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Abstract: This paper aims to develop a new multi-objective optimization algorithm for handling 

construction time-cost trade-off problems (TCTPs). An intelligent strategy called opposition-based learning 

(OBL) is incorporated into the Jaya algorithm,  resulting in the opposition-based Jaya Algorithm (OBJA). 

The proposed model introduces an innovative approach to opposition-based optimization by employing an 

iterative-based varying oppositional jumping rates. This adaptive strategy significantly contributes to 

increased population diversity and effective avoidance of local optima throughout both the initialization 

and generational phases of the optimization process. By systematically varying the opposition jumping rate, 

its impact on the algorithm's convergence speed, solution quality, and computational efficiency are 

evaluated. The experimental results demonstrate that an iterative-based varying opposition jumping rate 

significantly enhances OBJA's efficiency to explore and exploit the search space, leading to superior trade-

off solutions. Hence, computational experiments on 9 and 19 activity problems reveal that an iterative-

based varying opposition jumping rate result in high quality solution with reduced number of function 

evaluations. Furthermore, the OBJA model proved to be more successful than the non-dominated sorting 

GA (NSGA-II), multi-objective particle swarm optimzaiton (MOPSO), and plain Jaya algorithm for 

handling these complex TCTPs in construction project management. 

 

Keywords: Time-cost trade-off problem, Jaya algorithm, Opposition-based learning, Iterative-based 

varying opposition jumping rate. 

 

 

Sıçrama Oranının Ayrık Zaman Maliyeti Ödünleşim Optimizasyonu Problemleri için Karşıtlık 

Tabanlı JAYA Algoritması Üzerindeki Etkisi 

 

Öz: Bu makale, inşaat sektörünün zaman-maliyet ödünleşim problemlerini (ZMÖP) çözmek için yeni bir 

çok amaçlı optimizasyon modeli geliştirmeyi amaçlamaktadır. Jaya algoritmasına karşıt tabanlı öğrenme 

(OBL) adı verilen akıllı bir strateji eklenmiş ve sonuç olarak karşıt tabanlı Jaya Algoritması (OBJA) 

önerilmiştir. OBL, popülasyonun daha iyi başlatılması ve popülasyonun yerel optimuma düşmemesi için 

nesil sıçrama oranı uygulanmaktadır. Önerilen model, iteratif tabanlı değişken karşıtlık sıçrama oranlarını 

kullanarak karşıt tabanlı optimizasyona yenilikçi bir yaklaşım sunmaktadır. Bu uyarlamalı strateji, 

optimizasyon sürecinin hem başlatma hem de nesil aşamalarında popülasyon çeşitliliğini artırmaya ve yerel 

optimal noktalardan etkili bir şekilde kaçınmaya önemli ölçüde katkıda bulunmaktadır. Karşıt sıçrama oranı 

sistematik olarak değiştirilerek algoritmanın yakınsama hızı, çözüm kalitesi ve hesaplama verimliliği 

üzerindeki etkisi değerlendirilmiştir. Deneysel sonuçlar, iteratif tabanlı değişken karşıt sıçrama oranının, 

OBJA'nın arama alanını arama ve araştırma yeteneğini önemli ölçüde artırarak üstün dengeleme 

çözümlerine yol açtığını göstermektedir. Bu nedenle, 9 ve 19 aktivite problemine yönelik hesaplamalı 

deneyler, iteratif tabanlı değişken karşıt sıçrama oranının, daha az fonksiyon değerlendirmesi ile yüksek 

kaliteli çözümler elde edilmesine neden olduğunu ortaya koymaktadır. Ayrıca, OBJA algoritması, bu 

                                                           
PhD, Civil Engineering Department, Karadeniz Technical University, 61080 Trabzon, Türkiye 

Corresponding author (azim.eirgash@gmail.com) 

https://orcid.org/0000-0001-5399-115X


Eirgash M.A.: Inf. of Jump. R. On Opp-Bas. Jaya Alg. For Disc. Time Cost Tr-Off Opt. Prob. 

36 

karmaşık zaman-maliyet ödünleşim optimizasyon problemlerini yapı proje yönetiminde ele alırken NSGA-

II, MOPSO ve basit Jaya algoritmasından daha başarılı olduğunu kanıtlamıştır. 

 

Anahtar Kelimeler: Zaman-maliyet ödünleşim problemi, Jaya algoritması; Karşıt tabanlı öğrenme, iteratif 

tabanlı değişen karşıtlık sıçrama oranı. 

 

1. INTRODUCTION 

 

Multi-objective optimization problems involve finding solutions that balance trade-offs 

between multiple conflicting objectives. The solutions to the relevant problems are typically non-

unique and involve compromises. That means, the simultaneous optimization of trade-off 

construction projects is a tough task due to the contradictory nature of the objectives. In such 

problems, improving one aspect, such as reducing the cost, may negatively impact the others, 

such as increasing the time required or reducing the quality and vice versa (El-Rayes and Kandil, 

2005). Thus, the construction manager is expected to perform a trade-off analysis to identify 

alternatives that optimize the crucial objectives during the planning and scheduling of the project. 

Furthermore, the balance between project cost and project duration is a common problem in 

construction industry and is known as TCTPs. For instance, time is the matter of completing the 

project on schedule, cost is another critical factor and its control is essential for the success of the 

project (Panwar and Jha 2021). 

Upon the literature, it is clear that the solution to trade-off problems have been long lasting 

challenge to the researchers, despite the advancement of various optimization methods and 

strategies in other fields aimed at addressing these problems (Tran et al. 2018). Three different 

approaches are utilized to solve the trade-off problems.  

Initially, trade-off problems were addressed employing a combination of analytical and 

heuristic methods. However, the performance of activities requires the allocation of operational 

resources such as time and cost along with a variety of discrete alternatives (Vanhoucke and 

Debels, 2007). Heuristic algorithms, in contrast to mathematical approaches, are frequently 

applied to sophisticated trade-off problems because of their simplicity and less computational 

requirements. Nevertheless, the quality of the solutions generated by these algorithms is often 

uncertain. To overcome these shortcomings, meta-heuristic algorithms (MHAs) have emerged as 

the preferred methods to tackle the TCTPs more effectively (Panwar and Jha 2021). To evaluate 

the balance between project duration and project cost in construction project management, 

numerous research studies using different meta-heuristic techniques have been carried out. For 

instance, Zheng et al. (2004) introduced the genetic algorithm (GA) to efficiently manage TCTP, 

showcasing its advantages over earlier models proposed by Feng et al. (1997). 

Toğan and Eirgash (2019) introduced the teaching learning based modified adaptive wieght 

approach (TLBO-MAWA) model for optimization and evaluated its effectiveness on projects 

with 7, 18, and 63 activities. The model's performance was evaluated on projects with 7, 18, and 

63 activities, and the results consistently demonstrated its ability to generate high-quality 

solutions. One of the notable advantages of the teaching-learning-based optimization (TLBO) 

algorithm is its simplicity, which contributes to its ease of use and implementation. 

Eirgash et al. (2023) presented a new optimization algorithm called modified dynamic 

oppositional TLBO (MDOLTLBO), which incorporates a modified dynamic oppositional 

learning strategy with plain TLBO. This algorithm was applied to solve generalized TCTP 

problems with varying complexities, ranging from 29 to 290 activities. The empirical results 

demonstrated that MDOLTLBO outperformed both the dynamic oppositional TLBO 

(DOLTLBO) and plain TLBO algorithms, highlighting its effectiveness in tackling TCTP 

problems. Pham et al. (2024) proposed a new optimization algorithm called improved multi-verse 

optimizer (iMVO) for solving TCTP problems in construction projects. This algorithm links 

multi-verse optimizer with OBL strategy. The effectiveness of iMVO was evaluated on projects 

with different numbers of activities, ranging from 18 to 290. The results showed that iMVO 
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outperformed previous algorithms in finding high-quality solutions while also being 

computationally efficient, making it a promising approach for solving TCTP problems. 

The application of metaheuristic algorithms to tackle TCTPs has gained significant interest 

in recent years, offering a promising avenue for more effective problem-solving. These 

algorithms, including Genetic algorithm (GA, Deb et al. 2002), TLBO (Rao et al., 2011), and 

Arithmetic optimization algorithm (AOA, Abualigah et al., 2021) which offer suitable solutions 

for detecting the complex search space. Metaheuristics provide a more flexible approach to 

solving complicated optimization problems, particularly when dealing with real-world 

construction projects. 

One such algorithm is the Jaya algorithm, which is a metaheuristic optimization technique 

presented by (Rao, 2016), employs a population-based approach to search for optimal solutions. 

The Jaya algorithm, despite its simplicity, is a remarkably effective optimization technique 

capable of addressing both constrained and unconstrained optimization problems (Rao, 2016). 

However, Jaya's performance can be further enhanced by incorporating additional mechanisms to 

improve its convergence speed and solution quality. 

The Jaya algorithm has been broadly utilized across numerous domains, such as engineering 

design optimization, manufacturing process optimization, and scheduling problems, owing to its 

simplicity and efficiency in identifying optimal or near-optimal solutions. Notable applications 

include structural engineering optimization problems (Sheikholeslami et al., 2017), solving multi-

objective engineering design tasks (Kaveh & Dadras, 2017), and manufacturing system 

optimization (Bhoi et al., 2019). Its versatility makes it a preferred method in both academic 

research and industrial practices.  

Meta-heuristic algorithms are frequently integrated with optimization methods like modified 

adaptive weight approach (MAWA) and non-dominated sorting (NDS) to improve the outcomes 

of optimization problems in various domains. MAWA, a traditional approach, combines multiple 

objective functions into a single one by assigning specific weights to each objective. Nevertheless, 

its effectiveness diminishes, especially in complex or large-scale problems, as it struggles to 

efficiently explore the global optimum. To overcome this shortfall, the more robust and efficient 

NDS approach has become increasingly popular (Deb et al., 2002). 

In above-mentioned studies, the generation of the initial population relies purely on 

randomness. The design variables are then evaluated as per their fitness value and proceed to the 

next iteration phases. However, due to the random distribution, even individuals with low fitness 

contribute to the computation, which slows down the process and is undesirable. In contrast, 

beginning the evolution with high-fitness individuals can accelerate the search for the optimal 

solution and improve the convergence rate of the algorithms, as noted by (Mahdavi, 2018). To 

perform this process, strategies like opposite-based learning (OBL) have been proposed 

(Tizhoosh, 2005). OBL strategically evaluates both the candidate solution and its opposite, 

recognizing that the opposite solution is presumably nearer to the global optimum compared to a 

solution produced randomly (Rahnamayan et al., 2007). Motivated by the aforementioned 

advantages of the OBL, the present study aims to improve the efficiency of solving TCTPs by 

refining the plain Jaya algorithm. This enhanced approach incorporates an iterative-based varying 

opposition jumping rate and merges opposition numbers with the Jaya algorithm. By introducing 

the opposition jumping rate, the algorithm prevents premature convergence to local optima and 

ensuring a more accurate detection of the search space. As a result, it promotes faster convergence 

and greater accuracy in locating global optima, particularly in challenging optimization problems. 

The primary objective of this study is to fill the current gap in solving multi-objective TCTPs 

by presenting an optimization algorithm named the opposition-based Jaya Algorithm (OBJA). 

This algorithm intends to obtain Pareto front solutions with lower NFE values for solving 9 and 

19 activity projects. The proposed OBJA algorithm's performance is evaluated against several 

algorithms available in the literature, including plain Jaya, multi-objective particle swarm 

optimization (MOPSO, Agarwal et al. 2024), and NSGA-II (Kumar et al. 2024). The experimental 
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results imply that the suggested OBJA algorithm surpasses the comparison algorithms evaluating 

the scheduling calculations needed. Table 1 summarizes the previous records related to TCTP 

problems with the year of the relevant problems. 

Table 1. An overview of recent trade-off problems application 
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The highlights of this study are summarized as follows: 

1. OBJA is suggested by augmenting plain Jaya with an iterative-based varying opposition 

jumping rate to effectively expand the search space. 

2. The efficiency of the suggested OBJA is evaluated using 9 and 19 activity construction 

engineering projects.  

3. The project's total duration and its corresponding objectives are obtained using the critical 

path method (CPM).  

4. Number of function evaluations (NFE) is taken into account to evaluate the effectiveness 

of OBJA against plain Jaya, MOPSO, and NSGA-II algorithms. 

The demonstration of this study begins with a presentation of the fundamental formulations 

for time-cost optimization. Afterward, the opposition jumping rate phase of opposition-based 

learning technique along with attributes of the employed plain Jaya-based optimizers to solve the 

TCTP for construction projects is described. To show the efficiency of oppositional Jaya in 

solving the example problems, construction engineering TCTPs are then evaluated, and 

eventually, numerical results and conclusions are provided with comparisons. 

Time Cost Quality Trade-off Problems (TCQTs) 

Time Cost Trade-off Problems (TCTPs) 

Time Cost Environmental Impacts Trade-off Problems (TCETs) 

Time-Cost Quality Environmental Impacts Trade-off Problems (TCQETs) 

Ghoddousi et al. 2013 Elbeltagi et al. 2016 

Albayrak, 2020 

Mahdavi and Mousavi, 2022 

Sheikh, Kumar, 2020 Eirgash et al., 2022 

Ozcan-Deniz et al., 2012 Tiwari et al, 2020 

 

Tran & Tarigan, 2022 

Zheng, 2016 Banihashemi and Khalilzadeh, 2020 

Banihashemi et al., 2020 

 

Aminbakhsh and Sonmez, 2016 

Eirgash et al., 2023 

Eirgash et al., 2023 Bettemir and Yücel , 2023 

 Agarwal et al, 2024 Kumar et al.,  2024 

Huynh et al., 2020 

 

Eirgash and Toğan, 2024 

https://www.emerald.com/insight/search?q=Pouyan%20Mahdavi-Roshan
https://www.emerald.com/insight/search?q=Seyed%20Meysam%20Mousavi
https://www.emerald.com/insight/search?q=Duc-Hoc%20Tran
https://www.emerald.com/insight/search?q=Putri%20Basenda%20Tarigan
https://www.emerald.com/insight/search?q=Sayyid%20Ali%20Banihashemi
https://www.emerald.com/insight/search?q=Sayyid%20Ali%20Banihashemi
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2. MATERIALS AND METHODS 

2.1. Time Cost Trade-off Problems (TCTP) 

The trade-off optimization process in construction projects seeks to optimize both project 

duration and project cost while identifying the optimal solutions that are applicable to all project 

activities. 

2.2. Mathematical formulation for TCTP problems 

The minimum total project duration can be expressed as follows in Eq. (1): 

Project completion time = 
A

A CP

PCT ACT


                    (1) 

Where: 

 PCT is the activity completion time (ACT) in the critical path 

 ACTA is the completion time of the critical path activity (A) 

 Critical Path (CP) 

 

The minimum project cost can be expressed as follows in Eq. (2): 

Project completion cost = . .
A

PCC D C I C per day PCT indays            (2) 

+ Where: 

 PCC is the total individual activity completion cost (ACC) of the project 

 ACC includes direct and indirect costs of an activity 

 D.C. is direct costs (including labor, materials, and equipment costs) 

 I.C is indirect cost (including overhead and losses)  

 .
A

D C  total direct costs of individual project activities 

2.3. Jaya Optimization Algorithm 

The Jaya is a straightforward but powerful optimization algorithm suggested by (Rao, 2016). 

The algorithm's name "Jaya" comes from a Sanskrit word meaning "victory" emphasizing the 

algorithm's objective to always move towards the optimal solution without needing algorithm-

specific parameters like crossover or mutation rates used in other evolutionary algorithms. Key 

characteristics of applied algorithm as follow: 

1. Parameter-free: The Jaya algorithm does not require specific algorithmic parameters such 

as crossover rates or mutation probabilities. 

2. Population-based: It uses a population of solutions to detect the search space. 

3. Guided by best and worst solutions: In each iteration of the Jaya algorithm, solutions are 

updated to be closer to the best solution and farther from the worst solution in the current 

population. 

 

Steps of the Jaya Algorithm 

 

1. Initialization: Randomly create an initial set of potential solutions to start the optimization 

process. 

2. Evaluation: Calculate the objective function value for each candidate solution to 

determine its fitness. 

3. Update Solutions: 
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• For each candidate solution, solutions are updated to be closer to the best solution 

and farther from the worst solution within the current population. 

• Use the following update formula 

, , 1 , , 2 , ,
*( ) *( )

new

i j i j best j i j worst j i jX X r X X r X X      (3) 

where Xi,j  is the j-th dimension of the i-th candidate solution, Xbest,j is the j-th dimension of 

the best solution, Xworst,j is the j-th dimension of the worst solution, and r1and r2 take random 

values between 0 and 1. Xbest,j represents the best solution found so far in the population. The 

purpose of Xbest is to guide the search process toward better solutions. Xworst,j represents the worst 

solution in the current population. The aim of Xworst is to keep solutions away from poor-

performing areas in the search space. 

4. Selection: Evaluate the new solution against the current one and retain the more favorable 

solution. 

5. Termination: Continue to repeat steps 2-4 until a stopping criterion is satisfied. 

2.4. Oppsition-Based Learning (OBL) for Optimization 

Opposition-based learning (OBL, Tizhoosh, 2005) is a type of machine learning technique 

that aims to accelerate the search process by considering not only the current solution but also its 

opposite. The principle behind OBL is that the opposite solution often lies in a different region of 

the search space, potentially leading to faster exploration and discovery of new, promising areas. 
OBL promotes a wider exploration of the search space by considering alternative solutions, 

thereby decreasing the chance of converging to suboptimal solutions. The opposite number in the 

D-dimensional space is depicted in Figure 1: Let us assume X= (X1, X2… XD) represents a point 

in an n-dimensional space, where X1, X2 ...XD ∈ [aj, bj], and it is expressed as follows: 

 

𝑋𝑗
𝑜 = 𝑎𝑗 + 𝑏𝑗 − 𝑋𝑗,      𝑗 = 1, ⋯ , 𝐷    (4) 

 

 

 

 

 

 

Figure 1: 

The original OBL scheme (1D space) 

 

2.4.1. Opposition Based Jumping Rate 

When the jumping condition Jr is met, the current population is substituted with its opposite 

solutions. The Jr value was set at 0.3 by Rahnamayan et al. (2007), the Jr for OBJA algorithm is 

not set at 0.3. Furthermore, experimental records show that a fixed Jr diminishes overall 

performance; to put it simply, a higher Jr value can accelerate convergence to the optimal solution 

while preserving diverse population (Zhao et al., 2013). Thus, it is beneficial to employ to use a 

gradually increasing varying opposition Jr as the iterations progress. i.e., Rand () ≤ − ( t / T ) 2 + 

2 ( t / T). 
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2.4.2. Using the OBJA to Optimize TCTP Project 

This section offers an overview of the OBJA optimizer. The Jaya serves as the core 

optimization technique within the time-cost optimization model. The NDS approach is employed 

to choose the top-performing solutions from the combined population. The flowchart illustrating 

the OBJA algorithm is depicted in Figure 2. 
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Figure 2: 

The overall process of the suggested algorithm (OBJA) 

 

3. NUMERICAL SIMULATIONS APPLICATION 

This study considers the distinct trade-off problems of 9 and 19 activity construction projects. 

More specifically, 9 and 19 activity projects are solved considering time-cost trade-off (TCTP) 

alternatives with basic FS relationships. The OBJA algorithm was developed using MATLAB 

(R2024b) and tested on a computer with an Intel (R) Core (TM) i3 CPU operating at 2.40 GHz 

and 3GB of RAM. The number of iteration is used as the termination condition. 

3.1 Empirical example of 9 acitivity project 
 

The project consists of 9 activities, each of which can be executed in one of three modes with 

a total f 39 distinct methods to complete the project. The project is a real case study of highway 
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construction project in Indian context. Table 2 provides a detailed breakdown of each activity, 

including immediate predecessor, execution modes, activity durations, and costs. Selecting the 

optimal combination is crucial to meeting project objectives. Furthermore, the project’s indirect 

costs, which represent overheads, are set at 50.000 INR per day, accumulating throughout the 

project duration. 

 

Table 2. Options for 9 activity project with three modes 

Description Opt 1 Opt 2 Opt 3 

Act.  Predecessor Act. T C T C T C 

1 - 6 4543455 8 3994833 10 3745356 

2 1 8 489638 10 582245 12 678364 

3 2 6 318934 8 415534 9 464321 

4 3 26 1501323 30 1682498 35 1923492 

5 4 7 482578 10 615853 12 704678 

6 5 4 445678 5 475963 8 604568 

7 6 5 573940 6 596298 9 718364 

8 7 8 23528474 10 22097743 13 19784335 

9 8 5 3773844 7 3615342 9 3415836 

 

The performance of OBJA has been evaluated against NSGA-II (Kumar et al., 2024) and the 

plain Jaya on a 9 activity project, with the simulation outcomes shown in Table 3. OBJA explored 

1530 possible schedules (calculated as 30×50+30=1530), which represents only a small portion 

of the overall search space compared to the comparision algorithm. The lower NFE values 

demonstrate the performance of the suggested algorithm.  

 

Table 3. Pareto-front solutions for 9 activity TCTPs 

Sr. No 

Kumar et al. (2024) (This study) 

NSGA-II Plain Jaya OBJA 

PCT PCC PCT PCC PCT PCC 

1 79 35821424 79 34073511 79 33678511 

2 82 31365103 82 31775103 82 31365103 

3 84 33904393 75 35657864 84 31115626 

4 85 33938863 80 32313725 79 33678511 

5 86 35863278 82 31365103 86 30957124 

6 87 31321566 77 34612133 80 30757618 

7 88 33736718 88 31197618 88 31197618 

8 89 33554321 77 34612133 77 34227133 

9 90 33792950 80 32313725 80 31913725 

10 91 32366209 75 36032864 75 35657864                    

NOP 100 40 30 

NOI  150 50 50 

NFE 15000 2000 1500 

Note: PCT – Project completion time,  PCC – Project completion cost, 

NOP – Number of populations,  NOI – Number of iterations 

The visual representation of the Pareto optimal solutions of the comparison algorithms for 9 

activity project is demonstrated in Figure 3. It is obvious that the OBJA algorithm provides better 

Pareto-optimal solutions than NSGA-II and plain Jaya.  
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The selected option and the solution sorted by project cost for the 9 activity are provided in 

Table 4. In particular, solution 2 illustrates a more favorable choice if the project manager gives 

higher priority to the project schedule. 

 

Table 4. Option chosen and solution sorted by project duration and cost for 9 activity  

Pareto-front 

solutions 
PCT  PCC 

Resource allocation for the associated activity. 

1 2 3 4 5 6 7 8 9 

1 86 30957124 3 1 1 1 1 1 1 3 3 

2 75 35657864                    1 1 1 1 1 1 1 1 1 

 

 
 

Figure 3: 

Pareto front solutions of the comparison algorithms for 9 activity project 

 

According to figure 3, the OBJA optimizer ensures more optimal project duraion and cost 

values compared to the NSGA-II and the NFE is 1/10th (1500/15000) of the search effort used in 

NSGA-II algorithm. Morover, 0.076 indicates the exact ratio of the schedule evaluation/search 

domain. That means, it indicates the flexibility and superiority of the algorithm utilized in the 

study. This indicates that incorporating the iterative-based varying opposition jumping rate 

strategy with Jaya algorithm significantly enhances the quality of the solutions produced. 

 

3.2 Empirical example of 19 activity project  

The 19 activity project is taken from Agarwal et al. (2024). The case study conducted on a 

construction project in Delhi, India, illustrates the practical application. and each activity involves 

three alternative execution methods associated with different resource requirements, durations, 

and costs. Table 5 provides the initial project time (T) and cost (C) values for each option and 

activity before construction. Given the 319 potential combinations of task execution methods, a 

new optimization algorithm is essential for determining the optimal solutions. The OBJA-based 

scheduling model is employed to obtain Pareto front solutions during the scheduling phase of this 

particular project. 

 

Optimum 2 

Optimum 1 
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Table 5. Options for 19 activity project with three modes 

Description Opt 1 Opt 2 Opt 3 

Act. 

No 

Predecessor 

Activity 
T C T C T C 

1 - 3 1326324 5 1032641 8 923634 

2 1 5 1026756 9 914737 9 849627 

3 1 14 118404 15 107573 15 103734 

4 2, 3 10 1626972 13 1472345 14 1391235 

5 1 16 1026756 19 962438 20 923593 

6 3, 5 13 117144 14 102312 14 101231 

7 5 10 1626972 14 1531267 16 1492451 

8 4, 6 7 118404 8 109212 14 92101 

9 7, 8 5 1200036 9 1026384 14 885738 

10 9 6 1626972 8 1512438 9 1442733 

11 9 9 759780 11 683412 12 652846 

12 10, 11 20 815964 25 753578 25 713580 

13 10, 11 4 180744 5 162358 8 136489 

14 12 12 783984 13 732678 15 697896 

15 13 18 180744 20 114678 20 101569 

16 13, 14 10 783984 12 735675 20 634568 

17 16 8 180744 9 163848 12 136385 

18 15, 16 11 674952 13 643782 13 618904 

19 17, 18 4 66060 5 63321 6 61456 

 

The performance of OBJA has been evaluated against MOPSO (Agarwal et al., 2024) and 

the plan Jaya on a 19 activity project, with the simulation outcomes shown in Table 6. An iteration 

number of 50 and a population size of 40 are considered. Morover, 0.00000172 indicates the exact 

ratio of the schedule evaluation/search domain. OBJA explored 2040 possible schedules 

(calculated as 40×50+40=2040), which represents only a small portion of the overall search space 

compared to the other algorithms. The lower NFE values indicate the effectiveness of the OBJA 

algorithm. These findings suggest that incorporating the iterative-based varying opposition 

jumping rate strategy into the Jaya algorithm substantially improves the quality of the generated 

solutions. 

 

Table 6. Pareto front solutions of 19 activity TCTP problem (ICR = INR 0). 

Sr. No 

 Agarwal et al. (2024) (This study) 

MOPSO Plain Jaya OBJA 

PCT PCC PCT PCC PCT PCC 

1 124 13653118 108 13528648 108 13425485 

2 128 13440491 109 13329543 109 13289513 

3 130 13044162 110 13238207 110 13131802 

4 132 12976175 111 13054246 111 12995830   

5 133 12885800 113 12926509 113 12891009 

6 134 12858263 114 12858804 114 12859885 

7 136 12842530 119 12634927 115 12808579 

8 138 12801272 120 12608784 116 12782002 

9 139 12761554 147 12012051 119 12633846 

10 141 12539569 152 12009610 154 11965455 
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NOP 100 50 40 

NOI  200 50 50 

NFE 20000 2500 2000 

 

The visual depiction of the Pareto optimal solutions of the comparison algorithms for 19 

activity project is demonstrated in Figure 4. It is obvious that the OBJA with time varying 

opposition jumping rate algorithm provides the better Pareto-optimal solutions than MOPSO and 

plain Jaya.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: 

Pareto front solutions of the comparison algorithms for 19 activity project 

 

4. DISCUSSION 

The results demonstrate that the OBJA algorithm effectively finds optimal solutions for both 

a 9-activity highway construction project and a 19-activity project involving a three-story building 

in Delhi, India. In the case of the 9-activity highway project, OBJA achieves better project 

duration and cost values compared to NSGA-II, while requiring only one-tenth of the search effort 

(NFE of 1500 versus 15000 for NSGA-II). Additionally, the ratio of the schedule evaluation to 

the search domain is precisely 0.076. Likewise, in the 19-activity building project, OBJA explored 

2040 potential schedules (calculated as 40×50+40=2040), covering only a small fraction of the 

total search domain relative to other benchmark algorithms. This results in fewer objective 

function evaluations (NFE), demonstrating the computational efficiency of the OBJA algorithm. 

Overall, the comparison highlights OBJA's capability to achieve superior cost and time outcomes 

compared to MOPSO, NSGA-II, and plain Jaya. The effectiveness of OBJA is largely due to its 

iterative-based varying oppositional jumping rate strategy, which incorporates opposite solutions 

to broaden the search space and prevent the algorithm from getting trapped in suboptimal regions.  

 

5. CONCLUSION 

 

Time cost trade-off optimization problems (TCTPs) are essential in project management, 

allowing decision-makers to efficiently balance project duration with their related costs. These 

problems are inherently complex and combinatorial, especially in large-scale projects where 

numerous activities and modes must be accounted for simultaneously. This innovative multi-

objective optimization algorithm leverages the oppositional Jaya algorithm to enhance population 
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initialization, significantly improving diversity and generating high-quality candidate solutions 

with strong fitness while eliminating less fit solutions. Additionally, OBJA is applied during the 

generation jumping process to maintain a balance between diversity and convergence.  

The projects, comprising 9 and 19 activity construction project with multiple options for 

each, present a substantial scheduling challenge. Nevertheless, the OBJA optimizer effectively 

analyzes the various combinations of activity options, taking into account their durations and 

costs. Consequently, it identifies Pareto optimal solutions that reveal the equilibrium between 

project duration and project cost, offering decision-makers a wide range of viable options to 

consider.  

A comparison of the NFE is fulfilled to assess the performance of OBJA relative to plain 

Jaya. Moreover, OBJA demonstrated superior diversity, generated more satisfactory solutions, 

and outperformed multi-objective evolutionary algorithms like MOPSO, NSGA-II, and plain Jaya 

in terms of overall satisfaction. The iterative-based varrying opposition jumping rate strategy is 

responsible for the enhanced performance, which empowers OBJA to discover superior trade-off 

solutions.  

However, the use of OBJA has certain limitations that require attention. This study 

recognizes that the model’s applicability may be limited to specific contexts and suggests the need 

for broader validation across different types of infrastructure and geographic regions. Future 

studies should focus on expanding validation efforts through a range of diverse case studies. 
Furthermore, the paper suggests exploring alternative learning strategies (e.g., reinforcemenet 

learning) as a potential approach for solving highly complex TCTPs. 
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