 90701> 927 o ) = Z Hj—nej
j=n

for all n € N. In [3], the following theorems were given.

Theorem 4.1 ([3], Theorem 3.3). Let K(an) be a Kithe space, A1(B) be a power series
space of finite type and assume that 6 be a sequence and sy = min{t : 6, # 0}. Ty -
K(an) — Ai(B) is well-defined and continuous if and only if 6 € A1(5) and the following
condition holds:

VkeN 3ImeN,C>0 e 150 < Capm Vn € N. (4.1)

Theorem 4.2 ([3], Theorem 3.6). Let 3 = (8n),cy be a stable sequence. Ty : K(ank) —
Ao () is well-defined and continuous if and only if 0 € Ao (B) and the following condition
holds:

VEeN 3ImeN,C>0 e < Canm Vn € N. (4.2)

As a direct consequence of these theorems, we can write the following corollary:

Corollary 4.3. Let o be a stable sequence and 0 € A.(a), r € {1,00}. Then the operator
Ty : Ar(a) = Ar(a), r € 1,00 is well-defined and continuous.

In [3], you can find the conditions for the compactness and tameness of the operators fg,
as well as the results obtained regarding operators Ty defined by upper triangular Toeplitz
matrices.

In this section, some properties of the shift operators defined between power series
spaces will be discussed using the Hankel and Toeplitz operators.

The backward shift operator is defined as

B:A(a) = Ar(a),  B(0) = (0n+1)nen,
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and the forward shift operator is defined as
F: AT-(OJ) — Ar(a), F(@) = (Qn—l)neN
where we assume that _, = 0 for all n € N and here r € {1,00}. These operators are

well-defined and continuous in the case that « is a weakly-stable exponent sequence, that

o

is, limsup —% < co. We recommend [6] for more detailed information about the shift
neN 79

operators on Kothe spaces.

We will proceed assuming that the sequence « is stable, but in some cases, this as-
sumption is not necessary. We have the following relation operators B and F' with Ty and

Hy
F™(0) = (0, -+ ,0,00,01,0,---) = Ty(ens1) (4.3)
and
B"(0) = (6n-1,6n, Ont1,- -+ ) = Hplent1) (4.4)
for n € N.

Definition 4.4. Let T be a continuous linear operator on a Fréchet space E. The n-th
Cesaro mean is
w1y
T .= — .
~ 2
m=1
T is said to be mean ergodic if the limits lim,, o T["]az, r € F, exists in E. T is said to

be Cesaro bounded if the family {T1" : n € N} is an equicontinuous subset of L(E).

If £ be a Montel Fréchet space, then T is mean ergodic if and only if T" is Cesaro
bounded and lim,, s %T”x = 0 for every x € E by Theorem 2.5 of [6].
By using equations 4.3 and 4.4, we have that

1 & 1 &K~
. [n] s 1 m s 1
A, FO) = Jim 0 D FT0) =l o D, Tolemsa)
—hmf(nle)—T@—o
and
lim BM(9) = lim ! z”: B™(0) = lim 1 z”: Hy(em+1)
n—00 n—oo n = n—oo n, =
. 1
= n]groloH9< Z nem> = Hy(0)=0

m=1
for all @ € A,.(a), r = 1,00. This means that F' and B are mean ergodic and hence F' and
B are Cesaro bounded for all § € A,.(a), r = 1, 0.

Proposition 4.5. Let a be a stable, increasing sequence tending to infinity. Forward shift
operator F and Backward shift operator B defined on A,(a), r = 1,00 are mean ergodic
and Cesdro bounded.

We again recommend [6] for the mean ergodicity of weighted shift operators on Kothe
spaces.
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