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ABSTRACT This study explores the realm of chaotic dynamics, Neurochaos Learning (a brain-inspired machine learning
paradigm) and Normal numbers, focusing on the introduction of a novel chaotic trajectory termed the Universal Orbit. The
study investigates the characteristics and generation of universal orbits within two prominent chaotic maps: the Decimal
Shift Map and the Gauss Map. It explores the set of points capable of forming such orbits, revealing connections with
normal numbers and continued fractions. Points within the interval (0, 1) can produce universal orbits under specific
conditions, highlighting the intricate relationship between machine learning, chaotic dynamics and number theory. While
not all points forming universal orbits are normal numbers, the trajectory of a normal number may represent a universal
orbit (under certain conditions). When employing the universal orbit for feature extraction in Neurochaos Learning, the
firing time feature can be interpreted by establishing an upper bound and examining its trend. Future research aims to
identify sets of points producing universal orbits under various chaotic maps, intending to enhance the performance of
algorithms like the Neurochaos Learning algorithm. This study contributes to advancing our understanding of chaotic
systems and their applications in artificial intelligence.
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INTRODUCTION

The emergence of data accessibility and the increase in process-
ing capacity, along with the introduction of innovative learning
techniques, have resulted in significant advancements in several
scientific fields. Nevertheless, the concept of computers acquiring
abstract concepts, similar to how humans do, has been around
since the 1950s with the development of the first neural net-
works (Badillo et al. 2020). The recently developed Neurochaos
Learning architectures (Harikrishnan and Nagaraj 2019; Balakrish-
nan et al. 2019) for data classification are based on the concept of
chaos that has been empirically found within the brain at several
spatiotemporal scales (Faure and Korn 2001; Korn and Faure 2003;
Khona and Fiete 2022) and seem to play a role in learning of sym-
bols, and to represent thoughts, perceptions, and memory (Tsuda
2015).
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Neurochaos learning (or NL) differs from traditional machine
learning by integrating chaos and noise, inspired by the chaotic
firing of neurons and the constructive role of noise in neuronal
models (via Stochastic Resonance (Harikrishnan and Nagaraj 2021),
to enable peak performance in classification tasks. NL and its
variants have now been demonstrated to exhibit state-of-the-art
performance for classification tasks across several datasets (Balakr-
ishnan et al. 2019; Harikrishnan and Nagaraj 2020; Sethi et al. 2023;
Harikrishnan et al. 2022). NL has three hyperparameters which
need to be tuned and this can take a significant amount of time
and computational resources, in order to optimise them for very
high accuracies/F1-scores. What has been missing in literature is
a deep investigation into the nature of chaotic orbits that enable
NL to learn efficiently and demystify its surprisingly peak per-
formance. In order to fill this gap, this study undertakes such an
investigation.

Chaos is introduced in the Neurochaos Learning architecture
by utilising the 1-dimensional chaotic skew tent map which is a
type of Generalized Lüroth Series (GLS). A dynamic system f is
said to be chaotic if periodic points are dense, f is transitive and f
exhibits sensitive dependence on initial conditions (Devaney 2018).
Dynamical systems have a rich and notable history within mathe-
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matics. Mathematical models can be categorised as deterministic
or stochastic. A process that consistently produces the same result
when repeated identically is referred to as deterministic. Stochastic
processes produce varying results with repetition. Numerous de-
terministic systems display irregular, random-like behaviour (Bau
et al. 2002). These systems are considered chaotic if they satisfy
the three properties (dense periodic points, topological transitivity
and sensitive dependence on initial conditions).

American meteorologist E. N. Lorenz discovered that simple dif-
ferential equations might display chaotic behaviour while utilising
a basic digital computer. Lorenz noted that his basic meteorologi-
cal model, now known as the Lorenz system, displayed significant
dependency on initial conditions. For him, this indicated that long-
term weather prediction was nearly impossible and highlighted the
significance of chaos theory in other scientific disciplines (Devaney
2018). Characteristics of a chaotic system include non-periodic
behavior (along with periodic and quasi-periodic behaviours), sen-
sitivity to initial conditions, chaotic motion is difficult or impossi-
ble to forecast, motion looks random and non-linear (Biswas et al.
2018).

One of the main properties of an orbit generated by a chaotic
map f (x), represented as {x0, f (x0), f 2(x0), . . .}, is its sensitive
dependence on initial condition x0 (Alligood et al. 1998). Decimal
Shift Map (Strogatz 2018), Gauss Map (Corless 1992), Logistic
Map (Alligood et al. 1998) are a few examples of 1-dimensional
chaotic maps. Predicting the long-term behaviour of a chaotic
system is not possible owing to the sensitive dependence of the
chaotic system on its initial conditions (the same reason why long
term prediction of weather is impossible). Deterministic chaos is
crucial for the typical operation of the brain across various levels
of activity. The brain is designed to maintain a consistent and
manageable level of internal noise, which is mostly stable, though
not completely so. Disorderly behaviour in brain facilitates quick
changes in state that are crucial for processing information (Skarda
and Freeman 1990).

In Neurochaos Learning architecture (Harikrishnan and Na-
garaj 2019), the original input features of datasets are transformed
and extracted using the neural trace generated by the skew tent
map with an initial point q. Upon receiving a trigger xij (the in-
put data value also known as stimulus), the chaotic map initiates
firing and generates a neural trace {q, f (q), f 2(q), . . .}. The firing
will cease whenever the chaotic trajectory (trace) reaches a pre-
defined epsilon neighbourhood of the input stimulus xij. Sup-
pose (x11, x12, . . . x1n), (x21, x22, . . . x2n) . . . (xm1, xm2, . . . xmn) be
the dataset with m samples and n features. The NL algorithm
considers each xij as the stimulus. Hence corresponding to each
xij, we obtain a chaotic neural trace from which features are ex-
tracted for further processing and classification.

The initial neural activity (q) is one of the hyperparameters
that is tuned while training/cross-validation. This tuning is done
using grid-search and typically requires a significant amount of
computing time to arrive at the best q that yields the maximum
F1-score. If we can identify an initial trigger q (using mathemat-
ical insights and theoretical considerations) that can generate a
chaotic neural trace, which approaches any given stimulus within
a certain number of iterations, then we can skip the cumbersome
and computationally intensive training of q. This study aims to
find such initial triggers for the chaotic maps - Decimal Shift Map
(a type of GLS map) and the Gauss Map. Gauss map will also
act as a shift map for continued fractions. Thus, the ideas and
methods developed in this study act as a stepping stone towards
finding an initial trigger for a chaotic neural trace that improves

the performance of Neurochaos Learning algorithm.
More than a century ago, Emile Borel developed the notion of

normality (Émile Borel 1909), which formalised the most funda-
mental type of randomness for real numbers (Bailey and Crandall
2001). When you toss a coin a huge number of times, around half
of the tosses will result in heads and the other half in tails. Similar
claims concerning the digits in the expansion of a real number are
made by normality. Numerous concerns remain unanswered, like
whether π (Bailey et al. 2012), e, or

√
2 are all normal as well as

Borel’s conjecture that the irrational algebraic numbers are abso-
lutely normal in any base (Borel 1950; Copeland and Erdös 1946).
We will also examine the relationship between chaotic dynamics
and normal numbers.

This work presents a novel and distinct chaotic orbit called the
Universal Orbit, which has the ability to approach the immediate
vicinity of any given stimulus (initial value). This research aims to
analyse the initial triggers that can produce a universal orbit under
the Decimal Shift map (Strogatz 2018) and Gauss map (Corless
1992), focusing specifically on normal numbers and normal contin-
ued fractions (Adler et al. 1981). We will also examine the specific
characteristics of the firing time feature by using the Decimal Shift
Map’s universal orbit for feature extraction in the Neurochaos
Learning Algorithm. This will allow us to determine the maxi-
mum firing time in proportion to the amounts of noise present
around the stimulus.

UNIVERSAL ORBIT

Chaotic orbits, a hallmark of nonlinear dynamical systems (De-
vaney 2018), are trajectories that exhibit extreme sensitivity
to initial conditions, leading to complex and unpredictable
behavior. A fundamental property of these systems is topological
transitivity (Alligood et al. 1998), which ensures that trajectories
are densely interwoven, allowing any region of the phase space to
be reached from any other. Within this context, the concept of a
universal orbit emerges as a novel and significant idea, illustrating
the pervasive reach of chaotic behavior. Universal orbits represent
trajectories that can come arbitrarily close to any other orbit within
the system, showcasing an extraordinary level of interconnected-
ness. The subsequent definition formalises this innovative concept:

Definition 1. Let f : X → X be a chaotic map, where X is a metric
space with metric d. An orbit of the map f with an initial point x∗ ∈ X,
S∗ = { f (0)(x∗) = x∗, f (1)(x∗) = f (x∗), f (2)(x∗) = f ( f (x∗)), . . .}
is said to be universal orbit if for any orbit with an initial point xi ∈ X
and ϵ > 0, there exist m and n such that d( f (m)(x∗), f (n)(xi)) ≤ ϵ. In
short, the orbit of x∗ is considered as a universal orbit if for any given
ϵ > 0 the orbit of x∗ reach the ϵ neighbourhood of xi in a finite number
of iterations.

Throughout this study, we are defining chaotic maps (Decimal
Shift Map and Gauss Map) on the metric space ((0, 1), d) where
d(s, t) = ∑∞

i=1
|si−ti |

10i ,s = 0.s1s2s3 . . . , t = 0.t1t2 · · · ∈ (0, 1) (De-
vaney 2018).

Lemma 1. Let s = 0.s1s2s3 . . . , t = 0.t1t2 · · · ∈ ((0, 1), d). If s ̸= t
but si = ti for i = 1, 2 . . . n. Then d(s, t) ≤ 1/10n.

Proof. For i = 1, 2, . . . , n, si = ti,thus

d(s, t) =
∞

∑
i=n+1

|si − ti|
10i .
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But |si − ti| ≤ 9. Thus, d(s, t) ≤ 9
10n+1 + 9

10n+2 + . . . = 9( 1
10n+1 +

1
10n+2 . . . ) = 9

10n+1 (1 + 1
10 + 1

102 + . . . ) = 1
10n . Hence proved.

UNIVERSAL ORBIT UNDER DECIMAL SHIFT MAP

Theorem 1. Let ((0, 1), d) be the metric space and f : [0, 1] → [0, 1]
be the decimal shift map (Strogatz 2018) defined by f (x) = 10x(mod 1)
where x(mod 1) ≡ x − ⌊x⌋. ⌊x⌋ is the largest integer less than or equal
to x. The orbit generated by f with an initial point x∗ is said to be
universal if and only if its decimal expansion satisfies the property that
given any natural number n should occur atleast once in the decimal
expansion of x∗.

Proof. Assume that x∗ ∈ (0, 1) has a decimal expansion 0.a0a1a2 . . .
such that given any k digit natural number n = r1r2 . . . rk, there
exist an index l such that al+1al+2 . . . al+k = r1r2 . . . rk. Let y =
0.b0b1b2 . . . ∈ (0, 1). In order to show that the orbit generated by
x∗ is universal, it is enough to show that given any ϵ > 0, the orbit
of x∗ will reach the ϵ neighbourhood of orbit of y.
Given ϵ > 0. Choose a k such that 1

10k < ϵ. Since any given natural
number belongs to the decimal expansion of x∗, there exist an
index m such that am = b0, am+1 = b1, am+2 = b2, . . . , am+k = bk.
i.e, f (m)(x∗) = 0.b0b1 . . . bkam+k+1am+k+2 . . ..Hence,

d( f (m)(x∗), y) <
1

10k < ϵ.

Thus the orbit of x∗ under the decimal shift map is universal.
Now assume to the contrary that the initial point x∗ ∈ (0, 1) has a
decimal expansion 0.a0a1a2 . . . that doesn’t contain the string n =
r1r2 . . . rm i.e there doesn’t exist any i such that ai+1ai+2 . . . ai+m =
r1r2 . . . rm. We have to show that the orbit of x∗ under decimal
shift map is not a universal orbit.
Let y∗ = 0.r1r2 . . . rmr1r2 . . . rm . . .. Clearly y∗ ∈ (0, 1).
Suppose 0 < ϵ < 1

102m . Consider an arbitrary element in the orbit
of y∗,

f (k)(y∗) = 0.riri+1 . . . rmr1r2 . . . rm . . . .

Similarly, consider an element in the orbit of x∗,

f (k
′)(x∗) = 0.aj1 aj2 aj3 . . . .

But by our assumption on initial point x∗, there doesn’t exist an s
such that
ajs = r1, ajs+1 = r2, . . . , ajs+m = rm. Thus, the following are the
possible decimal expansions of f (k

′)(x∗) :
Case (i) :

f (k
′)(x∗) = 0.aj1 aj2 aj3 . . . where aj1 ̸= ri.

Then clearly,d( f (k)(x∗), f (k
′)(y∗)) > 1

102m .
Case (ii) :

f (k
′)(x∗) = 0.aj1 aj2 aj3 . . . where aj1 = ri.

In this case, the decimal expansion of f (k
′)(x∗) closest to f (k)(y∗)

is 0.riri+1 . . . rmr1 . . . rm−1am . . . , where ri ̸= r1 and am ̸= rm.
Then

d( f (k)(x∗), f (k
′)(y∗)) =

1
102m−1−i .

Hence for any k, k′,

d( f (k)(x∗), f (k
′)(y∗)) >

1
102m .

i.e,
d( f (k)(x∗), f (k

′)(y∗)) > ϵ.

for any 0 < ϵ < 1
102m . Thus the orbit generated by x∗ without the

string n = r1r2 . . . rm is not universal.

The Theorem 1 provides a characterization of the points
within the interval (0, 1) that can form a universal orbit
when subjected to the decimal shift map. For example,
consider x∗ = 0.12345678910111213.... The number x∗ is
constructed by concatenating all the successive natural num-
bers together. The orbit of x∗ under decimal shift map
is {0.123456789 . . . , 0.234567891011 . . . , 0.3456789101112 . . . , . . .}.
Hence, by Theorem 1,the orbit of x∗ under decimal shift map is
universal. The orbit generated by decimal shift map after 50 itera-
tions with initial point q as Champernowne’s Constant (truncated
upto the number 100) is shown in Figure 1.

Figure 1 Orbit(first 50 iterations) under decimal shift map with
initial value set to the truncated Champernowne’s constant q =
0.1234567 . . . 99100.

There are also other points in (0, 1) that can generate universal
orbit. Another such example is x′ = 0.11121314151617181920 . . ..
x′ is obtained by concatenating successive natural numbers
from 11. x′ also contains the natural numbers from 0 to
9 along with other natural numbers. Hence x′ can create
universal orbit.Similarly, any kth element in the orbit of x∗,
f (k)(x∗), can generate universal orbit. Other examples are
0.24681012141618 . . .(obtained by concatenating even numbers),
0.100200300400500600700 . . .(obtained by concatenating the
multiples of 100).

Remark 1. The points in (0, 1) that generate universal orbit under
decimal shift maps are irrational numbers. Their decimal expansion is
non terminating and non recurring.

Remark 2. The decimal expansion of a rational number is either termi-
nating or periodic. Thus the orbit generated by rational numbers are not
chaotic and universal.

Remark 3. The orbit generated by an irrational number in (0, 1) need
not be a universal orbit under decimal shift map.

For example, consider the orbit of y∗ = 0.12112111211112 . . ..
Clearly y∗ is an irrational number. But given a natural number
n = 3456789 doesn’t occur in the decimal expansion of y∗. Hence
by Theorem 1, the orbit of y∗ under decimal shift map,

S∗ = {0.121121112 . . . , 0.21121112 . . . , 0.1121112 . . . , . . .},
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is not a universal orbit.
Next, our objective is to determine the properties of the set of

points that can produce a universal orbit under the decimal shift
map. We shall prove that the set is both uncountable and dense in
the interval (0,1).

Theorem 2. The set of points in (0, 1) that generate universal orbit
under decimal shift map is uncountable.

Proof. Let S ⊂ (0, 1) be the set of all points whose orbit under
decimal shift map f is universal. We need to prove that the set S
is uncountable. Assume to the contrary that S is countable. Let
S = {0.r11r12r13 . . . , 0.r21r22r23 . . . , 0.r31r32r33 . . . , . . . } Consider

x0 = 0.1 r12 2 r24 3 r36 . . .

where r12 ̸= r12 , r24 ̸= r24 , r36 ̸= r36 ,. . . . Clearly, x0 /∈ S. Since x0
is constructed in such a way that its decimal expansion contains all
natural numbers, by Theorem 1, the orbit of x0 under the decimal
shift map is universal and x0 /∈ S. This contradicts our assumption
that S is countable. Hence, S is uncountable.

Theorem 3. The set of points in (0,1) that generate universal orbit under
decimal shift map is dense in (0,1).

Proof. Let S be the set of points in (0,1) that generate universal
orbit. Let a, b ∈ (0, 1) where a < b. We will show that there exist
an element c ∈ S such that a < c < b.
Choose a k such that 1

10k < b−a
2 . Now choose a rational number

0.q1 . . . qk ∈ (a, a+b
2 ). Consider c = 0.q1 . . . qk123 . . .(c is obtained

by concatenating natural numbers to 0.q1 . . . qk). By Theorem 1,
c can generate a universal orbit. Thus, c ∈ S. Now it remains to
prove c ∈ (a, b).
We have a < 0.q1 . . . qk < 0.q1 . . . qk123456789101112 . . .. That is,
a < c. Hence, it is enough to prove c < b.
Clearly, 0.q1q2 . . . qk1234567891011 . . . < 0.q1q2 . . . qk999999999 . . ..

0.q1q2 . . . qk9999 . . . < 0.q1q2 . . . qk +
9

10k+1 +
9

10k+2 + . . .

= 0.q1q2 . . . qk +
9

10k+1 (1 +
1
10

+ . . .)

= 0.q1q2 . . . qk +
9

10k+1 (
10
9
)

= 0.q1q2 . . . qk +
1

10k

<
a + b

2
+

b − a
2

< b

Thus,

0.q1q2 . . . qk1234567891011 . . . < 0.q1q2 . . . qk99999999 . . . < b

.
That is, c < b. Hence proved.

Remark 4. The set of all irrational numbers in (0,1) is dense in (0,1).
The set S, which is a subset of irrational numbers in (0,1), is also dense
in (0,1).

Universal orbit with normal numbers as initial triggers
In this section we will look for the universal orbits under decimal
shift maps with normal numbers as initial point.

Definition 2. (Khoshnevisan 2006) and (Champernowne 1933) Let
b ≥ 2 be a positive integer. A real number α is normal in base b if
for every k ≥ 1 we have fc1c2 ...ck (α, b) = 1

bk , where fc1c2 ...ck (α, b) is the
frequency of the string c1c2 . . . ck of length k appearing in the decimal
expansion of α in base b. Let α = ⌊α⌋+ {α} where ⌊α⌋ is the integer
part and {α} is the fractional part of α denoted by 0.a0a1a2 . . . an . . .
Then we can define the frequency as follows:

fc1c2 ...ck (α, b) = lim
n→∞

#{i ≤ n − k + 1 : ai = c1, ai+1 = c2, . . . , ai+k−1 = ck}
n

In other words, a normal number in base b, contains every
possible combination of digits, but each combination occurs with
equal likelihood to other combinations of that length. The numbers
0.1234567891011. . . (Champernowne number (Champernowne
1933), 0.2357111317. . . (Copeland-Erdos constant (Fan 1946)
obtained by concatenating prime numbers) etc are all examples of
normal numbers.

Theorem 4. Numbers that generate universal orbit under decimal shift
maps need not be normal.

Proof. Consider (0,1) with the metric d(s, t) = ∑∞
i=1

|si−ti |
10i .

Let S be the set of all numbers in (0,1) that generate
universal orbit under decimal shift map. Consider t =
0.001002000300004 . . . 000 . . . 00︸ ︷︷ ︸

Ntimes

N . . .. The orbit of t, T is

{0.0010020003 . . . , 0.010020003 . . . , 0.10020003 . . . , 0.0020003 . . . , . . . }

First we have to show that T is a universal orbit.
By the construction of t, any given natural number will occur in
the decimal expansion of t. Hence by Theorem 1, the orbit T is
universal and t ∈ S.
Now need to show t is not a normal number. By the
definition of normal number, every possible combination of
digits should occur with same frequency. Consider t′ =
0.0010020003 . . . 000 . . . 00︸ ︷︷ ︸

(10N−1)times

999 . . . 99︸ ︷︷ ︸
Ntimes

, which has the decimal ex-

pansion of t upto the number 10N − 1 = 999 . . . 99︸ ︷︷ ︸
Ntimes

.

Here t′ is constructed by concatenating numbers from 0 to
999 . . . 99︸ ︷︷ ︸

Ntimes

and zeroes are added in between them such that one

zero before the digit 1, two zeroes before the digit 2, . . . , 10N − 1
zeroes before the digit 999 . . . 99︸ ︷︷ ︸

Ntimes

.

The number of occurrences of a digit i (where i = 0, 1, 2, . . . , 9) in
the string

0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 999 . . . 99︸ ︷︷ ︸
Ntimes

is given by N10N−1(Pomstra 2018). Hence the number of occur-
rences of digit i ̸= 0 in the decimal expansion of t′ is given by
N10N−1. But the number of occurrences of 0 in the decimal expan-

sion of t′ is given by N10N−1 + (10N−1)10N

2 . Thus,

f0(t′, 10) =
N10N−1 + (10N−1)10N

2

10N10N−1 + (10N−1)10N

2
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fi(t′, 10) =
N10N−1

(10N−1)10N

2

where i ̸= 0 As N → ∞ the decimal expansion of t′ tends to t.
Therefore,

f0(t, 10) = lim
N→∞

(N × 10N−1) + (10N−1)10N

2

10N10N−1 + (10N−1)10N

2

fi(t, 10) = lim
N→∞

(N × 10N−1)

10N10N−1 + (10N−1)10N

2

Now consider

f0(t, 10)
fi(t, 10)

= lim
N→∞

(N × 10N−1) + (10N−1)10N

2
(N × 10N−1)

= lim
N→∞

1 +
(10N−1)10N

2
(N × 10N−1)

> 1 + lim
N→∞

(10N − 1)10N

2N × 10N−1

= 1 + lim
N→∞

5(10N − 1)
N

> 1

f0(t, 10) > fi(t, 10) where i=1,2,. . . 9.

By applying L’Hôpital’s rule, lim
N→∞

5(10N−1)
N = ∞. Thus t is not a

normal number but an element in S.

Conjecture 1. The orbit of a normal number under decimal shift map is
universal.

UNIVERSAL ORBIT UNDER GAUSS MAP

In the previous section we have discussed about Decimal Shift Map
and its universal orbit. The Decimal Shift map shifts the digits
of the decimal representation to the left.Now our aim is to study
about the universal orbit generated by Gauss map (Continued
Fraction Map) (Dajani and Kraaikamp 2002; Corless 1992).

The Gauss map G : [0, 1) → [0, 1) is defined as follows:

G(x) = 0 i f x = 0

=
1
x

mod 1 i f 0 < x ≤ 1

The Gauss map is an excellent example of a chaotic discrete dy-
namical system. There is a significant relationship between the
Gauss map and continued fractions. An expression of the form

a0 +
b0

a1 +
b1

a2 +
b2

a3 + · · ·

(1)

is called a continued fraction. In general, the numbers
a0, a1, a2, a3, . . . , b0, b1, b2, . . . may be any real or complex numbers
and the number of terms may be finite or infinite (Olds 1963). A
simple continued fraction is of the form

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

(2)

where ai are all positive integers except a0, which may be zero or
negative (Corless 1992). We will denote equation 2 as

[a0; a1, a2, . . . , an, . . .] (3)

The kth convergent of a continued fraction (Dajani and Kraaikamp
2002) [a0; a1, a2, . . . , an, . . .] is given as follows :

a0 +
1

a1 +
1

a2 +
1

a3 +
. . . +

1
ak

= [a0; a1, a2, . . . , ak] (4)

Continued Fraction (CF) expansion corresponding to x ∈ (0, 1)
is represented as [0; a1, a2, . . .], where ai ≥ 1. Since Gauss map is
defined on [0, 1), in this section we are focusing on Simple Con-
tinued Fractions. All rational numbers admit finite continued
fraction expansion while every irrational number x ∈ (0, 1) can be
expressed through a (unique) infinite continued fraction (Dajani
and Kraaikamp 2002).
The Gauss map acts on the digits of the CF expansion as the
one-sided shift. i.e, G(x) = [0; a2, a3, . . .], G2(x) = [0; a3, a4, . . .],
G3(x) = [0; a4, a5, . . .], . . . (Bates et al. 2005).
Now we will try to characterise points in (0, 1) that can generate a
universal orbit under Gauss Map. Table 1 shows that as the coeffi-
cients in continued fraction become same, their decimal expansion
will also converge.

■ Table 1 Continued Fraction expansions and their decimal
expansion

Continued Fraction Decimal Expansion

[0; 1, 2] 0.6666666666666667

[0; 1, 2, 3] 0.7

[0; 1, 2, 3, 4] 0.6976744186046512

[0; 1, 2, 3, 4, 5] 0.6977777777777778

[0; 1, 2, 3, 4, 5, 6] 0.6977745872218234

[0; 1, 2, 3, 4, 5, 6, 7] 0.6977746591820369

[0; 1, 2, 3, 4, 5, 6, 7, 8] 0.6977746579475622

[0; 1, 2, 3, 4, 5, 6, 7, 8, 9] 0.6977746579641866

Lemma 2. Let a = [0; a1, a2, . . .] ∈ (0, 1) and ck = [0; a1, a2, . . . , ak]
be the kth convergent of a. Then given any n ∈ N, there exist a N such
that ∀r ≥ N the first n digits of decimal expansions of cr and cr+m are
same,where m > 0.

Proof. Let cr+m = [0; a1, a2, . . . , ar+m] and cr = [0; a1, a2, . . . , ar] be
the r + mth and rth convergents of a. Let 0 < ϵ < 1

10n+1 .Since
lim
r→∞

cr = a, there exist N such that for r ≥ N,|cr − a| < ϵ
2 . Then,
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by triangular inequality,

|cr − cr+m| = |cr − a + a − cr+m|
≤ |cr − a|+ |a − cr+m|

<
ϵ

2
+

ϵ

2
= ϵ

<
1

10n+1 .

Thus the the first n digits of decimal expansions of cr and cr−1 are
same ∀r ≥ N.

Next theorem provides a characterization of the continued
fraction representation of points in the interval (0,1) that can
construct a universal orbit under the Gauss Map.

Theorem 5. Let f : (0, 1) → (0, 1) be the Gauss map on ((0, 1), d)
.Then the orbit of x∗ = [0; x1, x2, . . .] ∈ (0, 1) under f is universal if and
only if continued fraction expansion of x∗ contains the finite continued
fraction expansion of any given rational number in (0, 1).

Proof. Let x∗ ∈ (0, 1) have a continued fraction expansion
[0; x1, x2, . . .] that contains the continued fraction expansion of
any given rational number in (0, 1). Now to prove the orbit of x∗

is universal. Let y ∈ (0, 1) have a continued fraction expansion
[0; a1, a2 . . .]. Given ϵ > 0 and n ∈ N such that 1

10n < ϵ. By Lemma
2, Choose a sufficiently large r such that decimal expansion of the
convergents of f (k)(y) = [0; ak, ak+1, . . .]: cr−1, cr, cr+1 have first n
decimal places as same. i.e,

cr−1 = [0; ak, ak+1 . . . ak+(r−1)] = 0.d1d2 . . . dnd′n+1 . . . d′l ,

cr = [0; ak, ak+1 . . . ak+(r)] = 0.d1d2 . . . dnd′′n+1 . . . d′′p ,

cr+1 = [0; ak, ak+r+1 . . . ak+(r+1)] = 0.d1d2 . . . dnd′′′n+1 . . . d′′′q .

Thus,
f (k)(y) = 0.d1d2 . . . dndn+1 . . .

Now, by the construction of x∗, there exist a k′ such that f (k
′)(x∗) =

[0; ak, ak+1, . . . ak+(r−1), xi, xi+1, . . .]. Since cr−1, cr, cr+1 are also the

convergents continued fraction of f (k
′)(x∗),

f (k
′)(x∗) = 0.d1d2 . . . dnd∗n+1d∗n+2 . . .

Now by Lemma 1,

d( f (k)(y), f (k
′)(x∗)) <

1
10n < ϵ.

Thus, the orbit of x∗ is universal.
Now to prove the converse part by contradiction. Suppose
that continued fraction of x∗ = [0; x1, x2, . . .] doesn’t contain
the sequence b1, b2 . . . br i.e, there doesn’t exist an index i such
that xi = b1, xi+1 = b2, . . . , xi+r = br. Consider y =
[0; b1, b2, . . . , br, b1, b2, . . . , br, . . .]. Clearly y ∈ (0, 1). Thus,
the longest common pattern that can be there in the contin-
ued fraction of y and x∗ is b2, b3, . . . , br, b1, . . . , br−1. Then
there exist a point in the orbit of x∗ such that f (n

∗)(x∗) =
[0; b2, b3, . . . , br, b1, . . . , br−1, xi, . . .] where xi ̸= br. Also f (y) =
[0; b2, b3, . . . , br, b1, . . . , br−1, br, b1 . . .]. Thus there exist ϵ > 0 such
that d( f (y), f (n

∗)(x∗)) > ϵ. Hence, the orbit of x∗ is not univer-
sal.

The continued fraction expansion obtained by concatenating
the continued fraction of 1

2 , 1
3 , 2

3 , . . ., [0; 2, 3, 1, 2, 4, 2, 1, 3, . . .]
is normal with respect to continued fraction partition (Adler
et al. 1981) and can also generate universal orbit with respect
to Gauss Map by Theorem 5. The continued fraction expan-
sion of 1

2 is [0; 2], 1
3 is [0; 3], 2

3 is [0; 1, 2], 1
4 is [0; 4], 2

4 is
[0; 2] . . .. Thus, by concatenating the continued fraction of 1

2 ,
1
3 , 2

3 . . ., 8
10 , 9

10 , we get q = [0; 2, 3, 1, 2, 4, 2, 1, 3, . . . , 1, 4, 1, 9].
The decimal expansion of q = [0; 2, 3, 1, 2, 4, 2, 1, 3, . . . , 1, 4, 1, 9]
is 0.4403388262519711 (approximately). Figure 2 shows the
orbit generated by Gauss Map with this initial point q =
0.4403388262519711.

Figure 2 Orbit (first 50 iterations) under Gauss map
with initial value q having continued fraction expansion
[0; 2, 3, 1, 2, 4, 2, 1, 3, . . . , 1, 4, 1, 9], constructed by concatenating
the continued fraction of 1

2 , 1
3 , 2

3 . . . , 8
10 , 9

10 .

In 1770, Lagrange proved that any quadratic irrational x ∈ (0, 1)
has a continued fraction expansion which is periodic after a certain
stage, i.e, x = [0; a0, a1, . . . , ai, n1, n2, . . . , nk, n1, n2, . . . , nk, n1, . . .].
Hence by Theorem 5 the orbit of a quadratic irrational is not univer-
sal under Gauss Map and is not continued fraction normal (Becher
and Yuhjtman 2019).

Remark 5. Quadratic Irrationals in (0, 1) will not generate universal
orbits under Gauss Map.

Remark 6. Rational numbers will not generate universal orbit under
Gauss Map or Decimal Shift map.

Remark 7. The points that generate universal orbit under decimal shift
map may or may not be universal under Gauss Map.

Consider the Champernowne’s number c =
0.1234567891011 . . .. By Theorem 1, the orbit of c under
decimal shift map is universal. But the continued fraction
expansion of c = [0; c1, c2, c3 . . .] is as follows : [0;8,9,1,149083,. . . ].
Not only is the fourth term of the continued fraction of the
Champernowne constant huge, but there are also other terms that
are similarly significant in magnitude (Pomstra 2018). Table 2
illustrates this. c18 has 166 digits and c40 has 2504 digits (Pomstra
2018). Therefore, it is uncertain whether any given finite continued
fraction will appear in the continued fraction expansion of
the Champernowne Constant. Hence by Theorem 5, the orbit
generated by c may or may not be universal with respect to Gauss
Map.
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■ Table 2 The initial 40 terms of the continued fraction expan-
sion of the Champernowne constant.

n cn n cn n cn

1 8 15 1 29 1

2 9 16 1 30 7

3 1 17 15 31 2

4 149083 18 457. . . 987 32 1

5 1 19 6 33 83

6 1 20 1 34 1

7 1 21 1 35 156

8 4 22 21 36 4

9 1 23 1 37 58

10 1 24 9 38 8

11 1 25 1 39 54

12 3 26 1 40 44. . . 23

13 4 27 2

14 1 28 3

NEUROCHAOS LEARNING AND UNIVERSAL ORBITS

In the realm of Neurochaos Learning (Harikrishnan and Nagaraj
2019; Balakrishnan et al. 2019), the quest for efficient feature extrac-
tion and classification has led to the development of innovative
algorithms. One such breakthrough is the concept of Universal
Orbits, which has the potential to revolutionize the field. In this
section, we delve into the connection between universal orbits and
Neurochaos Learning, exploring the possibilities of harnessing
chaotic maps to uncover hidden patterns in data.

In the Neurochaos Learning algorithm (Harikrishnan and Na-
garaj 2019), chaotic orbits generated by the skew tent map are
employed for feature extraction in classification tasks. The number
of chaotic neurons in the input layer corresponds to the number
of input attributes in the dataset. When the input attributes are
received, each neuron begins firing independently with an initial
neural activity of q units. The neural trace of these chaotic neu-
rons stops once the stimulus is recognized. From this neural trace,
features such as firing time, firing rate, energy, and entropy are
extracted. This discussion will particularly examine the unique
characteristics of the firing time feature when using the universal
orbit generated by the Decimal Shift Map for feature extraction.

Firing Time and noise level around stimulus
The objective of this section is to examine the link between firing
time of Universal Orbit and the level of noise present surrounding
the stimulus in the context of Neurochaos Learning.

Let f be a decimal shift map on the metric space ((0, 1), d). The
number of iterations taken by the decimal shift map f : (0, 1) →
(0, 1) with an initial point q to reach any given ϵ neighbourhood of
a point x in (0,1) is called the firing time (Harikrishnan and Nagaraj
2019) corresponding to x, denoted by n(ϵ). Here, ϵ is the level of
noise around the stimulus x and q is the initial neural activity.

Consider the initial point for decimal shift map as
q = 0.q0q1q2q3 . . .
and x = 0.a1a2 . . . ∈ (0, 1). Let ϵ, ϵ′ > 0
and ϵ < ϵ′. Suppose the orbit generated by q,
{0.q0q1q2q3 . . . , 0.q1q2q3q4 . . . , 0.q2q3q4q5 . . . , . . .}, is a univer-
sal orbit. Then, by Theorem 1, there exists an index n1 in the
decimal expansion of q such that qn1 qn1+1 . . . qn1+k = a0a1 . . . ak(k
depends on the value of ϵ). So f takes n1 iterations to reach the
ϵ neighbourhood of f (0)(x) = x with initial point q i.e, the nth

1
element in the orbit of q is f (n1)(q) = 0.a0a1a2 . . . akqk+1qk+2 . . .. i.e,
d( f (n1)(q), f (0)(x)) < ϵ and hence the firing time corresponding
to ϵ, n(ϵ) = n1. Since ϵ < ϵ′,

d( f (n1)(x), f (0)(x)) < ϵ < ϵ′,

d( f (n1)(x), f (0)(x)) < ϵ′.

That is, f can reach the ϵ′ neighbourhood of x either with n1 or
less than n1 iterations. Thus, the number of iterations taken by the
orbit of q to reach the ϵ′ neighbourhood of x is less than or equal
to that of ϵ. i.e, n(ϵ′) ≤ n(ϵ). As the noise(ϵ) around x decreases,
firing time increases.

Firing time with Champernowne constant as initial neural activity
In this section, we will consider the Champernowne Constant
as initial neural activity, q = 0.123456789101112 . . . for the orbit
generated by the decimal shift map. Note that Champernowne
number is obtained by concatenating natural numbers in order.
Thus by Theorem 1, it is a universal orbit.

Suppose the stimulus is x = 0.a1a2 . . . as and the level of noise
is ϵ > 0. Since the orbit under q is universal there exists a least
integer m such that d( f (m)(q), x) < ϵ. Thus, m is the firing time
corresponding to x. Here, our aim is to find an upper bound for
firing time, m.

Prior to that, we must establish the following lemma regarding
the count of digits preceding a particular natural number in the
decimal representation of the Champernowne number.

Lemma 3. Let c = 0.1 2 3 4 5 6 7 8 9 10 11 . . . N(N + 1)(N + 2) . . .
be the Champernowne constant and cN = 0.1234567891011 . . . (N −
2)(N − 1) be the truncated portion of c, where N = a1a2 . . . ad, d ≥ 2.
Then the number of digits after the decimal point in cN is given by

dN − (10 + 102 + . . . + 10d−1)− 1. (5)

In other words, the number N will occur in the decimal expansion of c
after dN − (10 + 102 + . . . + 10d−1)− 1 digits from the decimal point.

Proof. We proceed using mathematical induction.
Let P(N) be the mathematical statement.
P(N) : The number of digits after the decimal point in cN is given
by ,where N = a1a2 . . . ad,d ≥ 2.

Base Case: Given that N should at least be a two-digit number as
d ≥ 2. Consider N = 10.We have c10 = 0.123456789. Then the
number of digits after the decimal point in c10, P(10) = 9.
Also by formula 5, P(10) = 2 × 10 − 10 − 1 = 9.
Thus, base case is verified.

Induction Hypothesis: Assume that P(K) is true for some positive
integer K > 10. That means the number of digits after the decimal
point in cK is given by

dK − (10 + 102 + . . . + 10d−1)− 1,
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where K = a1a2 . . . ad,d ≥ 2.

Induction Step: We will now show that P(K + 1) is true.
Consider the following cases :

Case(i) K is a d digit number and K ̸= 999 . . . 99︸ ︷︷ ︸
d times

Then K + 1 will always have d digits. That is, we have to prove :

P(K + 1) = d(K + 1)− (10 + 102 + . . . + 10d−1)− 1.

We have P(K + 1) is the number of digits after the decimal point
in cK+1 = 0.12345678910 . . . (K − 1)K.
By our assumption, the number of digits upto K − 1 in cK+1 is
dK − (10 + 102 + . . . + 10d−1)− 1. Now K has d digits. Therefore

P(K + 1) = dK − (10 + 102 + . . . + 10d−1)− 1 + d

= d(K + 1)− (10 + 102 + . . . + 10d−1)− 1.

Hence, proved.

Case(ii) K = 999 . . . 99︸ ︷︷ ︸
d times

Then K + 1 = 10d, which has (d+1) digits. That is, we have to
prove :

P(K + 1) = (d + 1)(K + 1)− (10 + 102 + . . . + 10d)− 1.

By our assumption, the number of digits upto K − 1 in cK+1 is
dK − (10 + 102 + . . . + 10d−1)− 1. Now K has d digits. There-
fore, the number of digits after the decimal point in cK+1 =
0.12345678910 . . . (K − 1)K(K + 1),

P(K + 1) = dK − (10 + 102 + . . . + 10d−1)− 1 + d

= dK − (10 + 102 + . . . + 10d−1)− 1 + d + 10d − 10d

(Adding and subtracting 10d)

= dK + 10d − (10 + 102 + . . . + 10d−1 + 10d)− 1 + d

= d(K + 1) + 10d − (10 + 102 + . . . + 10d−1 + 10d)− 1

= d(K + 1) + (K + 1)− (10 + 102 + . . . + 10d−1 + 10d)− 1

(Since, K + 1 = 10d)

= (d + 1)(K + 1)− (10 + 102 + . . . + 10d−1 + 10d)− 1.

Hence proved.

Remark 8. If d = 1,that is, if N is a one-digit number, the number of
digits before N in c is given by N − 1.

Now we can use the above lemma to find an upper bound for
the firing time,m, corresponding to a stimulus x = a1a2 . . . as with
respect to the universal orbit generated by Champernowne con-
stant c = 0.12345678910 . . ..Let ϵ > 0 be the level of noise around
stimulus. Choose a positive integer d > 1 (d ≤ s, number of digits
in x) such that 1

10d < ϵ. Let N = a1a2 . . . ad.
Thus, by Lemma 3 the number N will occur in the decimal ex-
pansion of q after m∗ = dN − (10 + 102 + . . . + 10d−1)− 1 digits.
i.e,

f (m
∗)(q) = 0.N(N + 1)(N + 2) . . .

Since x = 0.a1a2 . . . as, N = a1a2 . . . ad and k ≤ s

d( f (m
∗)(q), x) =

1
10d < ϵ.

Thus, the firing time, m ≤ m∗.
For example, let x = 0.316 and ϵ = 0.01. We have f (16)(q) =

0.31415161718192021 . . . and f (2×31−10−1)(q) = f (51)(q) =
0.31 32 33 34 . . .. Thus, the firing time is 16, which is less than
51.

In short, if we are considering Champernowne’s constant as
initial point for the orbit generated by decimal shift map,then the
orbit will surely reach any given neighbourhood of a stimulus
within m∗ iterations. Thus by employing universal orbits in Neu-
rochaos Learning algorithm, one of its extracted features, firing
time can be interpreted by setting an upperbound and analysing
its trend depending on the noise around stimulus.

CONCLUSION

In this study, we introduced a new type of chaotic trajectory known
as the Universal Orbit. We specifically examined the universal orbit
produced by two chaotic maps: the Decimal Shift Map and the
Gauss Map. Additionally, we discussed the set of points capable
of producing a universal orbit under these maps. This research
also investigated the chaotic orbit produced by normal numbers
under both the Gauss Map and Decimal Shift Map. We specifically
analysed the unique characteristics of the firing time feature when
the universal orbit generated by the decimal shift map is used for
feature extraction, aiming to establish an upper bound for firing
time in relation to noise levels surrounding the stimulus.

A point in the open interval (0,1) can form a universal orbit un-
der the decimal map if and only if its decimal expansion contains
all possible natural numbers. Similarly, a point in (0,1) can pro-
duce a universal orbit under the Gauss map only if its continued
fraction expansion includes any given finite continued fraction
expansion. We have demonstrated that the set of points in the
interval (0,1) that may produce a universal orbit under the decimal
shift map is both uncountable and densely distributed inside the
interval (0,1). Furthermore, the set of points in (0,1) that generate a
universal orbit under the decimal shift map is a proper subset of
the set of irrational numbers. Upon analysing the orbit produced
by normal numbers as starting triggers, it is evident that not all
points that form a universal orbit are themselves normal numbers.
However, we conjecture that the trajectory of a normal number
is a universal orbit under the decimal shift map. In conclusion,
our research reveals a remarkable connection between chaotic dy-
namics and number theory. When utilizing universal orbits in
Neurochaos Learning (a brain-inspired machine learning archi-
tecture), the firing time exhibits an inverse relationship with the
noise level surrounding the stimulus, remaining bounded within
a specific range determined by the noise intensity. This is a new
result which was unknown in the NL literature.

In the future, our intention is to identify the set of points that
produce a universal orbit under various chaotic maps. We will
then truncate these points and use them as starting triggers in
the Neurochaos Learning Algorithm to enhance its classification
performance.
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