
Vol: 2, Issue: 2, 2024
Pages:96-107
Received: 15 October 2024
Accepted: 13 December 2024
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
Research Article

DOI: 10.71074/CTC.1562363

ON THE POLYNOMIAL MULTIPLICATION ALGORITHMS FOR POST-QUANTUM
CRYPTOGRAPHY

EBRU YALÇIN1∗ , FIDAN NURIYEVA2,3 AND ERDEM ALKIM2

1 The Graduate School of Natural and Applied Sciences, Department of Computer Science, Dokuz Eylul
University, 35390, Izmir, Türkiye

2 Department of Computer Science, Dokuz Eylul University, 35390, Izmir, Türkiye
3 Institute of Control Systems, The Ministry of Science and Education of the Republic of Azerbaijan,

Baku, Azerbaijan

ABSTRACT. This study explores the multiplication operations carried out on polynomial rings within
lattice-based systems used in post-quantum cryptography. Polynomial rings of high degree are uti-
lized to enhance security in post-quantum cryptography. Since multiplication is the most time-
consuming arithmetic operation on polynomial rings, several algorithms have been suggested to op-
timize newly developed systems by enhancing their efficiency. Typically, these algorithms use the
properties of the chosen polynomial ring to minimize the number of multiplications, however, some
arithmetical tricks can be used to use them for other rings. Therefore, the systems are optimized in
terms of efficiency and cost. In this study, we investigated several multiplication algorithms based
on their complexity and reported the results from the literature for their implementation efficiency.
We have compared those algorithms when they were implemented to perform multiplications on the
same polynomial ring and reported that the ring of the coefficients should be also considered when
comparing the efficiency.

1. INTRODUCTION

In the modern day, as technology advances and becomes more widely utilized, the need to guarantee
the security of systems and networks has become a significant concern due to the possibility of vulner-
abilities such as data breaches and cyber threats. Cryptology safeguards the authenticity and secrecy
of delicate and classified data, shielding it from illegal intrusion. Ongoing research is being conducted
to address emerging challenges in the field of computational difficulties and vulnerabilities in systems,
which have arisen as a result of advancements and contributions to the existing body of knowledge. Due
to advancements in technology and recent research, the introduction of quantum computing has revolu-
tionized the field of science and prompted a reassessment of current cryptography methods.
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Shor’s algorithm is a quantum algorithm that provides a polynomial solution to the discrete loga-
rithm problem, which is used in the current cryptographic protocol [1]. Shor’s algorithm is a significant
technique that utilizes quantum computing principles to perform operations on big integers, namely for
factoring and solving fractional logarithms. These mathematically challenging problems seem to serve as
the foundation for numerous encryption methods. Shor’s algorithm is a prominent method that leverages
the concepts of quantum computing to carry out computations on large integers, namely factoring and
solving fractional logarithms. These mathematically complex difficulties appear to be the basis for many
encryption systems. Shor’s method presents a substantial risk to the security of widely utilized public
key cryptosystems such as RSA and ECC. In 2018, the National Institute of Standards and Technol-
ogy (NIST) in the United States launched a standardization project to tackle these emerging challenges.
Developed specifically to provide a long-term defense against quantum computers, these innovative tech-
niques are based on universally accepted mathematical problems that are difficult for both classical and
quantum technology to solve [2].

Lattice-based systems are the most promising and prominent approach among recently developed sys-
tems. Lattice-based systems are notable due to the elevated complexity of lattice problems, which come
from the challenging nature of mathematical issues. Their characteristics enable lattice-based systems to
offer a resilient encryption mechanism and an effective defense against attacks. Lattice-based systems
perform computations on polynomial rings. The primary benefit of utilizing these systems operating on
polynomial rings lies in their inherent algebraic structure, which enables rapid expression of polynomial
coefficients and proper execution of operations. The efficient storage of polynomial coefficients and the
facilitation of effective operations are made feasible by this structure [3]. While lattice-based systems
offer numerous advantages, polynomial multiplication is a computationally expensive operation. The
computational load of processing the polynomials increases significantly due to the quick increase in
multiplication complexity, which depends on the degree of the polynomials. Novel polynomial multi-
plication algorithms have been suggested to address this issue. These novel multiplication algorithms
employ several techniques to decrease the computational complexity of the point-wise multiplication
process and enhance and optimize overall efficiency.

The primary instances of these multiplication algorithms include the School-Book, Karatsuba, Toom-
Cook, The Number Theoretic Transform (NTT), and Toeplitz Matrix-Vector Multiplication (TMVP)
algorithms. The School-Book algorithm is the most fundamental and commonly used method for poly-
nomial multiplication in literature. This algorithm is implemented by performing a straight multiplication
of two polynomials. Karatsuba is a multiplication algorithm that reduces the total number of multiplica-
tions by employing the divide-and-conquer approach. It accomplishes this by dividing the polynomials
into smaller segments while executing the multiplication. The NTT algorithm is a mathematical transfor-
mation method derived from the Fast Fourier Transform (FFT). It is an enhanced version of the FFT that
has been further developed using number field theory. The NTT algorithm is mostly used for polynomial
multiplication. This study also investigates the TMVP method, which is a specific algorithm that ex-
ploits the Toeplitz matrix structure commonly encountered in lattice-based systems. The Method section
examines a polynomial multiplication algorithm known as the Bruun algorithm [4].
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These multiplication algorithms are seen to be used on many different schemes today. For example,
Kyber [5], Falcon [6], and Dilithium [7], among the projects that made it to NIST’s standardization com-
petition final in post-quantum cryptography are lattice-based systems. These schemes use polynomial
multiplication extensively in their different stages and aim to ensure efficiency and security. They aim
to speed up polynomial multiplications and reduce the complexity of the operation by using polynomial
multiplication algorithms such as NTT and FFT. In this way, large-degree polynomials can be operated
on, allowing complex calculations to be made. Additionally, these algorithms appear to produce accurate
and reliable results. Due to these features, it appears to reduce the load on the processor and optimize en-
ergy consumption. For lower-power devices and embedded systems, these features are important. Thus,
the schemes used in post-quantum cryptography are expected to work successfully in real-life applica-
tions.

Lattice-based cryptography has become a leading candidate for post-quantum security due to its ro-
bustness and reliance on complex mathematical problems. A critical aspect of these systems is poly-
nomial multiplication, a resource-intensive operation that significantly impacts performance. Efficient
algorithms such as NTT and TMVP play a vital role in optimizing cryptographic schemes like NTRU.
This study focuses on improving polynomial multiplication to enhance the efficiency and practicality of
post-quantum cryptographic systems for real-world applications.

In this study, information is given on polynomial multiplication algorithms used in lattice-based sys-
tems. In section two, firstly, the definition and mathematical representation of the polynomial ring and
the definition of polynomial multiplication are given. In the same section, polynomial multiplication al-
gorithms frequently used in lattice-based systems; NTT algorithm, and TMVP algorithm were examined.
In the Third section, Bruun’s algorithm is introduced. In chapter four, the results are given. Finally, in
chapter five, we conclude our paper.

2. POLYNOMIAL MULTIPLICATION

Polynomial multiplication refers to the process of multiplying two polynomials inside the same poly-
nomial ring. The current scenario can be expressed in the following manner.

Definition 2.1. Let R be an accumulative ring, N ∈ N, and 0 ≤ i < N. Let ai,di,c ∈ R be coefficients.
The polynomials a(x) and d(x) are subjected to the polynomial multiplication operation within the same
polynomial ring, resulting in:

c = a(x) ·d(x) (1)

ck =
k

∑
i=0

aidk−i +
N−1

∑
i=k+1

aidN+k−i = ∑
j+i≡k
(mod N)

aid j (2)

98



The polynomial multiplication operation takes place in the ring R = Zq/(xN −1), and the factors and
product elements become elements of the ring R = Zq/(xN −1). Specifically, if 2x+1 = c1, then 2x+1
serves as a factor and a product element within the ring R = Zq/(xN −1) [8].

Polynomial multiplication is typically carried out on polynomials with high degrees. Multiplication,
which is one of the arithmetic operations carried out on polynomials, requires a greater amount of time
and computational power compared to other operations. Consequently, researchers have conducted in-
vestigations to enhance this circumstance by developing polynomial multiplication algorithms. These
algorithms are implemented on various systems based on specific requirements. Polynomial multiplica-
tion algorithms can be categorized as follows: School-Book, Toom-Cook, Number Theoretic Transform,
Toeplitz Matrix-Vector Product, and Bruun.

The subsequent part delves into a thorough examination of polynomial multiplication algorithms, an-
alyzing each one individually. Explicit formulations and efficient algorithms are provided.

2.1. Number Theoretic Transform:
The Number Theoretic Transform (NTT) is a mathematical technique mostly employed for solving

the factorization issue. Its output is derived from the Fast Fourier Transform. According to [9] it is
also claimed that this is a version of DFT that operates on finite fields rather than complex numbers.
The method originated as an extension of the FFT, although its precise output remains uncertain. Sev-
eral mathematicians and computer scientists made significant contributions to the initial investigations
of NTT. S.S. Winograd introduced a polynomial evaluation procedure utilizing the Chinese remainder
theorem [10] after examining the literature. The investigation led to the invention of NTT, which focuses
on the remaining parts based on prime numbers. Using the findings from conducted studies, an algorithm
was designed that utilizes CRT and modular arithmetic operations to accomplish polynomial multiplica-
tion, incorporating novel features. He enhanced the development of NTT’s applications by incorporating
this algorithm. NTT has achieved its current level of usage through the contributions of fundamental
research areas like FFT and modular arithmetic. These areas have been crucial in developing efficient
algorithms for polynomial multiplication and polynomial factorization.

NTT is a mathematical operation called the fractional Fourier transformation, which is defined on the
ring Rq = Zq/Φm(x). It performs fast calculations on polynomials, hence improving the efficiency of
polynomial multiplication. A polynomial a(x) over the ring Rq, with a degree of n−1, can be represented
as:

a(x) =
n−1

∑
i=0

aixi (3)

The NTT of a polynomial ā(x) of degree n−1 on the ring Rq is represented in polynomial form as:

ā =
n−1

∑
i=0

āixi (4)
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where the coefficients ā can be defined using the following (2.38):

ā =
n−1

∑
j=0

ā jwi· j (mod q) for i = 0,1,2, . . . ,n−1. (5)

The equation involves a twiddle factor, denoted as ω , which must satisfy the criteria ωn ≡ 1 (mod q),
and ω i ̸= 1 (mod q) for all i < n. The NTT operation is executed by computing this equation for every
value of i ranging from 0 to n−1.

The NTT operation employs a constant known as the twiddle factor, ω ∈ Zq, which represents the
n-th root of unity. The method utilizes a basic n-th root of unity, ω ∈ Zq, which fulfills the requirements
ωn ≡ 1 (mod q), ω i ̸≡ 1 (mod q) for all i < n, and q ≡ 1 (mod n). The inverse Number Theoretic
Transform (INTT) operation follows a similar method, except in the last step, the element ω−1 ∈ Zq is
employed instead of ω . Furthermore, in the mathematical field Zq, while performing the final step of the
Inverse Number Theoretic Transform (INTT) calculation, the resulting coefficients are multiplied by the
inverse of n−1 [11].

2.2. Toeplitz Matrix-Vector Product:
The TMVP algorithm is a highly efficient method for multiplying matrices and vectors, specifically

designed to exploit the distinctive characteristics of Toeplitz matrices. The actual origin and date of the
proposal for TMVP are uncertain, although it is believed that the concept of utilizing Topelitz matrices for
efficient computations is derived from the research conducted by Otto Toeplitz. German mathematicians
specialized in the areas of algebraic and numerical analysis. Toeplitz matrices are square matrices whose
each diagonal has constant values. These matrices possess mathematical properties that make them useful
for efficient calculations [12]. Subsequent works further investigated and elaborated on the concept of
utilizing Toeplitz matrices for polynomial multiplication. Utilizing Toeplitz matrices aids in diminishing
the overall intricacy through the pre-calculation and reuse of certain pieces. Furthermore, when multiple
multiplication operations are required on a single matrix, TMVP executes these operations efficiently by
avoiding redundant calculations, hence greatly enhancing efficiency. Given this circumstance, utilizing
it in polynomial multiplication operations, which are crucial in lattice-based systems prevalent in post-
quantum cryptography, offers several benefits. Toeplitz matrices are commonly employed in various
cryptographic applications, as evidenced by their frequent appearance in the literature [13], [14], [15].

A TMVP (n-dimensional) can be computed by utilizing three TMVPs (n/2-dimensional) in a 2-way
TMVP formula. Denote the half-dimensional divisions of T as T0, T1, and T2, and the half-dimensional
partitions of the vector V as V0 and V1. The calculation of the N-dimensional matrix-vector multiplication
is performed in the following manner:

T ·V =

(
T1 T0
T2 T1

)(
V0
V2

)
=

(
P0 +P1
P0 −P2

)
(6)

and
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P0 = T1(V0 +V1),

P1 = (T0 −T1)V1,

P2 = (T1 −T2)V0

(7)

The complexity of TMVP2 can be expressed as

MTMVP2(n) = 3M(n/2)+3n−1

based on the operations mentioned above. Furthermore, an n-dimensional Total Mean Value Projection
(TMVP) can be computed by utilizing three n/3-dimensional TMVPs in a 3-way TMVP equation. By
following the same procedure as for TMVP2, we can determine the existence of TMVP3. The complexity
of TMVP3 can be expressed as

MTMVP3(n) = 6M(n/3)+5n−1.

It is evident that when performing polynomial multiplication, various formulas are generated for TMVPs
based on their size and effectiveness. The article [16] provides a more detailed analysis of the process of
developing additional TMVP formulas using the given formulas mentioned above.

2.2.1. Polynomial Multiplication Modulo xn ±1 via TMVP.
In the polynomial multiplication operation, when performed on Z[x]/(xn ± 1), the resulting polyno-

mial Z[x] should be reduced by using xn ±1. TMVP leverages the structure of Toeplitz matrices and the
properties of polynomial multiplication to optimize the operations to be executed. TMVP utilizes poly-
nomial multiplication operations on xn ± 1 to answer a wide range of issues across several disciplines.
The modulo operation is of great importance in the coding and decoding procedures of Error-correcting
codes as it enables the identification and correction of errors. Cryptography employs it in several sys-
tems, including digital signatures and encryption algorithms. It offers a highly effective computational
capability for the systems in which it is employed. Since reduction modulo xn ± 1 is only a addition or
subtraction T2 becomes ±T0, thus equ. 6 and equ. 7 becomes:

T ·V =

(
T1 T0
±T0 T1

)(
V0
V2

)
=

(
P0 +P1
P0 −P2

)
(8)

and
P0 = T1(V0 +V1)

P1 = (T0 −T1)V1

P2 = (T1 ±T0)V0

(9)
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3. FACTORIZATION OF THE CYCLOTOMIC POLYNOMIAL x2k
+1

The Bruun technique, as described by George Bruun in his 1978 publication, is a Discrete Fourier
Transform algorithm specifically designed for real numbers with a logarithmic basis [17]. These pro-
cesses, which are associated with the traditional complex FFT, allow for the utilization of new FFT
variations that exclusively operate with real coefficients. Additionally, the implementation of new FFT
algorithms involves utilizing only half the number of real multiplications compared to existing FFT meth-
ods.

The Bruun method is the method employed to ascertain the factors of a polynomial that encompasses
all unit roots. This method utilizes the structural characteristics of the unit roots of polynomials to
expedite the computation of polynomial factors. This approach, employed in areas such as number
theory and modular arithmetic, is said to enhance the efficiency of polynomial calculations in post-
quantum cryptography. Bruun’s approach is designed to factorize the roots of a polynomial of degree n.
It achieves this by recursively finding the explicit roots of the polynomial.

The new structure demonstrates a logarithmic reduction in calculation time and achieves process-
ing efficiency by dividing the DFT operations into segments and executing certain parallel operations.
Therefore, it can be stated that intricate discrete Fourier transform (DFT) processes have experienced an
increase in efficiency. In the classical approach of FFT, N/2logN complex multiplication operations are
performed, where two complex numbers are multiplied in each operation. The new method, in contrast
to the old one, was demonstrated to involve the multiplication of a real number and a complex number.

Using Bruun’s algorithm, the same outcome as the classical technique can be achieved by employing
the multiplication of real and complex numbers instead of complex multiplications. It is evident that
the new algorithm has decreased the utilization of intricate multiplication in the classical way by half.
Therefore, it is widely acknowledged that the Bruun algorithm operates with greater speed and efficiency.

This section demonstrates the complete separation of the polynomial x2k
+ 1 on Fp into separable

polynomials. p is a prime number that fulfills the criterion p ≡ 3 (mod 4). Therefore, it is demonstrated
that it is possible to create an irreducible polynomial over Fp with a degree that is a power of 2. Therefore,
it is evident that this approach can be effectively utilized in FFT applications within limited regions.

The following theorem pertains to the situation when p is a prime integer and is entirely irreducible on
Fp, subject to the constraints of p ≡ 3 (mod 4), meaning p ≡−1 (mod 2k+1) [18].

Let p be a prime number that satisfies p ≡ 3 (mod 4). The process of complete factorization of the
polynomial x2k

+1 on the Fp field is investigated. To simplify the problem, it can be seen that the roots
of the polynomial x2k

+1 are actually the primitive x2k
+1-th roots of unity in an expansion field of Fp.

Therefore, the goal is to construct the smallest polynomials on Fp for primitive x2k
+1-th roots of unity

where k is an integer greater than or equal to 1. If we consider that the degree of every i
Let the highest exponent of 2 in p+1 be denoted as 2a. The expression p2 −1, where p is a variable,

represents the maximum power of 2 and is denoted as 2a+1. Assuming α ∈ Fp2 , let’s consider that it has
a degree of 2a+1. It should be noted that the polynomial x2e

+α is irreducible over the field Fp2 for e ≥ 0.
According to this information, the 2e+1-th order cannot be broken down on Fp, and the primitive roots
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of the 2a+e+1-st order are given as (x2e
+α)(x2e

+α p). The article states that Fp2 = Fp(i), where i is the

square root of -1. Additionally, since f is defined as Fp2 → Fp2 , it is expressed as (1+ x)
p−1

2 [19], [20].
The following formula provides the steps for calculating the square root in Fp2 . The formula applicable

to any second-order α residue in Fp(i) is given as follows.

√
α =

iα
p+1

4 , if α
p−1

2 =−1,(
1+α

p−1
2

) p+1
2

α
p+1

4 , otherwise.
(10)

If k is greater than 0, and the order of the element α is 2k, both
√

α and
√
−α have an order of x2k

+1.
If we define the starting point as i =

√
−1, it becomes evident that the numbers with an exponent of 2k

can be determined using a recursive process. Prior to factoring the polynomial x2k
+ 1, it is essential to

calculate the minimum polynomials of all the elements produced in Fp.

Theorem 3.1. Let H1 = {0}.

Hk =±

{(
u+1

2

) p+1
4
}

for u ∈ Hk−1 (11)

For every value of k from 1 to a−1, the cardinality of Hk is equal to 2k−1,

x2k
+1 = ∏

u∈Hk

(
x2 −2ux+1

)
(12)

For any integer e ≥ 0,

x2k
+1 = ∏

u∈Hk

(
x2e+1

−2ux2e
−1

)
(13)

The aforementioned theorem can be used for additional cyclotomic polynomials; however, it should
be noted that these polynomials are not directly connected to the Bruun paper. Nevertheless, there exists
a connection between them. Bruun’s Algorithm utilizes polynomial factorization to conduct DFT com-
putations. This is analogous to the factorization of cyclotomic polynomials, as both approaches involve
dividing polynomials into smaller components. The relationship between Bruun’s algorithm and cyclo-
tomic polynomials is established by the factorization of polynomials and the utilization of unit roots. This
connection offers enhanced efficiency and rapidity in DFT calculations and polynomial factorizations.

4. RESULTS

The concluding part is organized into three distinct topics. Initially, an analysis was conducted on the
number of multiplications and their complexity, which are determined by specific parameters (n), for
the multiplication operation. This operation is known to be the most time-consuming and costly among
the various operations performed on polynomial rings. The second title provides a general explanation
of the Bruun approach and includes some inferred information. In the last heading provides details on
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polynomial multiplication methods and discusses their efficiency.

4.1. Multiplication Algorithms:
Below is a table quoted from the article [21], examining the number of multiplications and time com-

plexities in multiplication algorithms depending on certain n parameters. In this table, one of the fre-
quently used polynomial multiplication algorithms; Scool-Book, Karatsuba, Toom-Cook-way, TMVP2,
TMVP3, TMVP4 and NTT algorithms were examined.

TABLE 1. Complexities of multiplication algorithms

No Multiplication Algorithms Complexity

1 School-Book T (n) = 2n2 −2
2 Karatsuba T (n) = 3T (n/2)
3 Toom-Cook-k T (n) = (2k−1)T (n/3)
4 TMVP-2 T (n) = 3T (n/2)+3n−1
5 TMVP-3 T (n) = 6T (n/3)
6 TMVP-4 T (n) = 7T (n/4)+5n−1
7 NTT T (n) = 3

2n logn+n
8 Bruun T (n) = 3

2n logn+n

Using the information in Table 1, some inferences for multiplication algorithms for certain parameters
are given in Table 2 below.

We have chosen a specific parameter set of NTRU, known as ntruhrss701, for the purpose of com-
paring algorithms. In this parameter set, the value of q is 213, n is 701, and f (x) is defined as x701 − 1.
Consequently, the polynomial ring can be represented as Z213[x]/(x701 −1).

To carry out multiplication in the ring Z213[x]/(x701 − 1), TMVP must divide the input polynomials.
Given that n is a prime integer, it is necessary to select a size that is larger than n to perform the multipli-
cation calculation. Since the majority of implementations focus on sizes in the form of a′ = 2k3lt, where
t is less than 16 for optimal performance, we computed the number of recursion steps for the two shortest
possibilities within the chosen polynomial ring.

704
TMVP4−−−−→ 176

TMVP2−−−−→ 88
TMVP2−−−−→ 44

TMVP2−−−−→ 22
TMVP2−−−−→ 11 (14)

720
TMVP4−−−−→ 180

TMVP3−−−−→ 60
TMVP3−−−−→ 20

TMVP2−−−−→ 10 (15)
The T (n′) values in Table 2 were computed based on the complexity provided in Table 1. The number

of cycles reported by [15], [22], and [23] were all measured on the ARM Cortex-M4 Discovery board,
which served as the common target platform. It can be seen that Table 2 below was created using the
parameters 704, 720, 1440, and 1536.
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Table 2 comprises T (n) values computed based on the time complexity algorithms provided in Table 1.
Upon examination and comparison of the TMVP, NTT, and Toom-Cook multiplication algorithms, it is
evident that NTT-based polynomial multiplication necessitates fewer operations, even for dimensions of
2x. However, it is important to note that NTT does require modular arithmetic operations. In contrast, the
TMVP and Toom-Cook algorithms are capable of operating with two basis powers, eliminating the need
for additional modular reduction following elementary arithmetic operations. While the TMVP algorithm
incorporates polynomial reduction in its multiplication operations, it necessitates fewer operations.

TABLE 2. Multiplication Cycles for TMVP, NTT, and Toom-Cook Algorithms

TMVP NTT Toom-Cook

n′ T (n′) #Cycles T (n′) #Cycles T (n′) #Cycles

704 115331 142252 [24] - - 68607 172882 [22]
720 125519 - - - 52500 -

1440 - - 45360 141000 [23] - -
1536 - - 42240 148000 [23] - -

This study examines various multiplication algorithms utilized to enhance the efficiency of Lattice-
based cryptographic protocols. It provides comparisons of these algorithms based on their theoretical
complexity and current usage in the field. An assessment was conducted based on certain criteria on the
NTRU scheme, which is one of the lattice-based systems that reached the final stage in the standardization
competition hosted by NIST [21].

Lattice-based systems have excelled among the various schemes in the competition set by NIST in
the field of post-quantum cryptography. These systems operate on polynomial rings. To optimize the
efficiency of the systems, several novel polynomial multiplication algorithms have been developed to
minimize the number of multiplication operations required. The algorithms used in this study are Karat-
suba, Toom-Cook, NTT, TMVP, and the Bruun polynomial multiplication algorithm mentioned in the
technique section.

When the research on polynomial multiplication algorithms in the literature is generally examined, it is
seen that various comparisons and evaluations have been made for these algorithms in terms of efficiency,
security, and suitability for different applications. Lattice-based algorithms such as Karatsuba, Toom-
Cook, NTT, and TMVP will be used in post-quantum cryptography. It can be said that it is among the
polynomial multiplication algorithms that are thought to be very important for systems. It is obvious that
the proposed algorithms will bring new features, optimization techniques, and efficiency improvements
to this field.

5. CONCLUSION

In this study, multiplication operations performed in lattice-based systems on polynomial rings in
post-quantum cryptography are examined. It is obvious that the operation that causes the most time
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and cost among the operations on polynomial rings is the multiplication operation. If the value of the
parameter n is chosen as 701 for the NTRU scheme, it has been shown that the NTT-based polynomial
multiplication algorithm exhibits the highest performance, despite its higher memory usage. TMVP-
based polynomial multiplication algorithms have demonstrated superior memory efficiency compared
to other algorithms, resulting in only a 1% decrease in multiplication operations. Bruun’s algorithm,
another suggested approach, achieves the same outcome as other methods by performing multiplication
operations on complex and real values. As a future work, we plan to compare the implementation of the
Bruun algorithm with NTT for the same polynomial ring.
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