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Tuba Çokoksen1*, Murat Alan2

Abstract
This study establishes that the sole positive integer solution to the exponential Diophantine equation (8r2 +1)x +
(r2−1)y = (3r)z is (x,y,z) = (1,1,2) for all r > 1. The proof employs elementary techniques from number theory, a
classification method, and Zsigmondy’s Primitive Divisor Theorem.
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1. Introduction
Let p, q, and r be coprime positive integers greater than 1 and let us consider exponential Diophantine equation

px +qy = rz

with x,y,z ∈ N. In 1956, Sierpiński demonstrated that by reformulating the Pythagorean theorem with exponential expressions
as variables, the exponential Diophantine equation 3x +4y = 5z has a unique solution, (x,y,z) = (2,2,2) [1]. Subsequently,
Jeśmanowicz extended this idea to general Pythagorean triples, proposing that for positive integers a, b, and c satisfying the
exponential Diophantine equation, the only solution remains (2,2,2) [2].
In 1994, Terai extended this framework by considering the equation px +qy = rz for positive integers p,q,r with p,q,r ≥ 2.
He conjectured that while multiple solutions may exist for some triples (p,q,r), only a few specific sets of such triples yield
exceptions [3]. This conjecture has been verified for numerous specific cases, including particular forms of Diophantine
equations

(ar2 +1)x +(br2−1)y = (cr)z. (1.1)

In this study, the following exponential Diophantine equation equation is examined

(8r2 +1)x +(r2−1)y = (3r)z. (1.2)
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It is important to observe that equation (1.2) serves as a special case of equation (1.1), where the condition a+b = c2 is fulfilled.
This research was initiated based on Terai’s conjecture. Expanding on this conjecture, various specific cases of equation (1.1)
have been examined, resulting in the validation of Terai’s conjecture in these instances.

• [4] (4r2 +1)p +(5r2−1)q = (3r)t

• [5] (r2 +1)p +(yr2−1)q = (zr)t , 1+ y = z2

• [6] (12r2 +1)p +(13r2−1)q = (5r)t

• [7] (xr2 +1)p +(yr2−1)q = (zr)t , z|r

• [8] (xr2 +1)p +(yr2−1)q = (zr)t , r =±1 (mod z)

• [9] (18r2 +1)p +(7r2−1)q = (5r)t

• [10] ((x+1)r2 +1)p +(xr2−1)q = (zr)t , 2x+1 = z2

• [11] (3xr2−1)p +(x(x−3)r2 +1)q = (xr)t

• [12] (4r2 +1)p +(21r2−1)q = (5r)t

• [13] (5xr2−1)p +(x(x−5)r2 +1)q = (xr)t

• [14] (3r2 +1)p +(yr2−1)q = (zr)t

• [15] (4r2 +1)p +(45r2−1)q = (7r)t

• [16] (6r2 +1)p +(3r2−1)q = (3r)t

• [17] (x(x− l)r2 +1)p +(xlr2−1)q = (xr)t

• [18] (44r2 +1)p +(5r2−1)q = (7r)t

• [19] (9r2 +1)p +(16r2−1)q = (5r)t

For the Diophantine equations related to Recurrence sequences see [20], [21] and [22]. The exponential Diophantine equation
(1.2), where r denotes a positive integer, is analyzed, and the following theorem is established.

Theorem 1.1. Let r be a positive integer. The equation (1.2) possesses a single positive integer solution (x,y,z) = (1,1,2) for
any r > 1.

The theorem’s proof relies on two approaches. The initial method, leveraging [23, 24], enables the derivation of additional
potential solutions for the Diophantine equations M2 +WN2 = qK and aM2 +bN2 = qK from established solutions, subject to
certain conditions [25, 26]. The second method draws upon an earlier rendition of the Primitive Divisor Theorem attributed to
Zsigmondy [27].

2. Preliminaries
Consider a positive integer W . The notation h(−4W ) denotes the class number of positive binary quadratic forms with

discriminant −4W .

Lemma 2.1. ([28], Theorems 11.4.3, 12.10.1 and 12.14.3])

h(−4W )<
4
π

√
W log(2e

√
W ).

Let W,W1,W2,q be positive integers such that min{W,W1,W2}> 1, gcd(W1,W2) = 1,
2 6 |q and gcd(W,q) = gcd(W1,W2,q) = 1.
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Lemma 2.2. [23] Given fixed relatively prime positive integers W and q, with W > 1 and q being an odd integer, the equation
is considered

M2 +WN2 = qK ,

where M,N,K∈ Z, K > 0 and gcd(M,N) = 1, has solutions (M,N,K) then any solution to the aforementioned equation can be
represented as follows

M+N
√
−W = λ1(M1 +λ2N1

√
−W )t , K = K1t λ1,λ2 ∈ {±1}

M1,N1,K1 are positive integers satisfying M2
1 +WN2

1 = qK1 , gcd(M1,N1) = 1 and h(−4W )≡ 0 (mod K1) .

Lemma 2.3. [23] Consider relatively prime positive integers W1 and W2, both greater than 1. Let (M,N,K) denote a fixed
solution of the equation

W1M2 +W2N2 = qK . (2.1)

Given that K > 0, gcd(M,N) = 1, 2 - q and M,N,K ∈ Z, there also exists a unique positive integer s such that

s =W1αM+W2βN, 0 < t < q

where α and β are integers such that βM−αN = 1 [[23], Lemma 1]. The positive integer s is referred to as the characteristic
number of the specific solution (M,N,K) and is denoted by < M,N,K >. When < M,N,K >= s, it implies that W1M ≡−sN
(mod q) [[23], Lemma 6]. Let (M0,N0,K0) be a solution to (2.1) with < M0,N0,K0 >= s0. Therefore, the set of all solutions
(M,N,K) with < M,N,K >≡±s0 (mod q) is termed a solution class of (2.1), expressed as S(s0).

Lemma 2.4. [23] For each solution class S(s0) of (2.1), a unique solution exists (M1,N1,K1) ∈ S(s0) such that M1 and N1
are positive, and K1 ≥ K for all solutions (M,N,K) ∈ S(s0), where K spans all possible solutions. This particular solution
(M1,N1,K1) is referred to as the least solution of S(s0). If (M,N,K) is a solution in the set S(s0) then

K = K1t, 2 - t, t ∈ N,

M
√

W1 +N
√

W2 = λ1
(
M1
√

W1 +λ2N1
√
−W2

)t
, λ1,λ2 ∈ {1,−1}.

Lemma 2.5. [24] Let (M1,N1,K1) be the least solution of S(s0). If (2.1) has a solution (M,N,K) ∈ S(s0) satisfying M > 0
and N = 1, then N1 = 1. Additionally, if (M,K) 6= (M1,K1), in that case, at least one of the following conditions is satisfied

(i) W1M2
1 = 1

4 (q
K1 ±1), W1 =

1
4 (3qK1 ±1)

(M,K) = (M1|W1M2
1 −3W2|,3K1)

(ii) W1K2
1 = 1

4 F3a+3ε , W2 =
1
4 L3a, qK1 = F3a+ε

(M,K) = (M1|W 2
1 M4

1 −10W1W2M2
1 +5W 2

2 |, 5K1)

where a is a positive integer, ε ∈ {1,−1}, and Fn is the n-th Fibonacci number in which each number is the sum of the two
preceding ones.

Let γ and θ be algebraic integers. A Lucas pair refers to a pair (γ,θ) such that γ +θ and γθ are non-zero relatively prime
integers, and γ

θ
is not a root of unity. For any given pair (γ,θ) forming a Lucas pair, the resulting sequences of Lucas numbers

are given by

Ln(γ,θ) =
γn−θ n

γ−θ
, n = 0,1,2, . . .

It’s worth noting that primitive divisors of Ln(γ,θ) are prime numbers p for which p|Ln(γ,θ) and p - (γ,θ)2L1(γ,θ) . . .Ln−1(γ,θ).
For any Lucas sequence Ln(γ,θ) determined by a finite set of parameters (n,γ,θ), if n≥ 5 and n 6= 6, it is guaranteed that the
sequence has always a primitive divisor.
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Lemma 2.6. [25] If n > 30, then Ln(γ,θ) is guaranteed to have a primitive divisor.

Lemma 2.7. [26] For 4 < n ≤ 30 and n 6= 6, aside from equivalence, Ln(γ,θ) contains a primitive divisor, except for the
following pairs of parameters (k, l):

• (1,−15),(1,−11),(1,−7),(1,5),(2,−40),(12,−76) or (12,−1364)
if n = 5,

• (1,−19) or (1,−7) i f n = 7,

• (1,−7) or (2,−24) i f n = 8,

• (2,−8),(5,−47) or (5,−3) i f n = 10,

• (1,−19),(1,−15),(1,−11),(1,−7),(1,−5) or (2,−56) if n = 12,

• (1,−7) i f n = 13,18 or 30.
where (γ,θ) = ( k+

√
l

2 , k−
√

l
2 ).

Lemma 2.8. [9] If a,b,c and r > 1 are positive integers satisfying a+b = c2, and (x,y,z)≥ 0 is a solution to the exponential
Diophantine equation

(ar2 +1)x +(br2−1)y = (cr)z,

where x is the larger of the two values {x,y}, In this case, the following inequalities are satisfied

2−
log
(

c2

a

)
log(cr)

x < z≤ 2x.

On the other hand, if y is the larger value, then

2−
log
(

c2r2

br2−1

)
log(cr)

y < z≤ 2y.

In particular, when M = max{x,y}> 1, it follows that

2−
log
(

c2

min{a,b− 1
r2 }

)
log(cr)

M < z < 2M.

This offers a more precise description of the range of z based on M and the specified parameters.

Proposition 2.9. [27] Consider C and D be relatively prime integers with C > D≥ 1. Let {an}n≥1 be the sequence defined as

an =Cn +Dn.

If n > 1, then an has a prime factor not dividing a1a2a3 · · ·an−1, whenever (C,D,n) 6= (2,3,1).
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3. Proof of Theorem 1.1
3.1 The case 2|r

This section demonstrates that Theorem 1.1 is valid under the condition 2 | r.

Lemma 3.1. If 2|r, then (x,y,z) = (1,1,2) constitutes the sole positive integer solution of the equation (1.2).

Proof. For z ≤ 2, it is evident that (x,y,z) = (1,1,2) is the unique solution to equation (1.2). Thus, the assumption z ≥ 3 is
made. Considering equation (1.2) modulo r2, the relation 1+(−1)y ≡ 0 (mod r2) holds, implying that y must be odd, given
that r2 > 2. Further, reducing equation (1.2) modulo r3, the following is obtained

1+8r2x+(−1)+ r2y≡ 0 (mod r3),

8x+ y≡ 0 (mod r),

which results in a contradiction, since y is odd and r is even. Therefore, it is concluded that equation (1.2) has no positive
integer solutions for z≥ 3. Consequently, the only positive integer solution to equation (1.2) when r is even is (1,1,2). The
case where r is odd will now be considered.

3.2 The case 2 - r where r ≡ 0 (mod 3)
This section demonstrates that Theorem 1.1 is valid under the condition 2 - r where r ≡ 0 (mod 3).

Proof. Let (x,y,z) be any solution to equation (1.2). It is clear that (x,y,z) = (1,1,2) constitutes a solution of (1.2). For r > 1,
examining equation (1.2) modulo r2, it can be concluded, similar to the earlier scenario, that y must be odd. The investigation
then continues by splitting into two cases depending on the parity of x. First, let us assume x is odd. Next, the focus turns to the
Diophantine equation

(8r2 +1)M2 +(r2−1)N2 = (3r)K , K > 0 and M,N,K ∈ Z. (3.1)

Since (x,y,z) represents any solution of equation (1.2), it follows from Lemma 2.3 that

(M,N,K) =
(
(8r2 +1)

x−1
2 ,(r2−1)

y−1
2 ,z

)
(3.2)

is a solution of equation (3.1). Let s = 〈(8r2 +1)
x−1

2 ,(r2−1)
y−1

2 ,z〉 be the characteristic number corresponding to the solution
given in (3.2). From the congruence

(8r2 +1)
x+1

2 ≡−s(r2−1)
y−1

2 (mod 3r),

it follows that s≡±1 (mod 3r).
It is noteworthy that (M1,N1,K1) = (1,1,2) also satisfies equation (3.1), and let s0 = 〈1,1,2〉 denote the characteristic

number of this solution. Hence, the following holds

8r2 +1≡−s0 (mod 3r) (3.3)

s0 ≡−1 (mod 3r)

Thus, it is observed by the equation (3.3) s≡±s0 (mod 3r), indicating that the solutions (M1,N1,K1) = (1,1,2) and the one
given in (3.2) belong to the same solution class S(s0) of equation (3.1). Furthermore, (M,N,K) = (1,1,2) is clearly the least
solution within S(s0). Therefore, applying Lemma 2.4, it follows that

z = 2t, 2 - t, t ∈ N,

(8r2 +1)
x−1

2
√

8r2 +1+(r2−1)
y−1

2
√

1− r2 = λ1

(√
8r2 +1+λ2

√
1− r2

)t
. (3.4)

By expanding the right-hand side of equation (3.4) and equating the coefficients of
√

1− r2, the following result is obtained

(r2−1)
y−1

2 = λ1λ2

t−1
2

∑
i=0

(
t

2i+1

)
(8r2 +1)

t−1
2 −i(r2−1)i (3.5)
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At this point, it is asserted that y = 1. Suppose y > 1. From equation (3.5), it can be deduced that

0≡ λ1λ2t · (8r2 +1)
t−1

2 (mod (r2−1))

0≡ λ1λ2t ·9
t−1

2 (mod (r2−1)).

This leads to a contradiction, as 2 - t · 9 t−1
2 and 2 | (r2− 1). Therefore, it is concluded that y = 1, and consequently N =

(r2− 1)
y−1

2 = 1. The two conditions in Lemma 2.5 will now be verified. Given that (M1,N1,K1) = (1,1,2) represents the
smallest solution of S(s0), Lemma 2.5 implies that either

8r2 +1 =
1
4
((3r)2±1)

or

F3a+ε = (3r)2

where ε =±1. The first equation leads to

4(8r2 +1) = (32r2±1),

resulting in 4≡±1 (mod r2), which is not possible. Moreover, since the only square Fibonacci number greater than 1 is
F12 = 122 [29], the second condition implies 3r = 12, which is also impossible due to the parity of r. Consequently, by Lemma
2.5, it follows that (M,K) = ((8r2 +1)

t−1
2 ,z) = (M1,K1) = (1,2). Thus, equation (1.2) has no positive integer solutions other

than (x,y,z) = (1,1,2) when x is odd.
Next, the case when 2|x is considered. From equation (1.2), the Diophantine equation

M2 +(r2−1)N2 = (3r)K , gcd(M,N) = 1, K > 0,

admits the solution

(M,N,K) =
(
(8r2 +1)

x
2 ,(r2−1)

y−1
2 ,z

)
.

Hence, by Lemma 2.2, it is concluded that

z = K1t, t ∈ N

(8r2 +1)
x
2 +(r2−1)

y−1
2
√

1− r2 = λ1(M1 +λ2N1

√
1− r2)t (3.6)

where λ1,2 ∈ {−1,1} and M1,N1,K1 are positive integers satisfying

M2
1 +(r2−1)N2

1 = (3r)K1 , gcd(M1,N1) = 1 (3.7)

h(−4(r2−1))≡ 0 (mod K1). (3.8)

Suppose that 2|t and let

M2 +N2

√
1− r2 = (M1 +λ2N1

√
1− r2)

t
2 . (3.9)

By taking the norm of both sides of equation (3.8) in the field Q(
√

1− r2) and applying equation (3.7), the following result is
obtained

M2
2 +(r2−1)N2

2 = (3r)
K1t

2 = (3r)
z
2 . (3.10)
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By substituting equation (3.9) into equation (3.6), the result is obtained as follows

(8r2 +1)
x
2 +(r2−1)

y−1
2
√

1− r2 = λ1(M2 +N2

√
1− r2)2

and therefore it follows that

(8r2 +1)
x
2 = λ1(M2

2 −N2
2 (r

2−1)), (3.11)

(r2−1)
y−1

2 = 2λ1M2N2. (3.12)

Since gcd(8r2+1,r2−1) = 1, it follows from equations (3.11) and (3.12) that |M2|= 1. Thus, |N2|= 1
2 (r

2−1)
y−1

2 . Substituting
|M2| and |N2| into equation (3.10), the result is

1+
1
4
(r2−1)y = (3r)

z
2

which leads to

3≡ 0 (mod r2).

This presents a contradiction, leading to the conclusion that 2 - t. Define

γ = M1 +N1

√
1− r2, θ = M1−N1

√
1− r2.

By taking the complex conjugate of equation (3.6), the following relation is obtained

(r2−1)
y−1

2 = N1

∣∣∣∣γ t −θ t

γ−θ

∣∣∣∣= N1|Lt(γ,θ)|. (3.13)

By equation (3.7), it holds that γ + θ = 2M1, γ − θ = 2N1
√

1− r2, and γθ = (3r)K1 . Since gcd(M1,N1) = 1, the integers
γ +θ = 2M1 and γθ = (3r)K1 are also relatively prime, as implied by equation (3.7), and γ

θ
6=±1, with γ and θ being units in

the ring of algebraic integers of Q(
√

1− r2). Consequently, Lt(γ,θ) forms a Lucas sequence.
From equation (3.13), it is evident that the Lucas numbers Lt(γ,θ) lack primitive divisors. By applying Lemma 2.6 and

Lemma 2.7, it is concluded that t ≤ 30. Furthermore, if 4 < t ≤ 30 and t 6= 6, the parameters (k, l) = (2M1,4N2
1 (1− r2)) must

match one of the parameter sets listed in Lemma 2.7. However, none of these sets align with the given parameters. Therefore, it
follows that t ≤ 3.

The case t = 3 will be shown to be impossible. Assuming t = 3, the right-hand side of equation (3.6) is expanded, and by
equating the coefficients on both sides, it is determined that

(8r2 +1)
x
2 = λ1M1(M2

1 −3(r2−1)N2
1 ) (3.14)

(r2−1)
y−1

2 = λ1λ2N1(3M2
1 − (r2−1)N2

1 ). (3.15)

From equation (3.7), it is evident that gcd(3M1,r2−1) = 1. Thus, from equation (3.15), the relation 3M2
1 − (r2−1)N2

1 =±1
holds. In fact, upon considering this equation modulo 3, it can be observed that only the positive sign is feasible, and the
following equation is obtained

3M2
1 − (r2−1)N2

1 = 1. (3.16)

Thus, it follows that

|N1|= (r2−1)
y−1

2 . (3.17)

By substituting equation (3.17) into equation (3.14), the following result is obtained

(8r2 +1)
x
2 = λ1M1(M2

1 −3(r2−1)y) (3.18)
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By considering equations (3.16) and (3.17) modulo 3r, it follows that 3M2
1 − (r2−1)y ≡ 0 (mod 3r), which implies M1 ≡ 1

(mod r). Substituting this result into equation (3.18) yields

(8r2 +1)
x
2 = λ1M1(M2

1 −3(r2−1)y)

leading to

1≡ 0 (mod r)

which is evidently a contradiction. Therefore, the only possibility remaining is t = 1. Consequently, z = W1t = K1, and
according to equation (3.8), it is established that K1 ≤ −4(r2−1). Utilizing the upper bound provided by Lemma 2.1, the
following result is obtained

z <
4
π

√
r2−1 log (2e

√
r2−1). (3.19)

Assume z= 3. In this case, at least one of x or y must be greater than 1. If x≥ 2, it follows that (3r)3 > (8r2+1)x ≥ (8r2+1)2 >
82r4, leading to 33 > 82r, which implies 64 > 27, resulting in a contradiction. Similarly, if (3r)3 > (r2−1)2 +(8r2 +1), this
also results in a contradiction. Thus, it can be concluded that z≥ 4. Examining equation (1.2) modulo r4 leads to

(8r2 +1)x +(r2−1)y ≡ 0 (mod r4)

and hence

8x+ y≡ 0 (mod r2)

r2 ≤ 8x+ y. (3.20)

The application of the logarithm function facilitates the straightforward derivation of the inequalities x < z and y < 1.06z.
Consequently, from inequality (3.20), it follows that r2 < 9.06z. Therefore, from the derived inequality

r2 < 9.06z < 9.06 · 4
π

√
r2−1log(2e

√
r2−1),

it can be concluded that r ≤ 63. Furthermore, by consulting Lemma 2.8, the following upper bounds for x and y can be
established

1.94x <

(
2−

log
( 9

8

)
log(9)

)
x <

(
2−

log
( 9

8

)
log(3r)

)
x < z≤ 2x (3.21)

0.95y <
(

2− log(10)
log(9)

)
y <

2−
log
(

10r2−10
r2−1

)
log(9)

y <

2−
log
(

9r2

r2−1

)
log(3r)

y < z≤ 2y. (3.22)

Based on equations (3.21) and (3.22), it can be concluded that equation (1.2) has no solutions in positive integers for z≤ 6.
Assuming z > 6, the analysis of equation (1.2) proceeds by considering it modulo r4, r6, and r8.

1. Modulo r4: By considering equation (1.2) modulo r4, the following congruence is obtained

8r2x+ r2y≡ 0 (mod r4).

In other words,

8x+ y≡ 0 (mod r2). (3.23)

2. Modulo r6: Taking equation (1.2) modulo r6, the following congruence is obtained

8r2x+82r4 x(x−1)
2

+ r2y− r4 y(y−1)
2

≡ 0 (mod r6).
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Simplifying,

8x+82r2 x(x−1)
2

+ y− r2 y(y−1)
2

≡ 0 (mod r4). (3.24)

3. Modulo r8: Finally, taking equation (1.2) modulo r8, the following congruence is obtained

8r2x+82r4 x(x−1)
2

+83r6 x(x−1)(x−2)
6

+ r2y− r4 y(y−1)
2

+ r6 y(y−1)(y−2)
6

≡ 0 (mod r8).

Simplifying,

8x+82r2 x(x−1)
2

+83r4 x(x−1)(x−2)
6

+ y− r4 y(y−1)
2

+ r4 y(y−1)(y−2)
6

≡ 0 (mod r6).

(3.25)

In summary, equations (3.23), (3.24), and (3.25) represent the congruence conditions derived from equation (1.2) modulo
r2, r4, and r6, respectively. Utilizing equation (3.19) alongside the conditions x,y < z, and the congruences (3.23), (3.24), and
(3.25), a brief computer program was developed using Maple to investigate all potential solutions of equation (1.2) within the
range 3 ≤ r ≤ 63. The results show that there are no positive integer solutions (r,x,y,z) to equation (1.2) when z ≥ 3. This
concludes the proof.

3.3 The case r - 2 where r ≡±1 (mod 3)
This section demonstrates that Theorem 1.1 is valid under the condition r - 2 where r ≡±1 (mod 3).

Lemma 3.2. If r is a positive odd integer such that r ≡ ±1 (mod 3), then equation (1.2) admits sole the positive integer
solution (x,y,z) = (1,1,2).

Proof. Let k1 and k2 be positive integers, and consider the case where r ≡±1 (mod 3). In this context, equation (1.2) can be
reformulated as follows

8r2 +1 = 3k1A, (8r2 +1)x = 3k1xAx (3.26)

r2−1 = 3k2B, (r2−1)y = 3k2yBy (3.27)

where A,B 6≡ 0 (mod 3). Then the equation (1.2) becomes

3k1xAx +3k2yBy = (3r)z. (3.28)

Firstly, let’s consider k1x > k2y, then equation (3.28) can be written as

3k2y(3k1x−k2yAx +By) = 3zrz

this implies that

k2y = z (3.29)

then equation (1.2) becomes

(8r2 +1)x = ((3r)k2)y− (r2−1)y.

Apply Proposition 2.9 , y = 1 is found. When y = 1 equation (3.27) turns into,

(r2−1)y = 3k2yBy = 3k2B. (3.30)

And substituting (3.29) into (3.30) with y = 1

r2 = 3zB+1. (3.31)
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If z ≤ 2, then (x,y,z) = (1,1,2) is evidently the sole solution of equation (1.2). Therefore, let’s assume z = 3. Equation
(1.2) becomes (8r2 + 1)x + r2− 1 = (3r)3. x ≥ 2 gives (3r)3 > (8r2 + 1)x ≥ (8r2 + 1)2 > 82r4, and hence 33 > 82r > 64,
a contradiction. Also it seen that y = 1 and x = 1, the equation (1.2) turns into 8r2 + 1+ r2− 1 = (3r)3 also leads us a
contradiction under the condition r ≡±1 (mod 3). Now, consider the scenario in which z≥ 4. Upon taking equation (1.2)
modulo r4, it becomes evident that y = 1 as a result of Proposition 2.9 [27]. Consequently, the following congruence is
established.

8r2x+ r2 ≡ 0 (mod r4).

This implies that

8x+1≡ 0 (mod r2)

r2 ≤ 8x+1. (3.32)

Substituting (3.31) into inequality (3.32), the following inequality is obtained.

3zB≤ 8x. (3.33)

Also x is bounded as x < z. So (3.33) turns into (3.34)

3zB≤ 8x < 8z

3zB≤ 8z. (3.34)

Consequently, it is evident that no positive integer z can satisfy the condition z≥ 4. Similarly, upon conducting a comparable
analysis in the context where k2y > k1x, it becomes clear that no positive integer z can satisfy z≥ 3.

Finally, consider the scenario where k1x = k2y. By summing equations (3.26) and (3.27), the following relation is
established.

9r2 = 3k1A+3k2B. (3.35)

An examination of this equation will proceed based on the various cases concerning the positive integers k1 and k2.

3.3.1 k1 = 2 and k2 ≥ 3
In the scenario where k1 = 2, it is evident that k2 must be even, given that y is odd. From equation (3.35), the following

relationship can be established

2x = k2y.

This implies the existence of a positive integer k3 such that 2k3 = k2. Substituting this into the aforementioned equation
yields x = k3y. Consequently, equation (1.2) can be expressed as

((8r2 +1)k3)y +(r2−1)y = (3r)z.

Applying Proposition 2.9, it follows that y = 1. Therefore, it is concluded that no solutions exist for x > 2.
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3.3.2 k1 ≥ 3 and k2 = 2
It can be expressed that

k1

k2
=

y
x

where k1x = k2y.Notably, since gcd(x,y) = 1, if there exists an odd prime p ≥ 1 such that p | x and p | y, then, by
Zsigmondy’s Theorem, no solutions for x and y would exist. As a result, it follows that x = 2 and k2 = 2, with y being an odd
integer. Consequently, one can derive

y = k1 ≥ 3 and x = k2 = 2.

Thus, equation (3.28) transforms into

3k1xAx +3k2yBy = (3r)z.

This further simplifies to:

32y(A2 +By) = (3r)z.

If 3 - (A2 +By), it follows that 2y = z. Hence, equation (1.2) can be rewritten as

(8r2 +1)x = ((3r)2)y− (r2−1)y.

Applying Zsigmondy’s Proposition, it is concluded that y = 1, which leads to a contradiction. Thus, it can be stated that no
positive integer solutions exist for x and y, and therefore, z≤ 2.
Assuming 3 | (A2 +By), equations (3.26) and (3.27) can be expressed as

r2−1 = 3k2B = 9B,

8r2 +1 = 3k1A.

Adding these two equations results in

9r2 = 3k1 +9B.

Taking the equation modulo 3, it follows that

1≡ B (mod 3).

Consequently, it becomes evident that no positive integer A can satisfy the condition
3 | (A2 +By). This concludes the proof.

4. Conclusion
This study investigates equation (1.1) with the parameters (a,b,c) = (8,1,3), identifying the unique solution (x,y,z) =

(1,1,2) for r > 1. The findings provide additional evidence supporting Terai’s Conjecture. The objective is to advance the
understanding of such equations and contribute to the development of a generalized form.
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[19] T. Çokoksen, M. Alan, On the Diophantine equation (9d2 +1)x +(16d2−1)y = (5d)z Regarding Terai’s Conjecture, J.

New Theory, 47 (2024), 72-84.



On the Diophantine Equation (8r2 +1)x +(r2−1)y = (3r)z Regarding Terai’s Conjecture — 211/211
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