
  

 

 

 

* Senior Research Scientist, Educational Testing Service, New Jersey-USA, mzhang@ets.org, ORCID ID: 0000-0003-2689-

2089 

** Principal Research Director, Educational Testing Service, New Jersey-USA, msjohnson@ets.org, ORCID ID: 0000-0003-

3157-4165 

*** Principal Research Data Analyst, Educational Testing Service, New Jersey-USA, cruan@ets.org, ORCID ID: 0009-

0009-3073-229X 

_______________________________________________________________________________________________________________ 

To cite this article: 
Zhang, M., Johnson, M. & Ruan , C. (2024). Investigating Sampling Impacts on an LLM-Based AI Scoring Approach: 
Prediction Accuracy and Fairness, Journal of Measurement and Evaluation in Education and Psychology, 15(Special issue), 
348-360. https://doi.org/10.21031/epod.1561580 
 

Received: 4.10.2024 
Accepted: 12.11.2024 

ISSN: 1309 – 6575 

Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 

Journal of Measurement and Evaluation in Education and Psychology  

2024; 15(Special issue); 348-360 

x 

 

 

 

Investigating Sampling Impacts on an LLM-Based AI Scoring 

Approach: Prediction Accuracy and Fairness 

 

Mo ZHANG*          Matthew JOHNSON** Chunyi RUAN*** 

 

Abstract 

AI scoring capabilities are commonly implemented in educational assessments as a supplement or replacement to 

human scoring, with significant interest in leveraging large language models for scoring. In order to use AI scoring 

capability responsibly, the AI scores should be accurate and fair. In this study, we explored one approach to 

potentially mitigate bias in AI scoring by using equal-allocation stratified sampling for AI model training. The 

data set included 13 open-ended short-response items in a K-12 state science assessment. Empirical results 

suggested that stratification did not improve or worsen fairness evaluations on the AI models. BERT based AI 

scoring models resulting from the stratified sampling method but trained on much less data performed comparably 

to models resulting from simple random sampling in terms of overall prediction accuracy and fairness on the 

subgroup level. Limitations and future research are also discussed. 

Keywords: AI scoring, educational assessment, large language model, sampling, prediction accuracy, fairness 

 

Introduction 

AI scoring capabilities are commonly implemented in educational assessments as a supplement or 

replacement to human scoring. For example, AI scoring has been used to score open-ended text 

responses in various content domains (e.g., math, reading, writing, science, speaking) and assessments 

with varying levels of scale and stakes, including PTE English, TOEFL iBT, GMAT, GRE, LSAT, and 

certification/licensure tests such as Praxis, as well as many K-12 state-level assessments (e.g., Kentucky 

Summative Assessment). The literature on AI scoring has grown substantially in the past 10 to 20 years. 

Bennett and Zhang (2016) considered AI (or automated) scoring as “machine grading of constructed 

responses that are generally not amenable to exact-matching approaches because the specific form(s) 

and/or content of the correct answer(s) are not known in advance.” An AI scoring algorithm is a 

computational procedure used in educational testing to predict or determine scores for test items or 

responses automatically. These algorithms typically use natural language processing and statistical or 

machine learning techniques to generate the predicted scores based on patterns or associations found in 

the data. 

In early examples of AI scoring such as automated essay scoring, the AI score is usually a weighted 

combination of a small set of well-defined linguistic features, such as grammatical accuracy, vocabulary 

sophistication, sentence structure, and so forth, and these features are carefully evaluated by content 

experts to closely align to and cover the construct of measurement. The scoring algorithms tend to be 

white-box or gray-box models such as decision trees, linear regressions, and k-means. For these earlier 

approaches to AI scoring, the features used in the model are construct-relevant, the weights given to 
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each feature can be extracted, and the reasoning from the features can be tracked. In this case, the scores 

are highly explainable and interpretable. 

As generative AI has surged in popularity and revolutionized various sectors in the society, interest has 

increased in leveraging large language models (LLMs) for scoring (Chamieh, Zesch, & Giebermann, 

2024; Lee, Latif, Wu, Liu, & Zhai, 2024; Lubis, Putri, et al., 2021; Kortemeyer, 2024; Oka, Kusumi, & 

Utsumi, 2024; Whitmer et al., 2021). Using LLMs for scoring is particularly relevant to assessing 

content and reasoning in areas in which traditional approaches have fallen short. Even though white- or 

gray-box models have great interpretability, their prediction accuracy is usually lower compared to 

black-box models such as transformer-based models (e.g., GPT, BART), deep learning, and neural 

networks (Ali, Abuhmed, El-Sappagh, et al., 2023; Kumar, Dikshit, & de Albuquerque, 2021). However, 

as models increase in complexity, interpretability diminishes substantially because millions of 

parameters are estimated to generate a score. For example, LlaMa 3.1 (released on 06/23/2024 by Meta 

AI) has 405 billion parameters. Although significantly smaller, the BERTBASE model (by Google AI) 

used in this study still has about 110 millions parameters. 

In order to use AI scoring capability responsibly, the scores and the scoring process should follow 

standards in educational testing. There are several entries in the testing standards jointly published by 

APA, AREA, and NCME that are specifically about AI scoring. For example, Standard 3.8 states that 

“(AI) scoring algorithms need to be reviewed for potential sources of bias. The precision of scores and 

validity of score interpretations resulting from automated scoring should be evaluated for all relevant 

subgroups of the intended population” (American Educational Research Association, American 

Psychological Association, & National Council on Measurement in Education, 2014). This standard 

highlights two core principles in responsible use of AI in educational assessment: AI scores should be 

accurate and AI scores should be fair. Most of published research to date on AI scoring using LLMs has 

emphasized prediction accuracy of the models with little discussion of fairness. In Johnson and Zhang 

(2024), the authors argued that the accuracy of AI is only one component of its responsible use in 

education and demonstrated that there may be inherent or implicit biases in LLMs that will lead to 

unfairness in AI scoring. In this study, we conducted an exploratory analysis to investigate whether 

choices of sampling methods can help mitigate biases in LLM-based AI models. 

 

Statement of Research Problem 

Experts from various disciplines have identified, examined, and discussed social, cultural, and gender 

biases present in pretrained LLMs; see Ayoub et al. (2024); Ma, Scheible, Wang, and Veeramachaneni 

(2023); Manvi, Khanna, Burke, Lobell, and Ermon (2024); Navigli, Conia, and Ross (2023); Bai, Wang, 

Sucholutsky, and Griffiths (2024), and Caton and Haas (2024), to name a few. Inherent biases in LLM 

models are deeply rooted in the data used for their training. These models absorb, internalize, and 

propagate any biases and stereotypes present in their training data sets, thereby making this issue rather 

complex. In their recent work, Johnson and Zhang (2024) found that GPT-4o can predict the 

racial/ethnic group membership of a writer of an essay response better than GPT-4o can score using a 

zero-shot approach. In order to improve prediction accuracy, a common practice is to fine-tune 

pretrained LLMs for downstream tasks. The fine-tuning process involves a selection of a pretrained 

model, preparation of the data, (iterative) model training, and evaluation of operational deployment in 

which preprocessing of the data is a critical step. Chu, Wang, and Zhang (2024) summarized four stages 

in the AI model development process that can be adjusted to mitigate inherent bias: (a) preprocessing, 

(b) in-training, (c) intraprocessing, and (d) postprocessing (in which the authors suggested “data 

augmentation” as one way to mitigate bias in the preprocessing stage). The goal of data augmentation 

is to ensure a balanced representation of training data across various subgroups (social, cultural, gender, 

age, religion, etc.) in the target population. In the field of machine learning, data augmentation, 

artificially increasing the size of a data set by applying transformations to the train data (Chhabra, Singla, 

& Mohapatra, 2022), is a common technique. In image recognition and computer vision, transformation 

techniques include rotating, flipping, or changing the contrast or brightness of images. In text 

classification, transformation techniques include random deletion or insertion (of words or characters), 
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sentence shuffling, synonym replacement, and so forth. Another approach to achieve a balanced training 

data is the equal-allocation stratified sampling technique, which effectively down-weights the larger 

subgroups by oversampling smaller subgroups in the population. Specifically, given a population 𝑃 that 

can be divided into 𝐺 nonoverlapping subpopulations or strata 𝐺1, 𝐺2…𝐺𝑔, a sample 𝑠𝑔 of size 𝑛𝑔 is 

taken within each stratum 𝑔 independently from one stratum to another. Let 𝑛 = ∑ 𝑛𝑔
𝐺
𝑔=1  be the total 

sample size. In equal-allocation stratified random sampling, 𝑛𝑔 is constant for each stratum, that is, 

∀ℎ 𝑛𝑔
𝑒𝑞

=
𝑛

𝐺
. In this study, we examined this equal-allocation sampling approach in fine-tuning LLMs 

for scoring. Our premise is that if an AI model training data set is imbalanced, meaning a subgroup of 

test takers is underrepresented, the model may struggle to make accurate predictions for the 

underrepresented subgroup. In survey sampling, proportional stratification leads to mean estimators 

(which may be thought of as human mean scores) that are more accurate than those obtained under 

simple random sampling given the same sample size, while equal-allocation stratified sampling ensures 

a minimum level of precision in each stratum but does not lead to the best global mean estimates, 

particularly when the variabilities (or human-score standard deviations) are different between strata 

(Lohr, 2021). In our current AI scoring scenario, we are not only interested in a model’s overall 

performance, but also in its performance within specific subgroups to ensure fairness. Therefore we still 

prioritized the equal-allocation stratified random sampling technique and compared it to simple random 

sampling when constructing the AI model training samples. Given there were implicit biases in 

pretraining LLMs that we fine-tuned for our scoring tasks, equal-allocation sampling was arguably one 

method to strike a balance between prediction accuracy and fairness in the case of AI scoring. Finally, 

we note the lack of systematic analysis of the impact of sampling when applying an LLM-based AI 

scoring approach in the field of educational assessment. For instance, earlier work on sample-size 

requirements for automated scoring were mostly conducted prior to the era of LLMs. The amount of 

data required to fine-tune a pretrained LLM sufficiently for scoring purposes remains uncertain, and, to 

our best knowledge, there are no published studies addressing this issue. Generally speaking, the 

literature has indicated that effectiveness of fine-tuning is highly task-specific and is dependent on the 

model size and data quality. However, we believe it is still worthwhile to fill the gap in the literature 

and explore this aspect by using the same data source, which includes the same assessment task, test-

taker population, and pretrained LLM. Specifically, we addressed two research questions in this study: 

1. How well do AI models resulting from different sampling methods predict human scores? 

2. To what extent are the AI models resulting from different sampling methods fair? Does stratified 

sampling help improve fairness? 

 

Methods 

 

Data Set 

We used a data set collected from a standardized state science assessment in the United States between 

2020 and 2021. There are 13 open-ended questions (or prompts) included in this analysis. All the 

prompts were graded by trained human raters on a 2-point integer scale: 0, 1, and 2. About 30% of the 

responses in each prompt were graded by a second human rater to monitor the reliability of the human 

scores. The response length in characters across prompts are shown in Table 1. By design, the responses 

are relatively short; on average, the number of characters are between 120 to 200 characters across 

prompts (about 20 to 40 words). The total number of responses in each prompt ranged from 2,458 to 

2,531. 
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Table 1 

Response Length by Item (Character Count Means and Standard Errors) 

 Item 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

Mean 179.7 196.5 190.6 137.1 150.9 174.8 172.9 122.6 119.7 100.9 132.2 144.8 187.1 

S.E. 3.20 3.02 3.72 6.53 2.47 8.27 2.69 2.24 2.29 1.72 2.26 8.62 3.42 

To investigate fairness, we focused on race/ethnicity in this study because previous research mostly 

raised concerns about AI models’ performance across different racial/ethnic groups. Primarily due to 

the geographic location of the state assessment, the test takers were predominately identified in one of 

the following three race/ethnicity groups: White, Asian, or Hispanic/Latino, accounting for about 25%, 

10%, and 50%, respectively, of the test-taker population. The remaining racial/ethnic groups (including 

Black/African American, American Indian or Alaskan Native, Native Hawaiian or other Pacific 

Islander, two or more races, or other) each accounted for less than 4% of the test-taker population; 

altogether they accounted for around 15% of the test-taker population. Due to the sample size of the 

smaller racial/ethnic groups, they were combined into a single group for sampling purposes. As seen in 

Table 2, the sample size distribution of the racial/ethnic groups was similar across prompts. 

Table 2 also highlights the difference in performance across the groups. The test takers identified as 

Asian (denoted as Subgroup 3) had, on average, higher human mean scores than the test takers identified 

as White (denoted as Subgroup 1). The Hispanic/Latino test takers (denoted as Subgroup 2) received, 

on average, much lower human mean scores. Subgroup 4, which consisted of a mix of test takers from 

many racial/ethnic groups, had similar human mean scores, on average, as Subgroup 1 across prompts. 

This difference in performance might be due to differences in writing style, use of vocabulary, or even 

test-taking strategy and cultural background, among other factors. In the stratified sampling approach, 

which is described in the next section, the AI models were trained using samples with equal 

representation from all racial/ethnic groups. 

 

Table 2 

Human Mean Scores and Standard Deviations by Subgroup (Test Set) 

 Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 

Item N Mean(S.D.) N Mean(S.D.) N Mean(S.D.) N Mean(S.D.) 

1 241 0.81(0.81) 477 0.74(0.75) 115 1.24(0.82) 119 0.92(0.78) 

2 233 1.00(0.92) 501 0.72(0.86) 94 1.03(0.90) 113 0.98(0.91) 

3 251 0.57(0.69) 477 0.33(0.58) 116 0.86(0.81) 110 0.62(0.75) 

4 260 0.53(0.76) 490 0.42(0.70) 97 0.86(0.85) 101 0.60(0.79) 

5 251 0.86(0.85) 502 0.60(0.76) 110 1.17(0.83) 103 0.75(0.85) 

6 264 0.84(0.83) 491 0.69(0.73) 100 1.26(0.77) 128 0.87(0.85) 

7 267 0.65(0.75) 488 0.56(0.66) 91 0.93(0.81) 125 0.77(0.80) 

8 251 0.59(0.74) 475 0.39(0.63) 114 0.96(0.80) 132 0.71(0.80) 

9 253 0.52(0.75) 466 0.26(0.57) 97 0.82(0.88) 140 0.58(0.78) 

10 233 0.47(0.69) 504 0.27(0.55) 110 0.65(0.72) 124 0.52(0.73) 

11 254 0.42(0.62) 521 0.33(0.58) 75 0.84(0.84) 127 0.41(0.67) 

12 244 0.71(0.81) 483 0.42(0.65) 109 0.97(0.87) 131 0.74(0.85) 

13 233 0.70(0.82) 496 0.39(0.66) 102 1.01(0.92) 128 0.69(0.88) 
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Sampling and AI Model Building 

Due to the content-specific nature of the items (that is, one item may be about global warming and 

another item may be about playing poker game), we built and evaluated AI models on an item basis (i.e., 

item-specific models). For each item or prompt, we first randomly selected and put aside 40% of the 

responses as the test set. The percentage of responses for the test set was meant to strike a balance so 

that even the smallest subgroup under investigation would have at least 100 responses independent from 

the model-building process for model evaluation. The test-set responses were untouched until the final 

model evaluation. The remaining 60% of the responses were used for model building and were further 

split into a training sample and a validation sample. Based on our research question, we compared two 

sampling approaches to construct the training sample: (a) simple random sampling and (b) equal-

allocation stratified random sampling by race/ethnicity (each racial/ethnic group contributed equally to 

model training). For each prompt, we then used the training and validation samples to fine-tune a 

pretrained uncased BERTBASE model – one of the transformer-based pretrained LLMs – to predict human 

scores using deep learning neural networks (NN). AdamW was used as the optimizer in fine-tuning the 

hyperparameters of the NN models, with a learning rate set at 1e-5. The batch size was set at 128 and 

training epoch was set at 25. The script was written in Python and was run on Amazon Web Services 

(AWS). The statistical analyses of the model performance were conducted on the author’s local machine 

using Python. The model performance resulting from all sampling methods was compared and evaluated 

using the same test set. 

Specifically, for the simple random sampling (denoted as “r” in the paper), two-thirds (66.7%) of the 

model-building data were used for training and the rest for validation. Of note is that the situation for 

model validation was slightly complex under stratified sampling due to the fact that (a) the sizes of the 

racial/ethnic groups were quite unbalanced and (b) after selecting the same number of responses from 

each racial/ethnic category for model training, the distribution of both human score and race/ethnicity 

in the remaining validation sample became rather different from the original sample. Therefore we 

investigated two variations on the validation sample: one simply using what was left after stratification 

(denoted as s1), knowing that this validation sample drastically differed from both the training sample 

and the original data, and the other resampling after stratification to match the subgroup (hence also 

score) distribution to the total sample (denoted as s2). As a result, under the s2 condition, the validation 

sample would have essentially the same score and subgroup distributions as the test set (which, as a 

reminder, is 40% of the whole sample). Specifically, we set a total sample of 560, or 140 per subgroup, 

in constructing the training sample in the s1 method to ensure that there were some responses left for 

validation in each subgroup. In implementing the s2 method, the (equal) sample size for each 

racial/ethnic group in the training sample was determined by 90% of the smallest racial/ethnic group. 

To construct the validation samples, all the remaining responses from the smallest racial/ethnic group 

were used while the sample sizes for other subgroups were determined according to their proportions in 

the test set. Because we forced the validation sample to emulate the test set, the larger subgroups for any 

prompt in the s2 method could be inevitably down-sampled quite a bit, resulting in a much smaller 

validation set overall. 

To provide a full picture of the sampling result, Table 3 lists the final sample size for the training, 

validation, and test sets in each prompt. A few observations are worth noting. The sample size for the r 

training set was nearly twice the size of the training sets under the s1 and s2 methods. The training set 

sample size was similar between the s1 and s2 methods, but the validation sample was drastically 

reduced under the s2 method, ranging from only 121 to 182 across prompts, compared to 906 to 949 

across prompts for the s1 method. 
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Table 3 

Number of Responses in Training, Validation, and Test Sets 

 r s1 s2  

Item training validation training validation training validation test 

1 985 486 560 911 560 140 981 

2 984 485 560 909 560 132 980 

3 1,011 498 560 949 592 181 1,006 

4 1,002 495 560 937 584 137 998 

5 1,002 494 560 936 596 167 998 

6 1,007 496 560 943 564 141 1,002 

7 1,010 498 560 948 516 182 1,006 

8 1,003 495 560 938 552 141 1,000 

 

Table 3 

Number of Responses in Training, Validation, and Test Sets (Continued) 

 r s1 s2  

Item training validation training validation training validation test 

9 1,007 496 560 943 528 133 1,003 

10 978 482 554 906 484 130 974 

11 988 488 557 919 540 121 985 

12 981 484 555 910 488 128 978 

13 1,006 496 560 942 568 157 1,002 

 

Model Evaluation Metrics 

To evaluate the accuracy and fairness of the AI scoring model, we followed the best practice suggested 

by ETS (McCaffrey et al., 2022). Specifically, for scoring accuracy, we examined quadratically 

weighted kappa (Cohen, 1968), disattenuated correlation, and standardized mean score differences 

(SMD) between human and AI scores on the test set. Additionally, we examined how well AI could 

predict the human true score using the proportional reduction in mean squared error (PRMSE) metric 

(Haberman, 2019; Loukina et al., 2020). The PRMSE is calculated as follows: 𝑃𝑅𝑀𝑆𝐸 = 1 −
𝐸(𝑇−𝑀)2

𝑉(𝑇)
, 

where 𝑇 is the human true score and 𝑀 is the AI score. In the case of human scoring, true scores involve 

expected human ratings given the responses observed. But the variance of human true score cannot be 

directly estimated. But according to classical test theory, 𝑉(𝑇) = 𝑉(𝑂) − 𝑉(𝑒), where 𝑂 is the observed 

score and 𝑒 is the measurement error. Assuming measurement errors of the human ratings on the same 

essay are uncorrelated, we can use the agreement samples (responses with two human ratings) to 

estimate the variance of the measurement error of each prompt: �̂�(𝑒𝑘) = ∑ (𝑋𝑖𝑘 − 𝑋′𝑖𝑘)2𝑟𝑘
𝑖=1 /2𝑟𝑘, where 

𝑘 is the prompt and 𝑟 is the number of raters. Disattenuated correlations are calculated as: 𝑑. 𝑅 =

𝑅𝐻,𝑀/√𝑅𝐻,𝐻, where the numerator is the correlation of human score 𝐻 and AI score 𝑀 and the 

denominator is the correlation of the two human scores. Similar to PRMSE, disattenuated correlation 

attempts to evaluate prediction accuracy after removing noise in human ratings. Worth noting is that 

there is a fine distinction between prediction accuracy and agreement: According to Haberman (2019), 

kappa or QWK is a form of agreement metric and PRMSE is a metric of prediction accuracy. In the 

context of this study, we evaluated AI model performance on both metrics. The SMD is calculated as 

𝑆𝑀𝐷 = (𝐻‾ − 𝑀‾ )/√(𝑠𝐻
2 + 𝑠𝑀

2 )/2, where the mean differences between human score H and AI score M 

is divided by the pooled standard deviation of H and M. While SMD has been commonly suggested in 

the literature for evaluating the bias of AI models, one issue with SMD is that it can be sensitive to the 

differences in scales between human and AI scores. For fairness evaluation on the subgroup level, we 
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used the mean difference in standardized scores (MDSS) metric: 𝑀𝐷𝑆𝑆 = 𝐻′‾ − 𝑀′‾ , where 𝐻′ and 𝑀′ 

are standardized scores. The MDSS metric compares the human and AI mean scores by first removing 

their scales differences. MDSS is also the metric that we operationally use in practice for subgroup 

evaluation at the authors’ organization. Additionally, for subgroup evaluation, we computed an adjusted 

mean score difference that was conditioned on human true score for each subgroup. The concept of this 

more recently developed metric is closely aligned to the concept of differential item functioning in 

psychometrics. That is, people with the same latent ability should have equal probability of getting a 

machine score, regardless of their group membership. Furthermore, this concept of predicted score 𝑀 

being conditionally independent of group membership 𝐺 given the human true score 𝑇(𝑀 ⊥ 𝐺 |𝑇) is 

termed “separation” fairness in the machine learning community. Hence for brevity, we denote this 

metric as the separation metric. The larger the separation is, the more the potential bias is for a given 

subgroup. The technical details of this metric can be found in Johnson, Liu, and McCaffrey (2022) and 

Johnson and McCaffrey (2023). 

 

 

Results 

Prediction Accuracy Results 

Table 4 gives the means and standard deviations of the human score and AI score resulting from different 

sampling methods on the same test set. On the raw mean differences between human and AI scores, all 

differences are within a magnitude of 0.15. It is obvious that all the AI scores resulting from any 

sampling method have a slightly smaller standard deviation than the human scores. This minor scale 

shrinkage, however, does not appear to affect systematically the scoring accuracy and fairness of the AI 

scoring models. 

 

Table 4 

Human and AI Mean and Standard Deviations by Sampling Method (Test Set) 

   Sampling method 

Item Test set N Human score r s1 s2 

1 981 0.74(0.82) 0.78(0.82) 0.69(0.80) 0.80(0.82) 

2 980 0.48(0.68) 0.48(0.59) 0.50(0.65) 0.58(0.68) 

3 1,006 0.62(0.72) 0.70(0.66) 0.66(0.67) 0.66(0.47) 

4 998 0.54(0.72) 0.54(0.64) 0.55(0.63) 0.53(0.47) 

5 998 0.42(0.70) 0.42(0.57) 0.46(0.61) 0.53(0.64) 

6 1,002 0.38(0.64) 0.37(0.57) 0.41(0.58) 0.40(0.56) 

7 1,006 0.39(0.63) 0.39(0.58) 0.40(0.52) 0.37(0.55) 

8 1,000 0.55(0.78) 0.57(0.75) 0.62(0.77) 0.69(0.75) 

9 1,003 0.58(0.76) 0.58(0.71) 0.60(0.68) 0.61(0.67) 

10 974 0.83(0.89) 0.91(0.87) 0.89(0.82) 0.93(0.85) 

11 985 0.82(0.79) 0.93(0.79) 0.94(0.77) 0.94(0.75) 

12 978 0.50(0.75) 0.52(0.68) 0.53(0.68) 0.51(0.69) 

13 1,002 0.80(0.80) 0.81(0.70) 0.86(0.72) 0.81(0.71) 

 

The standardized mean score differences (SMD) between human and AI scores, shown in Figure 1(d), 

suggest that all SMDs resulting from r and s1 methods are within the magnitude of 0.15 – a threshold 

value suggested in the literature (McCaffrey et al., 2022; Williamson, Xi, & Breyer, 2012). However, 
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the s2 method showed slightly larger SMDs on four items (i.e., Items 2 and 11 on the borderline of 0.15 

and Items 5 and 8 in between 0.15 and 0.20), where the AI scores have overall higher means than human 

scores. This result indicates that the smaller validation sample in the implementation of the s2 method, 

even though “matched” to the subgroup distributions in the test set, seemed to have an impact on model 

performance, in particular the AI score means. Even though the validation samples for the s1 method 

are “not matched” to the test set, there are a much greater number of responses representing each 

racial/ethnic group. In other words, prioritizing a larger validation sample may be more crucial than to 

achieve a distributional “match” by sacrificing sample size to AI model performance.  

 

Figure 1 

Results of Prediction Accuracy 

 
                                (a) PRMSE                    (b) QWK 

 

        (c) Disattenuated Correlation                                  (d) SMD 

Included in Figure 1 are the results for other evaluations on prediction accuracy, that is, PRMSE, QWK, 

and disattenuated correlation (denoted as “d.R"), between human and AI scores resulting from different 

sampling methods. All PRMSE statistics were greater than 0.7, which is considered a minimum 

performance threshold for AI scoring models (McCaffrey et al., 2022). Among the lower PRMSEs, such 

as those in between 0.7 and 0.8, most resulted from the s2 method and some resulted from s1. Previous 

research suggested 𝑄𝑊𝐾 >= 0.7 when evaluating automated scoring models (Williamson et al., 2012). 

In this analysis, all QWK values were greater than 0.7 with the exception of one instance: the 𝑄𝑊𝐾 =
0.694 on Item 6 resulting from the s2 method. The QWKs were also on the borderline of 0.7 for the 

other two sampling methods. One speculation for why this happened is that the standard deviation of 

the human scores on this item is small (S.D. = 0.64), which could have an impact on the AI model 
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building and evaluation. The d.Rs were all above 0.83, with 𝑑. 𝑅2 all larger than the threshold of 0.7 

suggested in McCaffrey et al. (2022). 

Overall, the AI scoring models based on all three sampling methods demonstrated reasonably good 

performance. While the intention to match the validation sample to the test set in the s2 method was to 

enhance the AI model performance, empirical evidence did not support that decision. AI models based 

on the simple random sampling (s1) showed the best performance in many cases. Interestingly, in s1, it 

worked well to use a much smaller (i.e., about half of the size) model training sample with equal 

subgroup representations but with a much larger validation sample that was different from the test set 

in terms of score and subgroup distributions. Even though the s2 method did not outperform the r 

method, the model performance, in general, was in fact quite acceptable. 

Fairness Results 

Figures 2 shows the results of the separation metric, which evaluated the human-AI mean score 

differences conditional on true score for each racial/ethnic group. All of the values in Figure 5 were 

within 0.2, with the majority of the values within 0.1. This result means that, for a given subgroup 

conditional on the true score, the AI mean scores only differed from human mean scores by less than 

one tenth of a score point on the 2-point scale. These differences could be considered negligible. The 

only notably larger separation between human and AI scores was for Item 7, which all the AI models 

underscored for Subgroup 3 (the Asian test-taker group) on average. In this case, the s1 method notably 

outperformed the r and s2 methods by better predicting the means of Subgroup 3. 

 

Figure 2 

Separation Results by Subgroup 

 

 

Figure 3 

Mean Differences in Standardized Scores (MDSS) by Subgroup 

 

 

The results on the MDSS for the racial/ethnic groups are shown in Figure 3. The findings are similar to 

the separation metric. All the mean differences were within the magnitude of 0.2. While there is no 

established or recommended evaluation threshold for this metric, we applied 0.20 as a common in-house 

threshold for test operations. As with the separation metric results, the largest MDSS values were 
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associated with Subgroup 3 on Item 7. It is interesting to observe that the s1 method tended to outperform 

simple random sampling, especially on cases that had larger MDSS values (e.g., Subgroup 1 on Item 5, 

Subgroup 3 on Item 7, and Subgroup 3 on Item 13). 

 

Discussion 

In this exploratory study, we empirically evaluated the impact of sampling on AI scoring model 

performance. Simple random sampling (r) and equal-allocation stratification random sampling were 

compared in constructing the AI model training samples. Two variations of the sampling strategy (s1 

and s2) in constructing the validation sample in the AI modeling building process were further examined 

under the equal-allocation stratification random sampling. Fine-tuned LLMs were trained and evaluated, 

and all the AI models were prompt-specific for the 13 items included in this analysis. We summarized 

the characteristics of the samples under each sampling method in Table 5. 

 

Table 5 

Sample Characteristics 

Method Training Validation Test (same across methods) 

r N≈1000; N≈500; N≈1000; 

 representative of whole population; representative of whole population; representative of whole 

population; 

 dominated by large subgroups. dominated by large subgroups. dominated by large subgroups. 

s1 N≈550; N≈900; N≈1000; 

 smaller in size; very large in size; representative of whole 

population; 

 equal contribution from each 

subgroup 

very different from whole population dominated by large subgroups. 

  even more dominated by large 

subgroups. 

 

s2 N≈550; N≈140; N≈1000; 

 smaller in size; very small in size; representative of whole 

population; 

 equal contribution from each 

subgroup 

representative of whole population; dominated by large subgroups. 

  dominated by large subgroups.  

 

In response to the research questions, the models were evaluated from two perspectives: overall 

prediction accuracy and fairness. For RQ1, we found that, in general, the AI scoring models predicted 

human scores reasonably well regardless of the sampling method. Even when the training sample size 

was relatively small as in s1 and in s2 compared to r, or when the validation sample was extremely small 

(as in s2) or relatively large (as in s1), the model performance was marginally affected and was 

comparable across methods. Even though the AI models appeared to perform slightly worse using the 

s2 method, the observation was only on the SMD index for three out of the 13 prompts while the 

evaluations did not reveal other obvious issues for the s2 method. In addressing RQ2, we found that 

using model training samples with equal representation from subgroups of test takers (s1 and s2) did not 

systematically improve the fairness of the AI scoring models. In almost all cases, models based on 

simple random sampling were fair across the different racial/ethnic groups. In a couple of rare cases 

where models resulting from the r method did not work as well (Subgroup 3 on Items 7 and 13), 

stratification appeared to have improved fairness. From a big picture point of view, however, equal-

allocation stratification did not improve, or worsen, fairness. One could argue, though, that stratification 

is a critical and early treatment to mitigate bias in the data preprocessing step during model development 
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process (Chu et al., 2024) in the sense that all subgroups of interest contributed equally in the model 

training process. The model is not dominated by inherent biases associated with any specific subgroup 

of interest. The results may also arguably favor stratification given that both the training and validation 

samples can be relatively small and the validation sample does necessarily need to resemble the test-

taker population (s1). These potential advantages on sample requirements seem especially useful when 

only small data set is available for AI model building. 

There is relatively little prior research that specifically focused on sample size requirements for AI 

scoring with few exceptions such as Haberman and Sinharay (2008), Zhang (2013), and Heilman and 

Madnani (2015). To our best knowledge, most of the former work was conducted with the earlier 

generation of AI scoring practice (pre-LLM era) when well-defined features were used in less complex, 

but more explainable AI scoring models such as logistic regression or multiple linear regression. The 

authors in investigated the training sample sizes in AI scoring of short-response items using support 

vector regression models where the predictors included various word n-grams and a proxy of response 

length. Their findings (Figure 1 in the refereed article) showed that from small training sample size of 

100 to larger training sample sizes of 200, 400, 800, 1600, and up to 3200, the scoring model 

performance as evaluated by QWK steadily and considerably improved. This study found different 

results related to sample sizes from the prior work, mostly likely due to the use of fine-tuned LLMs. In 

Heilman and Madnani (2015), about half of the items achieved a human-AI QWK of 0.7 or greater and 

required at least 800 model training responses. Even when the training sample sizes were as large as 

1600 or 3200, it appeared difficult to achieve a QWK of 0.8 and above. In the current study, LLM-based 

AI scoring models achieved QWK of 0.75 or above on 11 of 13 prompts, regardless of the sampling 

method. This result aligns well with the literature in the AI community in that complex AI models such 

as NN tended to achieve greater accuracy in prediction tasks than simpler models such as SVM or 

decision trees. 

Even though the most of the LLM-based AI scoring models demonstrated high prediction accuracy and 

an acceptable degree of fairness, there still seems to be room for improvement. The top performing 

models reported in Whitmer et al. (2021) achieved average human-AI QWK ranging from 0.860 to 0.888 

across NAEP Reading items, about 0.05 points higher on average than the QWKs reported in this study. 

Most of the top performing models in the NAEP study were either ensembles of multiple models or 

leveraged information in the prompt and source text. The total samples in the NAEP study ranged from 

19,934 to 28,307 across items (Whitmer et al., 2021), which are much larger than the samples per item 

available in this study. So it is highly likely that we can further improve the current AI model 

performance on these items when we collect more responses in test operations. By improving the overall 

model prediction accuracy, fairness will likely be improved accordingly. In this analysis, we did not 

customize the model fine-tuning process for each item; instead, we applied the same setting for all items. 

Customizing the fine-tuning process will most likely improve model performance on the item level as 

well.  

Overall, this study offers some empirical evidence on the choice of sampling methods in building LLM-

based AI scoring models for short-response assessment items. For the items investigated in this study, a 

training sample size of 1000 from simple random sampling was generally sufficient. We found the 

models based on stratified samples performed comparably to models based on simple random samples. 

However, it is worth noting the stratified training samples were only half of the size. For testing 

programs that intend to prioritize fairness in the AI model training process, stratified sampling can be 

seriously considered. 

This study has several limitations. One is that the BERTBASE LLMs were fine-tuned with minimum 

effort. The same settings were using across prompts. It is possible that differences in prediction accuracy 

and fairness may emerge along with more optimal fine-tuning such as adjusting the learning rate in each 

item. The results may not generalize to LLMs beyond BERTBASE, making a comparative analysis 

worthwhile in the future. We also did not consider intersections of demographic variables (e.g., gender 

by race/ethnicity, language skill by gender), which future research is encouraged to explore. 

Additionally, as a follow-up of the current analysis, stratified sampling by race/ethnicity and score levels 

can provide more useful results on improving fairness in the model-training process. For example, 
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selecting the equal number of responses from each racial/ethnic group at each score level essentially 

makes the (human) scores orthogonal to race/ethnicity and, as a result, any detected biases in the 

machine scores would be due to other reasons than one’s race or ethnicity alone. This is a natural next 

step once more responses are collected. Due to the limited responses in some racial/ethnic groups, equal-

allocation stratified random sampling on student-written responses could only utilize a relatively small 

sample. Future research can consider augmenting the data set with synthetic data (e.g., using GPT, for 

underrepresented subgroups). Alternatively, future research may also apply techniques that 

algorithmically mitigate bias in the training data, such as sample reweighting and adopting fairness-

aware machine learning models (Ferrara, Sellitto, Ferrucci, et al., 2024; Haberman, 1984). Finally 

explaining detected biases is challenging with complex AI scoring models. Johnson and McCaffrey 

(2023) proposed one method to weight AI features differently to reduce subgroup biases in simpler 

models; future research is encouraged to generalize the method in Johnson and McCaffrey (2023) to 

LLM-based AI scoring.  
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