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Abstract: This study investigates the impact of violating the local item 

independence assumption by loading certain items onto a second dimension on test 

equating errors in unidimensional and dichotomous tests. The research was 

designed as a simulation study, using data generated based on the PISA 2018 

mathematics exam. Analyses were conducted under 36 different conditions, 

varying by sample sizes (250, 1000, and 5000), test lengths (20, 40, and 60 items), 

and proportions of items loaded onto the second dimension (0%, 15%, 30%, and 

50%). A "random groups design" was used, resulting in the creation of 3600 

datasets through 100 replications. The results revealed that the equating methods 

based on classical test theory (CTT) showed varying levels of error depending on 

the error types and conditions. Among the item response theory (IRT) scale 

transformation methods,  the Stocking-Lord method produced the least error values 

and was the least affected by violations of the local independence assumption. 

Additionally, the observed score equating method demonstrated lower root mean 

square error (RMSE) values than the true score equating method and was less 

affected by local independence violations. The SS-MIRT observed score equating 

method yielded lower RMSE values compared to the other methods and was found 

to be more robust against the violation of the local independence assumption. 

1. INTRODUCTION 

In testing, to prevent students from engaging in cheating or from recalling and answering 

questions based on previous tests, different test forms with identical characteristics are 

developed to better assess students' actual performance. These tests, referred to as parallel or 

alternative forms, aim to measure the same latent trait or construct and are characterized by 

having the same true score and error variance (De Gruijter & Leo, 2007). Although these tests 

are assumed to be parallel, it is emphasized that developing truly parallel forms is extremely 

challenging in practice (Aiken, 2020; Hambleton et al., 1991). 

Parallel tests may exhibit minor differences, and the method used to account for these 

discrepancies is known as test equating (Kolen & Hendrickson, 2013). Test equating is a 

statistical process that adjusts the differences between parallel tests, ensuring that scores 

obtained from these tests can be used interchangeably (Kolen & Brennan, 2014). It also involves 
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converting the unit systems of parallel tests to one another, a necessary step for the tests to be 

deemed equivalent (Angoff, 1984). Within the framework of Classical Test Theory (CTT), test 

equating methods are categorized into three types: mean equating, linear equating, and 

equipercentile equating (Kolen & Brennan, 2014). Mean equating is the least restrictive 

(Sansivieri et al., 2017) and the simplest method (Finch et al., 2014), which focuses on the 

averages of the tests being equated. This equating method operates on the assumption that if 

the means of the tests are equal, the scores obtained from these tests will also be equal, with 

score differences attributed to variations in the difficulty levels of the tests. 

The linear equating method (Crocker & Algina, 1986), appropriate when the score distributions 

of the X and Y forms differ only in terms of mean and standard deviation, is a method that 

adjusts for differences in test difficulty based on the score scale (Kolen & Brennan, 2014). In 

linear equating, scores that are the same number of standard deviations away from the means 

of the tests are equated to be equal (Kolen & Brennan, 2014). The fundamental assumption 

underlying linear equating is that the score distributions are similar, except for the differences 

in the means and standard deviations (Crocker & Algina, 1986). It has been argued that applying 

this method in exams with participants of similar ability levels yields more accurate equating 

results (Donlon, 1984). 

Equipercentile equating seeks to identify which scores on the tests being equated have the same 

percentile rank (Crocker & Algina, 1986). If a score on the new form and a score on the 

reference form hold the same percentile rank within the group, these scores are considered 

equivalent for that group of test takers (Livingston, 2014). Since the individuals to whom the 

test forms being equated are administered represent a sample drawn from a particular 

population, the raw score distributions may appear irregular when graphed due to random error 

(Cui, 2006). Additionally, the absence of scores corresponding to each percentile in the 

distribution may contribute to irregularities in the score distribution (Kolen & Brennan, 2014). 

For these reasons, random error is present when estimating equating relationships between test 

forms’ scores. One method to minimize random error is using smoothing techniques. 

Smoothing is a process that adjusts sample distributions to resemble the population distribution 

more closely (Kolen & Brennan, 2014; Lim, 2016). Smoothing can be performed in two ways: 

pre-smoothing and post-smoothing methods. Another set of commonly used equating methods 

in test equating are Item Response Theory (IRT)-based equating methods. The first step in IRT-

based equating is to estimate the item and ability parameters of the test forms. Since the 

parameters obtained from different forms must be placed on the same scale, a scale 

transformation is required first (Kolen & Brennan, 2014).  

The underlying principle of scale transformation is to align the item and ability parameter 

estimates obtained from both Form X and Form Y on the same scale. This is accomplished by 

converting the item and ability parameters estimated from Form X data to the scale of the 

parameters estimated from Form Y data. To achieve this, it is first necessary to calculate the 

slope and intercept constants, known as linking coefficients. The slope constant is denoted by 

A, and the intercept constant is denoted by B. When the separate calibration method is applied 

to estimate the item and ability parameters of the test forms to be equated, the corresponding 

value of the ability level (θ) for person i in Form I on Form J is obtained as follows (Kolen & 

Brennan, 2014): 

𝑄𝐽𝑖 = 𝐴𝑄𝐼𝑖+B             (1) 

𝑄𝐽𝑖 =The ability level of person i in Form J 

𝑄𝐼𝑖 = The ability level of person 𝑖 in Form 𝐼 

A: Slope constant 

B: Intercept constant 
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In addition to the transformation of ability levels, item parameters (item difficulty and item 

discrimination) are transformed using the Equations 2 and 3 provided below. 

𝑎𝐽𝑖 =  
𝑎𝐼𝑗

𝐴
                       (2) 

𝑏𝐽𝑗 = 𝐴𝑏𝐼𝑗 + 𝐵               (3) 

𝑎𝐽𝑖 = The item discrimination parameter of item j in Form J 

𝑎𝐼𝑗 = The item discrimination parameter of item j in Form I 

𝑏𝐽𝑗 = The difficulty parameter of item j in Form J 

𝑏𝐼𝑗 = The difficulty parameter of item j in Form I  

Since the lower asymptote parameter, i.e., the c parameter, is on a probability scale, no 

transformation is applied (Kolen & Brennan, 2014). That is, the c parameter remains constant 

for both forms and is symbolized as shown in Equation 4. 

𝑐𝐽𝑗=𝑐𝐼𝑗             (4) 

The most commonly used scale transformation methods in the literature are the mean/sigma 

method (Marco, 1977), mean/mean method (Loyd & Hoover, 1980), Haebara method (Haebara, 

1980), and Stocking-Lord method (Stocking & Lord, 1983) (Kolen & Brennan, 2014). The first 

two methods are referred to as “moment methods”, while the remaining ones are called 

“characteristic curve methods”. 

The mean-sigma method, defined by Marco (1977), is also referred to as the mean-standard 

deviation method. In the mean-sigma method, the average and standard deviation of the 

difficulty parameter are used to obtain the slope (A) and intercept (B) constants. In the mean-

mean transformation method, defined by Loyd and Hoover (1980), the average of the item 

difficulty and item discrimination parameters of the test forms to be equated is used (Kolen & 

Brennan, 2014). Baker and Al-Karni (1991) and Ogasawara (2000) stated that the mean-mean 

method provides more stable results than the mean-sigma method, as the means are more stable 

than the standard deviations, and thus, it can be preferred over the mean-standard deviation 

method. Kolen and Brennan (2014) suggested that the mean-sigma method might sometimes 

be preferred over the mean-mean method due to the more stable estimates of the b parameter 

compared to the a parameter estimates. They recommended that equating should be done using 

both methods and that the raw/scale score transformations obtained from both methods should 

be compared. 

An issue related to moment methods is that the item parameter estimates may generate nearly 

identical item characteristic curves (ICCs) across the ability range created by the test takers' 

scores. However, for an item with different item difficulty parameter values and similar ICCs, 

the mean-sigma method will be influenced by differences in the b parameter estimates. The 

primary cause of this issue is that moment methods do not simultaneously consider item 

parameter estimates during scale transformation, meaning the parameters are not estimated 

concurrently. Haebara (1980) developed a method that simultaneously considers all parameter 

estimates, and later, Stocking and Lord (1983) proposed different methods similar to this 

approach. Both methods have been referred to as characteristic curve methods (Kolen & 

Brennan, 2014). 

Once the parameters from different test forms have been placed on the same scale using these 

transformation methods, the IRT-based equating process can be applied. IRT-based equating 

methods include true score and observed score equating. The true score equating method, based 

on the mean of the conditional score distribution, assumes that for a given 𝜃𝑖, the true scores 𝜏𝑋 

(𝜃𝑖) and 𝜏𝑌 (𝜃𝑖) are considered equivalent. The true score equivalent on Form Y for a given true 

score on Form X is defined as 𝜏𝑋
−1 corresponding to the true score 𝜏𝑋 (Kolen & Brennan, 2014). 
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The other equating method in IRT, known as the observed score equating method, utilizes the 

IRT model to estimate the distribution of the number of correctly answered items observed in 

each of the test forms to be equated. Subsequently, the equating process is conducted using 

equipercentile equating methods (Kolen & Brennan, 2014). 

After discussing IRT equating methods, it is pertinent to briefly explain the local item 

independence assumption, which is one of the fundamental assumptions of IRT. Yen (1993) 

interpreted this assumption to mean that the true score or latent trait value contains all the 

information regarding the test taker's performance and that the contribution of each item in the 

test should be independent of the contributions of other items. This assumption is best 

understood within the context of IRT models, indicating that for a given value of the latent 

variable θ, the joint probability of correct responses to a pair of items is equal to the product of 

the probabilities of correct responses to the individual items. This relationship is mathematically 

represented in Equation 5 (Chen & Thissen, 1997). 

𝑝(𝑈 = 𝑈|𝜃) = ∏ 𝑝(𝑢𝑖
𝐼
𝑖=1 |𝜃) = 𝑝(𝑢1|𝜃)𝑝(𝑢2|𝜃) … 𝑝(𝑢1|𝜃)         (5) 

In summary, if the IRT model is correctly specified, item responses should be locally 

independent when the latent trait, referred to as theta (θ), is held constant (Yen, 1984). In other 

words, this implies that the test taker's response to any given item in the test does not influence 

their response to another item. 

The violation of this assumption, which leads to biased estimates of person and item parameters, 

an overestimation of reliability, and biased calculations of equating errors (Chen & Thissen, 

1997; Sireci et al., 1991; Tuerlinckx & De Boeck, 2001), should not be overlooked. Some 

researchers (Sireci et al., 1991; Wainer, 1995; Wainer & Thissen, 1996; Wainer & Wang, 2000; 

Yen, 1993) have reported findings indicating that when there is dependence between items, the 

standard error estimation of measurement is low within the framework of classical test theory, 

and consequently, the reliability coefficient is estimated to be higher. The concern that applying 

unidimensional IRT-based test equating procedures to equate test scores, when the test forms 

are multidimensional, may lead to erroneous equating results has prompted researchers to 

develop Multidimensional Item Response Theory (MIRT)-based equating procedures. The 

objective of MIRT test equating is consistent with that of the IRT equating process; however, 

the latent trait universe is generally multidimensional rather than unidimensional. This 

complexity increases as the number of dimensions in the test rises, making it more challenging 

to position scores from scale linking or parallel forms within the same coordinate system 

(Peterson, 2014). 

Lee and Brossman (2012) hypothesized that item types are the source of dimensionality in 

mixed-format tests and proposed an observed score equating method to equate these tests. In 

this method, responses to each item type (open-ended and multiple-choice) are associated with 

two abilities (θ1, θ2), and each latent trait is modeled within two unidimensional IRT 

frameworks. This equating method proposed by Lee and Brossman (2012) is referred to as the 

Simple Structured MIRT (SS-MIRT) observed score equating method, and the assumptions of 

this method are presented below: 

a) The items in the test measure a characteristic corresponding to a particular item type and 

are associated with these characteristics. 

b) Each item group can be modeled by a unidimensional IRT model. 

c) Test takers responding to both the new and old forms are considered randomly equivalent 

with respect to 𝜃1 and 𝜃2. 

To perform SS-MIRT observed score equating, items are first calibrated using the SS-MIRT 

model. 𝜃1 and 𝜃2 are calibrated separately for the X and Y forms. The parameter estimates for 

𝜃1  items in the test forms are placed on the same 𝜃1  metric. Similarly, the parameter estimates 

for 𝜃2 items in the test forms to be equated are placed on the same 𝜃2metric. Additionally, in 
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the randomized groups design, the correlation between the 𝜃1 and 𝜃2 traits is assumed to be 

equal for both groups. 

Based on the item parameter estimates, conditional observed score distributions are obtained 

for each form across each latent trait dimension (𝜃1 and 𝜃2). These distributions can be 

generated using an extended version of the Lord-Wingersky algorithm (Lee & Brossman, 

2012). The total observed score is the sum of the weighted scores from different item types or 

content areas (𝑋 = 𝑤1𝑋1 +  𝑤2𝑋2 ). 

To generate marginal total score distributions, the conditional total score distributions are 

summed over a bivariate latent trait distribution, g(𝜃1 , 𝜃2), as in Equation 6: 

𝑓(𝑥) = ∫ ∫ 𝑓(𝑥|𝜃1, 𝜃2
∞

−∞

∞

−∞
)𝑔(𝜃1, 𝜃2)𝑑𝜃1𝑑𝜃2            (6) 

The marginal observed score distributions are computed for both forms. Then, based on these 

distributions, the test forms are equated using equipercentile equating methods. 

Equating methods based on CTT and IRT are critically important for ensuring the fair and 

comparable evaluation of tests. Numerous studies have compared the performance of these 

methods in terms of accuracy, stability, and bias, identifying which method is more effective 

under specific conditions. These studies offer significant findings to enhance the accuracy of 

test equating processes, contributing both theoretically and practically. 

One of the studies in this field was conducted by Woodruff (1989), who analyzed and compared 

equating methods both analytically and empirically in scenarios where the covariance between 

test items and anchor items varied. The study highlighted that the Angoff-Levine method was 

more sensitive to the lack of content balance between test and anchor items compared to the 

Tucker method. Furthermore, Woodruff emphasized that the Congeneric-Levine method 

performed reasonably well in addressing unexpected situations in practice. However, he argued 

that the Tucker or Angoff-Levine methods could be more straightforward to apply than the 

Congeneric-Levine method, provided their assumptions were satisfied. Hanson et al. (1994) 

examined smoothing equipercentile equating (pre-smoothing and post-smoothing) and linear 

equating methods under a random groups design. They reported that both smoothing methods 

improved the estimation of the equipercentile equating function and observed that the two 

methods exhibited similar performance in terms of equating error. Tsai (1997) demonstrated 

that the equating error in traditional test equating methods decreased as the sample size 

increased. However, he also determined that equipercentile equating required larger sample 

sizes compared to linear and mean equating methods. Skaggs (2005) investigated the 

effectiveness of equating with small sample sizes and concluded that equating should not be 

performed when the sample size is 25 or fewer. As the sample size increases, the standard error 

of equating decreases, and bias shows minimal variation. These findings once again emphasize 

the importance of selecting the appropriate method and sample size in research applications. 

Studies conducted in Türkiye have also examined the effectiveness of equating methods based 

on CTT. Öztürk and Anıl (2012) observed that equipercentile equating was more appropriate 

than linear equating when comparing tests administered at different times. Demir and Güler 

(2014), in their study aimed at testing the statistical equivalence of different forms of 

concurrently administered tests, identified the Braun-Holland linear equating method as the 

most suitable. Tan (2015) compared polynomial and beta4 pre-smoothing methods with cubic 

spline post-smoothing methods under a single group design for equipercentile equating, finding 

that all three equating methods were effective. However, when considering the average 

bootstrap standard error and moment preservation criteria, they concluded that pre-smoothing 

methods resulted in fewer errors than cubic spline post-smoothing methods in small samples, 

with the beta4 pre-smoothing method being more suitable for use. Karagül (2020) observed 

that, in small sample groups, as sample size increased, equating error, bias, and RMSE values 

decreased for all equating methods compared. Furthermore, for sample sizes below 100, mean 
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equating produced fewer errors. These findings emphasize the importance of selecting the 

appropriate equating method, particularly for small sample sizes. 

Karkee and Wright (2004) compared the performance of scale transformation methods and 

found that characteristic curve methods generated fewer errors than moment methods, with the 

Stocking-Lord method being the least error-prone. Kilmen (2010) emphasized that the 

Stocking-Lord scale transformation method produced fewer errors, while the mean-mean and 

mean-sigma methods resulted in more errors. Additionally, it was found that equating errors 

decreased as the sample size increased and when the ability levels of test participants were 

similar. Wang (2012) evaluated the performance of true and observed score equating methods 

based on factors such as test length, forms with different difficulty levels, ability distribution, 

parameter estimation methods, and test format. The results indicated that true and observed 

score equating produced very similar outcomes. Furthermore, for the same sample size, longer 

tests had fewer equating errors compared to shorter tests. Aksekioğlu (2017) found that the 

mean-sigma method was the least error-prone among the scale transformation methods. 

Regarding test equating methods, the author found that true and observed score equating 

provided similar results, with the observed score equating method producing fewer errors than 

the true score equating method. 

Petersen et al. (1983) compared CTT and IRT-based equating methods and noted that for 

parallel tests, linear equating methods based on CTT were sufficient. However, when tests 

varied in terms of content and length, IRT methods provided more stable results. Han et al. 

(1997) compared the IRT true and observed score equating methods with the unsmoothing 

equipercentile equating method and found that the IRT true score equating method produced 

more stable results than both the IRT observed score and unsmoothing equipercentile equating 

methods. However, they also noted that the differences in equating stability among these three 

methods were minimal. Hagge (2010) emphasized that IRT methods, particularly in terms of 

bias and standard error, demonstrated better performance, with the IRT observed score equating 

method showing the lowest error values. Liu and Kolen (2011) found that IRT methods 

produced fewer errors in terms of bias and RMSE and were more robust to group differences. 

Powers et al. (2011) examined the sensitivity of the frequency estimation method, chained 

equipercentile equating, and the IRT true and observed score equating methods to group 

differences and found that these methods were not sensitive to group differences. They also 

noted that IRT equating methods produced less systematic equating error compared to 

traditional methods. Tanberkan Suna (2018) investigated the effects of violations of group 

invariance and found that, in addition to the Tucker and Braun-Holland equating methods, the 

mean-mean scale transformation method was more suitable for violations of group invariance. 

Moreover, the IRT observed score equating method was found to provide better results than the 

true score equating method. Mutluer (2021) compared CTT-based test equating methods, such 

as linear and equipercentile equating, and found that the equipercentile equating method 

produced fewer errors. Furthermore, among IRT scale transformation methods, the Stocking-

Lord method provided better results, and when comparing the IRT true and observed score 

equating methods, the true score equating method produced fewer equating errors. 

A review of the literature indicates that although there is an extensive body of research on test 

equating methods, studies specifically focusing on MIRT-based equating methods have only 

gained momentum in recent years. Consequently, research in this area remains relatively scarce. 

Lee and Brossman (2012) introduced the Simple-Structure Multidimensional Item Response 

Theory Observed Score Equating (SMO) method, founded on the premise that applying 

Unidimensional Item Response Theory (UIRT) equating methods to tests with a 

multidimensional data structure leads to inaccurate equating relationships. In their study, the 

researchers utilized multidimensional tests composed of items, each designed to measure a 

single proficiency. This research involved mixed-format tests incorporating both multiple-
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choice and constructed-response items. Results from both real and simulated data demonstrated 

that the SMO method yielded satisfactory equating outcomes when the data were 

multidimensional. Moreover, the SMO method outperformed traditional UIRT equating 

methods. Subsequently, Kim (2018) developed the Simple-Structure Multidimensional IRT 

True Score Equating (SMT) method. Its performance was assessed using real, simulated, 

pseudo-form, and identical-form datasets. Additionally, the SMT method was compared with 

pre-smoothing equipercentile equating, IRT true score equating, IRT observed score equating, 

and the SMO method. Overall, the SMT method produced results comparable to existing 

methods. Notably, it provided more accurate equating outcomes than traditional IRT equating 

techniques. This superior performance was consistently observed across three studies involving 

diverse datasets and various evaluation criteria. 

Brossman and Lee (2013) developed observed and true score equating methods within the 

framework of MIRT. They proposed three distinct procedures: the "Full MIRT Observed Score 

Equating Procedure", the "MIRT True Score Equating Procedure with a Unidimensional 

Approach," and the "MIRT Observed Score Equating Procedure with a Unidimensional 

Approach." In their study, they compared these methods to equipercentile equating and found 

that multidimensional IRT methods produced more consistent results. Lee et al. (2015) 

introduced a bifactor MIRT true score equating method, which demonstrated similar outcomes 

across various test models. Similarly, Lee and Lee (2016) assessed the applicability of bifactor 

MIRT observed score equating procedures for mixed-format tests, revealing results comparable 

to those obtained using UIRT. Tao and Cao (2016) expanded IRT equating methods under the 

testlet response model, exploring the effects of local item dependence. They concluded that 

observed score equating proved more advantageous when violations of local independence 

occurred. 

Equating methods based on MIRT have gained increasing importance in psychometric literature 

and attracted significant attention from researchers. However, they have unfortunately not 

received adequate focus in Türkiye. A review of the literature reveals that studies addressing 

this area are limited in number. Atar and Yeşiltaş (2017) compared the performance of mean-

mean, Stocking-Lord, and mean-standard deviation scale transformation methods adapted for 

multidimensional data. This comparison was based on factors such as ability distribution, 

sample size, percentage of common items in the test, and sample size. The study employed a 

common item pattern in non-equivalent groups. The results showed that, in terms of item 

difficulty and discrimination parameter estimates, the Stocking-Lord method demonstrated 

lower RMSE (Root Mean Square Error) and bias values compared to the other methods. 

Gübeş-Öztürk (2019) examined the effect of multidimensionality on equated scores obtained 

through separate and simultaneous calibration structures, using simulation data under 40 

conditions. The tests generated were assumed to measure two distinct abilities, 𝜃1 and 𝜃2. A 

common item pattern was used in non-equivalent groups. The results revealed that equating 

results obtained with separate calibration structures produced fewer equating errors and bias 

values compared to those obtained with simultaneous calibration methods. Additionally, when 

the degree of multidimensionality was significant, equating results obtained through 

simultaneous calibration exhibited the least random error. 

Uğurlu (2020) investigated the relationship between test equating and differential item 

functioning (DIF) from a multidimensional perspective by exploring the population invariance 

property of equating. The study utilized simulated data generated under a simple-structured 

multidimensional IRT model. The researcher compared the simple-structured multidimensional 

IRT observed score, unidimensional IRT observed score, true score, and equipercentile 

equating methods under conditions involving form-differentiating DIF, form group ability 

mean differences, and interdimensional correlations based on population invariance values. The 

findings indicated that when the interdimensional correlation was .5, the simple-structured 
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multidimensional observed score equating method most accurately reflected the relationship 

between test equating and DIF. When the interdimensional correlation was .8 and .95, all 

methods yielded similar results, except for the equipercentile equating method in low-frequency 

scores. 

1.1. Aim and Significance of the Study 

The presence of a second dimension, resulting from a violation of the local item independence 

assumption, may lead to an inaccurate estimation of item parameters in the unidimensional IRT-

based equating process (Chen, 2014). Such misestimations raise concerns about the accuracy 

of equating procedures (Kim et al., 2020). If researchers overlook the violation of local item 

independence, the quality of IRT-based equating methods may be compromised (Chen, 2014).  

To address these issues and improve the accuracy of equating relationships, researchers have 

developed MIRT-based equating methods. These equating methods account for different data 

structures including: “SS-MIRT Observed Score Equating” (W. Lee & Brossman, 2012), “Full-

MIRT Observed Score Equating” (Brossman & Lee, 2013), “Unidimensional Approximation 

of MIRT True Score Equating Procedure” (Brossman & Lee, 2013), “Unidimensional 

Approximation of MIRT Observed Score Equating Procedure” (Brossman & Lee, 2013), “Bi-

factor MIRT Observed Score Equating” (G. Lee & Lee, 2016), “Bi-factor MIRT True Score 

Equating” (G. Lee et al., 2015), “Testlet Model Theory- MIRT Observed Score Equating” (Tao 

& Cao, 2016), “Testlet Model Theory-MIRT True Score Equating (Tao & Cao, 2016), and “SS-

MIRT True Score Equating” (Kim, 2018). This study focuses on the SS-MIRT observed score 

equating method, comparing its performance with traditional and IRT-based equating methods. 

The current study aims to contribute to the existing literature on SS-MIRT-based test equating 

and provide valuable insights for researchers and organizations conducting large-scale testing, 

highlighting the importance of selecting appropriate equating methods. 

The aim of this study is to examine the effect of loading certain items onto a second dimension 

due to violations of the local independence assumption in unidimensional and dichotomous 

tests. The study also seeks to propose the most effective equating method by analyzing the 

impact of these violations on equating errors across different equating methods. Additionally, 

the study aims to interpret the unidimensionality effect. In line with these aims, the following 

research questions will be addressed: 

1. How do the standard errors of equating, bias, and RMSE values obtained from traditional 

equating methods vary based on sample size, test length, and the proportion of items loaded 

onto the second dimension? 

2. How do the standard errors, bias, and RMSE values in observed and true score equating 

compare based on sample size, test length, the proportion of items loaded onto the second 

dimension, and the scale transformation methods used in IRT equating? 

3. How do the standard errors of equating, bias, and RMSE values in SS-MIRT-observed score 

equating vary with sample size, test length, and the proportion of items loaded onto the second 

dimension? 

4.How do the RMSE values obtained from SS-MIRT observed score equating compare with 

those from traditional and IRT equating methods, particularly the methods that yield the 

lowest RMSE values, with respect to sample size, test length, and the proportion of items 

loaded onto the second dimension? 

2. METHOD 

2.1. Type of Research 

The aim of this study was to compare the effects of violating the local independence assumption 

on various test equating methods for dichotomously scored tests under different conditions. To 

achieve this goal, data were generated for scenarios where the assumption of local item 



Doğuyurt & Tan                                                                Int. J. Assess. Tools Educ., Vol. 12, No. 3, (2025) pp. 629–661 

 637 

independence was violated, with the aim of identifying the method that produces the least 

equating error. Given these characteristics, the study is categorized as a simulation study. 

2.2. Research Design 

A randomized group design was employed in this study. In this design, participants from the 

same population are randomly assigned to groups and receive different test forms (Cook & 

Eignor, 1991). The difference in performance between the groups indicates the variation in 

difficulty among the test forms. Therefore, it is essential to work with heterogeneous and large 

samples to minimize potential bias arising from the sample (Livingston, 2014). 

2.3. Simulation Conditions 

The simulation conditions included three main factors: test length (20, 40, 60), sample sizes 

(250, 1000, 5000), and the percentage of items loaded onto the second dimension (0%, 15%, 

30%, 50%). As shown in Table 1, a total of 36 conditions (3 x 3 x 4) were considered, 

representing variations in sample sizes, test length, and the percentages of items loaded onto 

the second dimension. 

Table 1. Simulation conditions for the study. 

Factors Conditions Number of Conditions 

Sample Size 250-1000-5000 3 

Test Length 20-40-60 3 

Percentage of Items Loaded 

onto the Second Dimension 
%0-%15-%30-%50 4 

2.4. Equating Methods to be Used 

The study utilized several equating methods, including Classical Test Theory (mean equating, 

linear equating, equipercentile equating, and sixth-order polynomial loglinear smoothing 

equipercentile equating), Item Response Theory (true and observed score equating), and 

Multidimensional Item Response Theory (simple structured multidimensional observed score 

equating methods).  

2.5. Data Generation 

The R statistical software, version 4.1.1 (R Core Team, 2019), was used to generate the data 

for this study. The mirt package (Chalmers, 2012) was utilized to generate unidimensional data 

using the for loop and simdata command, while the mirtCAT package (Chalmers, 2016) was 

utilized to generate multidimensional data using the for loop and the generate_pattern 

command. For each dataset, 100 replications were conducted. 

An important consideration for researchers conducting simulation studies is that the generated 

datasets must represent real responses (Way et al., 1988). To meet this requirement, the 

parameters of the distributions were derived from the data of the PISA 2018 Mathematics Test 

Form-1 and were utilized in generating the study’s data. Regarding the violation of the local 

independence assumption, the distributions of actual item parameters were obtained from the 

Türkiye sample of the PISA 2018 Mathematics Test, and these parameters were utilized for 

data generation. The PISA 2018 mathematics test data were initially analyzed within a 

unidimensional framework, with the fit indices presented in Table 2 and the resulting parameter 

values presented in Supplementary Material 1 (see Table S1). 

Upon examining the fit indices (RMSEA < .05; CFI and TLI ≥  .95), it is evident that the data 

fit the unidimensional model well (Kline, 2015; Tabachnick & Fidell, 2013). Subsequently, the 

residual correlations between item pairs were examined, revealing residual correlations of .20 

and above among certain item pairs (items 16, 17, and 18). Residual correlations of .20 and 

above indicate a violation of local independence for these items (Yen, 1993). 
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Table 2. Model fit indices for unidimensional and SS-MIRT models based on the PISA 2018 

Mathematics Test - Form 1 (Türkiye sample). 

Unidimensional IRT (2PLM)     SS-MIRT (2PLM) 

RMSEA .033   RMSEA .023  
CFI .955   CFI .979  
TLI .949   TLI .976  
SRMR .089   SRMR .083  

Accordingly, these three items, which were suspected to violate the local independence 

assumption, were loaded onto a second dimension, and the analyses were repeated.  The fit 

indices from this subsequent analysis showed an improvement compared to those obtained from 

the unidimensional model. Based on these findings, it was concluded that these three items 

(items 16, 17 and 18) were indeed violating the local item independence assumption and thus 

were appropriately modeled as part of a second dimension. The parameters derived from this 

two-dimensional structure were subsequently used for data generation. 

For unidimensional data, item discrimination parameters were drawn from a log-normal 

distribution with a mean of 0.53 and a standard deviation of 0.178, while item difficulty 

parameters were derived from a normal distribution with a mean of 0.327 and a standard 

deviation of 0.5. The individual θ parameters were obtained from a normal distribution with a 

mean of 0 and a standard deviation of 1. In cases where the local independence assumption was 

violated, the item discrimination parameters for items on the first dimension were sourced from 

the same log-normal distribution with a mean of 0.53 and a standard deviation of 0.178. 

Conversely, the discrimination parameters for items on the second dimension were obtained 

from a log-normal distribution with a mean of 0.70 and a standard deviation of 0.21, while the 

item difficulty parameter remained consistent, drawn from a normal distribution with a mean 

of 0.327 and a standard deviation of 0.5. Once the item parameters were established, ability 

parameters were generated using a bivariate normal distribution BN(0, 0, 0, 1, 1, 0.5). Data 

generation was conducted using 100 replications under the two-parameter logistic model. This 

study adopted a two-dimensional structure referred to as “simple structure”  This term, first 

introduced by Thurstone (1947), indicates that each item loads on only one dimension, without 

cross-loading onto other dimensions (McDonald, 2000; Sass & Schmitt, 2010). 

In the two-dimensional data sets, the correlation between dimensions was fixed at .5. Kahraman 

(2013) noted that when the correlation between latent traits is .70 or higher, the boundary 

between unidimensionality and multidimensionality becomes ambiguous. Furthermore, when 

the correlation between latent traits reaches .80 or above, unidimensional IRT models exhibit 

resistance to violations of the unidimensionality assumption (Kahraman & Kamata, 2004; 

Kahraman & Thompson, 2011). Multidimensional test equating studies have shown that when 

the correlation between latent abilities is low, equating errors increase (Lee & Brossman, 2012). 

Furthermore, a correlation of .5 between latent traits has been found to most accurately 

reflecting the equating relationships (Uğurlu, 2020). Based on these findings, the correlation 

between the dimensions in the two-dimensional data generated for this study was set at .5. 

The residual correlations between item pairs in the generated datasets were examined, and it 

was observed that the residual correlations of items loading onto the second dimension, due to 

the violation of the local independence assumption, were greater than .20. Supplementary 

Material 2 (see Table S2) provides an example of the item residual correlation table for a dataset 

consisting of 20 items from 1,000 participants, where three items violate the local independence 

assumption. 

Another aspect considered in the data generation process is as follows: Data were generated 

according to the 2PLM (Two-Parameter Logistic Model) based on the distribution mentioned 
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above, under the condition that 15% of the items violate the local independence assumption. In 

the case where 30% of the items in the test violate the local independence assumption and load 

onto the second dimension, the item parameters estimated under the first condition were fixed, 

and only the new item parameters that would load onto the second dimension were derived 

from the aforementioned distribution to create the new dataset. 

2.6. SS-MIRT Equating Process 

The SS-MIRT equating method can be applied to any number of item sets; however, in this 

study, it was applied to a two-dimensional test where items load onto a second dimension when 

the local independence assumption is violated. In this context, Forms X and Y represent the 

new and old forms, respectively. A unidimensional IRT model was assumed for each 

dimension. Although various combinations of unidimensional IRT models may be employed, 

a two-parameter logistic model (Lord, 1980) was preferred for each dimension in this study to 

better capture item discrimination and difficulty. In this study, items that violated the local 

independence assumption were loaded onto a second dimension, with a specified correlation 

between dimensions. Accordingly, this model is referred to as the “Simple Structure-MIRT 

Model”. Composite scores were created by summing the scores from the two content areas, and 

for the purposes of this study, only raw scores were equated. 

The SS-MIRT observed score equating methods follow these steps: 

1. Based on the SS-MIRT model, item parameters for both forms were estimated on the 

same scale (Calibrate θ₁ and θ₂ separately for each form). 

2. Conditional observed score distributions were obtained for each dimension from both 

forms. 

3. Conditional total score distributions were obtained for each form using the conditional 

observed score distributions. 

4. A bivariate (θ₁ and θ₂) normal ability distribution was created. 

5. Marginal observed score distributions were derived for each form by summing the 

conditional total score distributions over the bivariate normal theta (θ) distribution. 

6. Equipercentile equating was performed based on the two marginal total score 

distributions for Form X and Form Y. 

2.7. Evaluation Criteria 

In this study, the equating results were evaluated using Standard Error (SE), Bias, and Root 

Mean Square Error (RMSE) values. 'Bias' refers to the systematic error in the equating process, 

'RMSE' indicates the overall error in equating, and 'SE' represents the standard error of equating. 

The mathematical expressions for these evaluation criteria are listed in Equations 7, 8, and 9. 

𝐵𝑖𝑎𝑠𝑖 =
1

R
 ∑ (ê𝑦 (𝑥𝑖) − 𝑒𝑦(𝑥𝑖))

𝑅

r=1
                                                                                 (7) 

𝑆𝐸𝑖 =
√∑ (ê𝑦 (𝑥𝑖) − 𝑒̅𝑦(𝑥𝑖))2

𝑅

𝑟=1

𝑅
                                                                                         (8) 

𝑅𝑀𝑆𝐸𝑖 = √𝐵𝑖𝑎𝑠𝑖
2 + 𝑆𝐸𝑖

2                                                                                                     (9) 

In the equations, R represents the number of replications (100); i refers a score point; 𝑥𝑖 is the 

raw or scale score at point i; ê𝑦 (𝑥𝑖) represents the equivalent score of the old form 𝑥𝑖  in the 

new form; 𝑒𝑦(𝑥𝑖) represents the criterion equivalent score, and  𝑒̅𝑦(𝑥𝑖) represents the average 

of the equivalents of the new form score 𝑥𝑖 over R (100) replications.  

After calculating the Bias, SE, and RMSE values, these were scaled between 0 and 1 by dividing 

by the number of items in the test. This scaling was done to facilitate comparisons under varying 
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conditions of test length. Readers should note that the values presented in the study’s tables are 

these weighted values. 

2.8. Data Analysis 

In this study, data generation was performed using the mirt package developed by Chalmers 

(2012) and the mirtCAT package developed by Chalmers (2016) in R statistical software 

(version 4.1.1). Detailed information regarding this process is provided in the data generation 

section. Traditional test equating analyses were conducted using the equate package (Albano, 

2016) in R (version 4.1.1). Additionally, analyses for scale transformation methods in IRT-

based observed score and true score equating were carried out using the equateIRT package 

(Battauz, 2015) in R (version 4.1.1). In this research, a total of 36 conditions were considered, 

representing variations in sample size, test length, and the percentages of items loaded onto the 

second dimension. For each condition, 100 replications were used, resulting in 100 Form Y and 

100 Form X test datasets. These datasets were equated using traditional, observed and true score 

equating and SS-MIRT equating methods. This means that for each equating method, 100 

equating processes were performed for each condition. After the equating process, the averages 

of the SE, Bias, and RMSE errors were calculated, and the obtained values were scaled between 

0 and 1 by dividing them by the number of items in the test. This scaling was performed to 

facilitate the comparison of errors across different item count conditions. 

Figure 1. SS-MIRT equating process. 

 

 

To perform SS-MIRT observed score equating, items were first calibrated separately for θ1and 

θ2 in both Form X and Form Y using the SS-MIRT model with flexMIRT software (Cai, 2020). 

Item parameters were estimated using simultaneous calibration. One of the main advantages of 

simultaneous calibration is that item calibration and scale linking are performed concurrently 

in a single process (Hanson & Béguin, 2002; Kim & Cohen, 1998). As a result, the parameter 

estimates for θ1 items in Form X and Form Y were aligned on the same θ1 proficiency scale, 

and the parameter estimates for θ2 items were aligned on the same θ2 proficiency scale. Based 

on these estimated item parameters, conditional observed score distributions for each form in 

each ability dimension (θ1 and θ2) were obtained using flexMIRT (These conditional 

distributions are obtained using the Lord and Wingersky formula). Subsequently, the marginal 

total score distribution was computed using the estimated bivariate proficiency distribution for 

the forms. The marginal observed score distributions for each form were obtained by summing 

the conditional total score distributions over the bivariate normal proficiency distribution. 

Finally, based on the obtained marginal total score distributions of Forms X and Y, an 
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equipercentile equating analysis was conducted using the RAGE-RGEQUATE software. 

Figure 1 summarizes the observed score equating process of the SS-MIRT based test equating 

(Kim, 2022) described above. 

3. RESULTS 

3.1. Results for Traditional Equating Methods 

The standard error (SE) and bias values vary according to different sample sizes, test lengths, 

and equating methods. Supplementary Material 3 (see Table S3) presents the mean standard 

error values obtained from traditional equating methods. These data generally show a decrease 

in standard error values as sample size increases. However, the effect of the number of items 

varies depending on the equating method. For instance, with a sample size of 250, increasing 

the number of items from 20 to 40 results in a decrease in standard error values, while an 

increase in the number of items from 40 to 60 leads to an increase in the standard error values. 

Bias values, on the other hand, vary depending on the equating methods and test conditions. 

Supplementary Material 4 (see Table S4) presents the mean bias values calculated from 

traditional equating methods. Bias values change according to sample size, with some equating 

methods producing lower bias values for different sample sizes. For example, with a sample 

size of 250, bias values decrease as the number of items increases, whereas for sample sizes of 

1000 and 5000, the differences in bias values between the equating methods become more 

pronounced.  

Table 3 presents the mean RMSE values obtained from traditional equating methods. It was 

foundthat the linear equating method yields the lowest RMSE value, while for 40 and 60 items, 

the mean equating method produces the lowest RMSE value for a sample size of 250 with 20 

items. For a sample size of 1000, the linear equating method consistently yields the lowest 

RMSE value across all examined conditions. However, for a sample size of 5000, the method 

that yields the lowest RMSE value varies depending on the conditions considered. In summary, 

there is no single equating method that consistently produces the lowest RMSE value across all 

conditions; rather, the methods yielding the lowest RMSE values differ based on specific 

conditions. Upon examining the effect of the violation of the local independence assumption 

on RMSE values, it is observed that there is no single equating method least affected by this 

violation. In summary, the impact of the violation of the local independence assumption on 

equating methods varies across all conditions. 

3.2. Results for IRT Observed and True Score Equating 

The mean standard error values for observed and true score equating were examined using the 

mean-standard deviation, mean-mean, Stocking-Lord, and Haebara scale transformation met-

hods. It was found that as sample size and test length increased, standard error values decreased. 

Among the scale transformation methods, the Stocking-Lord method consistently yielded the 

lowest standard error values, while the mean-standard deviation method produced the highest. 

The Haebara and Stocking-Lord methods were the least affected by violations of the local in-

dependence assumption, with the Haebara method being slightly more robust. Furthermore, the 

observed score equating method produced lower standard error values compared to the true 

score equating method, although the difference between the two methods was small and further 

diminished as sample size and test length increased (see Supplementary Table S5). 

Regarding bias values, the Stocking-Lord method consistently produced the lowest bias values 

across all conditions. It was found that the Stocking-Lord method was the least affected and the 

Haebara method was the most affected by violations of the local independence assumption. 

When comparing observed and true score equating methods, the bias values were generally 

similar, although the true score equating method produced lower bias values under certain 

conditions (see Supplementary Table S6). 
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Table 4 presents the RMSE means obtained using the scale transformation methods in observed 

and true score equating. An examination of Table 4 reveals that, with the exception of the 

Haebara method, the RMSE values in observed and true score equating performed using other 

methods tend to decrease as the sample size increases. In both observed and true-score equating, 

a sample size of 250 results in the highest RMSE values, whereas a sample size of 5,000 yields 

the lowest. 

Although increasing the number of test items generally leads to a reduction in RMSE values, 

this pattern is disrupted under certain conditions. Nonetheless, it has been determined that for 

all scale transformation methods, the RMSE values calculated with 20 test items are higher than 

those calculated with 60 items. This finding suggests that as the number of test items increases, 

RMSE values decrease in both observed and true-score equating. Lastly, the Stocking-Lord 

scale transformation method was identified as the method with the lowest RMSE values in 

observed and true score equating, while the mean-standard deviation method exhibited the 

highest RMSE values. Furthermore, when assessing the impact of violating the local 

independence assumption on the RMSE values obtained from scale transformation methods in 

observed and true score equating, the Stocking-Lord method was found to be the least affected. 

When comparing the RMSE values of both methods, it is observed that the values obtained 

from the observed score equating method are lower. Regarding the violation of the local 

independence assumption, the differences between the values calculated for unidimensional 

and multidimensional tests are generally similar. However, under the conditions of a sample 

size of 1,000 with 40 and 60 items in the test, the observed score equating method yields more 

robust results against the violation of the local independence assumption. 

In conclusion, when comparing the standard error of measurement, bias, and RMSE values 

calculated under both methods, it has been determined that the observed score equating method 

demonstrates better performance in terms of having lower error values and being less affected 

by violations of the local independence assumption. 
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Table 3. Mean RMSE values obtained from traditional equating methods. 

    Number of items in the test 

N 
Item  20 40 60 

Ratio Mean Linear U-Eq S-Eq Mean Linear U-Eq S-Eq Mean Linear U-Eq S-Eq 

2
5
0

 

0% .0510 .0495 .0556 .0560 .0450 .0511 .0521 .0523 .0277 .0518 .0359 .0373 

15% .0652 .0621 .0640 .0644 .0363 .0414 .0429 .0443 .0295 .0500 .0355 .0374 

30% .0379 .0300 .0404 .0405 .0257 .0309 .0336 .0347 .0240 .0456 .0308 .0328 

50% .0471 .0387 .0458 .0460 .0231 .0277 .0304 .0315 .0238 .0452 .0308 .0323 

1
0
0
0
 

0% .0179 .0153 .0232 .0234 .0225 .0200 .0248 .0250 .0128 .0122 .0175 .0176 

15% .0230 .0198 .0255 .0260 .0241 .0216 .0248 .0248 .0173 .0168 .0203 .0203 

30% .0154 .0094 .0179 .0180 .0166 .0137 .0186 .0187 .0185 .0185 .0218 .0216 

50% .0125 .0051 .0169 .0167 .0138 .0103 .0169 .0171 .0114 .0110 .0161 .0163 

5
0

0
0
 

0% .0344 .0339 .0339 .0340 .0196 .0195 .0204 .0204 .0111 .0100 .0120 .0122 

15% .0412 .0410 .0393 .0394 .0091 .0079 .0108 .0107 .0099 .0105 .0114 .0115 

30% .0247 .0249 .0240 .0241 .0119 .0114 .0130 .0130 .0097 .0104 .0111 .0113 

50% .0199 .0201 .0207 .0208 .0292 .0298 .0282 .0282 .0070 .0066 .0088 .0090 

Note.: U-Eq = Unsmoothed Equipercentile, S-Eq = Smoothed Equipercentile. Item Ratio =Number of items loaded onto the second dimension   
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Table 4. RMSE values obtained in observed and true score equating using scale transformation methods. 

      Number of items in the test 

 N 
Item 20 40 60 

  Ratio M-M M-S H S.L M-M M-S H S.L M-M M-S H S.L 

O
b

se
rv

ed
 S

co
re

 E
q

u
at

in
g

 2
5

0
 

0% 0.0055 0.0145 0.0051 0.0022 0.0037 0.0127 0.0034 0.0015 0.0031 0.0097 0.0032 0.0013 

15% 0.0129 0.0245 0.0053 0.0027 0.0054 0.0143 0.0050 0.0019 0.0041 0.0119 0.0032 0.0015 

30% 0.0142 0.0231 0.0048 0.0031 0.0055 0.0137 0.0072 0.0023 0.0036 0.0114 0.0033 0.0015 

50% 0.0078 0.0181 0.0107 0.0029 0.0042 0.0142 0.0036 0.0017 0.0041 0.0118 0.0053 0.0017 

1
0

0
0
 

0% 0.0024 0.0077 0.0029 0.0010 0.0022 0.0062 0.0018 0.0008 0.0020 0.0049 0.0019 0.0008 

15% 0.0040 0.0127 0.0026 0.0012 0.0026 0.0082 0.0018 0.0009 0.0026 0.0060 0.0024 0.0009 

30% 0.0062 0.0123 0.0039 0.0018 0.0025 0.0069 0.0024 0.0010 0.0027 0.0058 0.0034 0.0010 

50% 0.0022 0.0085 0.0024 0.0009 0.0025 0.0065 0.0032 0.0012 0.0017 0.0059 0.0032 0.0008 

5
0

0
0
 

0% 0.0010 0.0035 0.0026 0.0004 0.0011 0.0026 0.0016 0.0006 0.0008 0.0021 0.0025 0.0003 

15% 0.0018 0.0044 0.0013 0.0005 0.0031 0.0038 0.0022 0.0010 0.0011 0.0027 0.0019 0.0003 

30% 0.0036 0.0050 0.0029 0.0013 0.0023 0.0033 0.0027 0.0010 0.0012 0.0025 0.0018 0.0003 

50% 0.0017 0.0044 0.0042 0.0009 0.0017 0.0037 0.0021 0.0009 0.0012 0.0026 0.0037 0.0004 

T
ru

e 
S

co
re

 E
q

u
at

in
g

 

2
5

0
 

0% 0.0057 0.0154 0.0052 0.0025 0.0038 0.0262 0.0035 0.0016 0.0031 0.0099 0.0032 0.0014 

15% 0.0128 0.0255 0.0056 0.0033 0.0055 0.0291 0.0051 0.0020 0.0042 0.0121 0.0031 0.0016 

30% 0.0138 0.0241 0.0054 0.0039 0.0057 0.0280 0.0071 0.0024 0.0037 0.0116 0.0032 0.0016 

50% 0.0079 0.0192 0.0108 0.0033 0.0043 0.0293 0.0038 0.0019 0.0041 0.0120 0.0054 0.0018 

1
0

0
0
 

0% 0.0025 0.0080 0.0029 0.0011 0.0022 0.0127 0.0019 0.0008 0.0020 0.0049 0.0018 0.0008 

15% 0.0040 0.0132 0.0028 0.0013 0.0026 0.0169 0.0018 0.0010 0.0027 0.0059 0.0023 0.0009 

30% 0.0062 0.0129 0.0043 0.0019 0.0026 0.0142 0.0023 0.0011 0.0027 0.0057 0.0032 0.0011 

50% 0.0023 0.0090 0.0026 0.0010 0.0026 0.0133 0.0033 0.0012 0.0017 0.0060 0.0032 0.0008 

5
0

0
0
 

0% 0.0010 0.0037 0.0030 0.0005 0.0012 0.0054 0.0015 0.0006 0.0008 0.0021 0.0025 0.0003 

15% 0.0018 0.0048 0.0015 0.0006 0.0031 0.0081 0.0024 0.0010 0.0011 0.0027 0.0018 0.0003 

30% 0.0036 0.0055 0.0026 0.0012 0.0021 0.0073 0.0029 0.0010 0.0011 0.0025 0.0016 0.0003 

50% 0.0018 0.0047 0.0043 0.0010 0.0016 0.0074 0.0021 0.0009 0.0012 0.0027 0.0035 0.0004 

 Note. M-M = Mean-Mean, M-S = Mean-Sigma, H = Haebara, S.L = Stocking and Lord, Item Ratio = Number of items loaded onto the second dimension 
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3.3. Results for SS-MIRT Observed Score Equating 

The mean SE, Bias, and RMSE values obtained from the SS-MIRT observed score equating 

method are presented in Table 5. Unlike the other tables, Table 5 does not include the condition 

where the percentage of items loading on the second dimension is 0%. This omission is due to 

the mathematical structure of the SS-MIRT equating method, both test forms being equated 

must have a multidimensional structure. 

Table 5. SE, Bias, and RMSE values obtained in SS-MIRT observed score equating. 

    Number of items in the test 

N 
Item  20 40 60 

Ratio SE BIAS RMSE SE BIAS RMSE SE BIAS RMSE 

2
5

0
 

15% 0.0016 0.0005 0.0017 0.0010 0.0003 0.0010 0.0008 -0.0003 0.0009 

30% 0.0015 0.0010 0.0018 0.0012 -0.0008 0.0014 0.0009 -0.0007 0.0011 

50% 0.0017 -0.0008 0.0019 0.0010 0.0006 0.0012 0.0008 0.0009 0.0012 

1
0

0
0
 15% 0.0009 0.0007 0.0011 0.0005 0.0004 0.0006 0.0004 -0.0005 0.0006 

30% 0.0007 0.0009 0.0011 0.0005 0.0002 0.0005 0.0004 -0.0004 0.0006 

50% 0.0005 0.0005 0.0007 0.0004 -0.0003 0.0005 0.0003 0.0002 0.0004 

5
0

0
0
 15% 0.0003 -0.0004 0.0005 0.0002 0.0005 0.0005 0.0001 0.0001 0.0001 

30% 0.0003 -0.0007 0.0008 0.0002 0.0003 0.0004 0.0001 0.0001 0.0001 

50% 0.0002 0.0005 0.0005 0.0001 -0.0004 0.0004 0.0001 0.0002 0.0002 

Note. Item Ratio =Number of items loaded onto the second dimension 

As the number of items in the test and the sample size increase, a reduction in the standard error 

of the equating has been observed. The sample size with the highest standard error is 250, while 

the sample size with the lowest standard error is 5000. In terms of the number of items in the 

test, the highest standard error values were found under the 20-item condition, and the lowest 

values were found under the 60-item condition. This finding supports the inference made 

earlier. Another notable finding is that as the sample size increases, the variation in standard 

error values across different amounts of items loading on the second dimension decreases. This 

can be interpreted as the effect of violating the local independence assumption diminishing with 

increasing sample size in terms of the standard error of equating. When examining the bias 

values obtained from the equating results, no systematic findings were observed regarding the 

amount of items loading on the second dimension, sample size, and the number of items in the 

test. The highest bias values were found under the condition of a sample size of 250 and 20 

items. Looking at the RMSE values, it is evident that as the sample size and the number of items 

in the test increase, the error values decrease. The lowest RMSE values were obtained under 

the conditions of a sample size of 5000 and 60 items. 

3.4. Comparison of SS-MIRT Observed Score Equating with Other Methods 

When considering the RMSE values from traditional equating methods, it was found that there 

is no single equating method that consistently produces the least error or is the least affected by 

the violation of the local independence assumption across all analyzed conditions; rather, this 

varies depending on the examined conditions. For the sake of completeness in the research, the 

RMSE errors obtained from traditional equating methods are presented. Additionally, the 

values from the Observed Score Equating method, which yields the lowest RMSE and is the 

least affected by the violation of the local independence assumption within IRT, along with the 

RMSE values obtained from the SS-MIRT observed score equating method, are provided in 

Table 6. 
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Table 6. RMSE values obtained from traditional equating methods, IRT observed score equating, and SS-MIRT observed score equating methods. 

Number of items in the test 

N 

It
em

 R
at

io
 20 40 60 

Traditional Equating Methods IRT 
SS-

MIRT 
Traditional Equating Methods IRT 

SS-

MIRT 
Traditional Equating Methods IRT 

SS-

MIRT 

Mean Linear U-Eq S-Eq Obs. Obs. Mean Linear U-Eq S-Eq Obs. Obs. Mean Linear U-Eq S-Eq Obs. Obs. 

2
5

0
 

15% 0.0652 0.0621 0.0640 0.0644 0.0027 0.0017 0.0363 0.0414 0.0429 0.0443 0.0019 0.0010 0.0295 0.0500 0.0355 0.0374 0.0015 0.0009 

30% 0.0379 0.0300 0.0404 0.0405 0.0031 0.0018 0.0257 0.0309 0.0336 0.0347 0.0023 0.0014 0.0240 0.0456 0.0308 0.0328 0.0015 0.0011 

50% 0.0471 0.0387 0.0458 0.0460 0.0029 0.0019 0.0231 0.0277 0.0304 0.0315 0.0017 0.0012 0.0238 0.0452 0.0308 0.0323 0.0017 0.0012 

1
0

0
0
 

15% 0.0230 0.0198 0.0255 0.0260 0.0012 0.0011 0.0241 0.0216 0.0248 0.0248 0.0009 0.0006 0.0173 0.0168 0.0203 0.0203 0.0009 0.0006 

30% 0.0154 0.0094 0.0179 0.0180 0.0018 0.0011 0.0166 0.0137 0.0186 0.0187 0.0010 0.0005 0.0185 0.0185 0.0218 0.0216 0.0010 0.0006 

50% 0.0125 0.0051 0.0169 0.0167 0.0009 0.0007 0.0138 0.0103 0.0169 0.0171 0.0012 0.0005 0.0114 0.0110 0.0161 0.0163 0.0008 0.0004 

5
0

0
0
 

15% 0.0412 0.0410 0.0393 0.0394 0.0005 0.0005 0.0091 0.0079 0.0108 0.0107 0.0010 0.0005 0.0099 0.0105 0.0114 0.0115 0.0003 0.0001 

30% 0.0247 0.0249 0.0240 0.0241 0.0013 0.0008 0.0119 0.0114 0.0130 0.0130 0.0010 0.0004 0.0097 0.0104 0.0111 0.0113 0.0003 0.0001 

50% 0.0199 0.0201 0.0207 0.0208 0.0009 0.0005 0.0292 0.0298 0.0282 0.0282 0.0009 0.0004 0.0070 0.0066 0.0088 0.0090 0.0004 0.0002 

Note. U-Eq = Unsmoothed Equipercentile, S-Eq = Smoothed Equipercentile, IRT Obs. = IRT Observed Score Equating, SS-MIRT Obs. = Simple-structure MIRT observed score equating 
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Among the compared methods, it is clearly observed that the methods with the highest RMSE 

values are the traditional equating methods, while the method with the lowest RMSE value is 

the SS-MIRT observed score equating method. The RMSE values obtained from the IRT 

observed score equating method and the SS-MIRT observed score equating method are quite 

similar, whereas the RMSE values obtained from the traditional equating methods are 

significantly higher than those of the two observed score equating methods. In terms of the 

amount of items loading onto the second dimension, the method with the greatest variation in 

RMSE values is the traditional equating method, while in IRT-based methods (Unidimensional 

IRT and SS-MIRT), the variation is found to be less. It has also been found that the least 

variation occurs with the SS-MIRT observed score equating method. Based on these findings, 

it can be inferred that the SS-MIRT observed score equating method is less affected by the 

violation of the local independence assumption compared to the other equating methods. 

Another important finding is that as the number of items in the test and the sample size increase, 

the impact of the violation of the local independence assumption on the RMSE values obtained 

from all equating methods decreases. In light of these findings, it can be concluded that the SS-

MIRT observed score equating method produces the lowest RMSE values and is more resilient 

to the violation of the local independence assumption. 

4. DISCUSSION and CONCLUSION 

The primary objective of this study is to examine the effects of certain items loading onto a 

second dimension due to the violation of the local independence assumption in unidimensional 

and dichotomously scored tests, using different test equating methods, and to propose the 

method that demonstrates the best performance. To this end, the test forms for equating have 

been constructed on a simple multidimensional structure, and the equating process was carried 

out. In this research, the source of the tests' multidimensionality is addressed as the violation of 

the local independence assumption. When item responses violate the local independence 

assumption in a unidimensional model, these items load onto another dimension (DeMars, 

2010), and the presence of this second dimension leads to the misestimation of item parameters 

in the unidimensional IRT-based equating process (Chen, 2014). In this case, the accuracy of 

the equating relationships established as a result of the equating process is compromised. 

Although unidimensionality and local item independence are assumptions of IRT, research has 

shown that when there is dependence among items, the standard error of measurement is 

estimated to be lower in classical test theory (CTT) as well (Sireci et al., 1991; Wainer, 1995; 

Wainer & Thissen, 1996; Wainer & Wang, 2000; Yen, 1993). 

In terms of sample size, when examining the equating methods included in the study, it was 

found that as sample size increases, the standard errors of the obtained equating decrease. 

According to the literature, Kolen and Brennan (2014) suggested that sample size affects 

equating errors. Additionally, Harris and Crouse (1993), Kilmen (2010), Kim (2018), Kim and 

Cohen (2002), Lee and Ban (2010), and Salmaner Doğan and Tan (2022) have demonstrated in 

their studies that equating errors decrease as sample size increases. Furthermore, Livingston 

(1993), Livingston and Kim (2009), and Skaggs (2005) proposed that a small sample size in the 

equating process could jeopardize the accuracy of the estimates, potentially increasing the 

standard errors of the equating. In this study, it was found that the equating method with the 

highest standard error was obtained with a sample size of 250, which appears to support the 

findings of the aforementioned studies. Another noteworthy finding regarding sample size is 

that, in this study, the standard error values obtained in the equating for the largest sample size 

of 5000 are closer to the standard error values obtained when the test forms are unidimensional, 

in comparison to the other sample sizes. Based on these findings, it can be concluded that, for 

all the equating methods compared, as the sample size increases, the effect of the violation of 

the local independence assumption on the standard errors of the equating decreases. When 

examining the bias values, no systematic findings were identified among the equating methods 

compared. However, the highest bias error value was observed with a sample size of 250. 
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Regarding the RMSE values, it was found that only under the condition of 60 items did the 

RMSE values decrease as the sample size increased. In IRT-based equating methods, the RMSE 

values obtained from the observed and true score equating methods, with the exception of the 

Haebara scale transformation method, generally showed a decreasing trend as the sample size 

increased. Similarly, in the SS-MIRT equating method, the RMSE values also decreased as the 

sample size increased. Based on these findings, it can be observed that using a larger sample 

size in the study reduces variability. This result is consistent with the findings of Kim et al. 

(2020). In test equating conducted under a random groups design, the reduction in standard 

errors of equating as the sample size increases can be attributed to the selected sample's better 

representation of the population. In other words, when working with larger samples, the sample 

distribution is increasingly likely to resemble the population distribution. As the sample size 

grows, the sample distribution becomes more normal and symmetric compared to smaller 

samples. This leads to improved test equating performance and more reliable standard error 

estimates. Furthermore, the increase in sample size results in more accurate item parameter 

estimates. A more precise estimation of item parameters, in turn, reduces the standard error of 

equating. In summary, when equating is performed with larger samples, it is believed that the 

sample better represents the population, item parameters are estimated more accurately, and 

this contributes to smaller standard errors. Li and Lissitz (2004) found in their study that sample 

size is a significant factor in the standard error of parameter estimates, with larger sample sizes 

leading to smaller standard errors. Zhang (2010) theoretically argued that, all else being equal, 

as the sample size increases, item parameter estimates would have smaller standard errors. The 

increase in random errors in test equating with smaller samples can be attributed to unstable 

parameter estimates. Zhang emphasized that stable and accurate parameter estimates for items 

are crucial for improving the accuracy of equating. These findings support the conclusions 

drawn from our study. 

When examining the results in terms of the number of items in the test, it was generally found 

that, with the exception of the linear equating method, as the number of items in the test 

increased, the standard errors of equating decreased for the other equating methods. However, 

in the case of the linear equating method, it was concluded that as the number of items in the 

test increased, the standard errors of equating increased. This finding is consistent with the 

research of Aşiret (2014) and Çörtük (2022). In IRT true and observed scores, a decrease in 

standard errors of equating was generally observed as the number of items in the test increased, 

both with scale transformation methods loaded on the second dimension and with SS-MIRT 

observed score equating methods. The findings of our study are similar to those of Akour 

(2006), Gök and Kelecioğlu (2014), Lee et al. (2014), Kumlu (2019), and Wang et al. (2020). 

When examining the standard errors of equating methods based on CTT, it is observed that, 

except for the sample size of 250, the linear equating method produced a lower standard error 

of equating and was less affected by the impact of the local independence assumption. However, 

at a sample size of 250, as the number of items in the test increased, the linear equating method 

was found to be both the method producing the highest error value and the one most affected 

by the violation of the local independence assumption. When examining bias error values, it 

was found that there is no single equating method that consistently has the least bias error value 

across all conditions. A similar result is observed in RMSE values, where no single equating 

method consistently produces the least RMSE value; rather, this varies according to the 

conditions. The inability to obtain a similar finding in the RMSE values for the linear equating 

method at sample sizes of 1000 and 5000, despite achieving the least standard error of equating, 

is due to the increase in bias values. In conclusion, the results obtained from CTT-based 

equating methods varied according to the types of errors and the conditions considered. 

When examining SE, bias, and RMSE values for scale transformation methods within the 

context of IRT, the Stocking-Lord scale transformation method stands out as the one producing 

the least error values and being least affected by violations of the local independence 
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assumption compared to other scale transformation methods. In terms of SE, Bias, and RMSE 

values, when comparing true and observed score equating methods based on IRT, it is observed 

that, contrary to the values obtained from CTT-based equating methods, the values obtained 

from true and observed score equating methods are quite close to each other, with the 

differences between the two equating methods being very small. When examining the standard 

error values obtained from true and observed score equating methods, it was determined that 

the standard error values obtained from the observed score equating method were slightly 

smaller than those obtained from the true score equating method. However, in terms of bias 

values, the opposite finding was observed, with the true score equating method yielding lower 

error values. When examining the RMSE values, it is observed that the method producing the 

least error values and least affected by violations of the local independence assumption is the 

observed score equating method. Based on RMSE values, it can be concluded that the observed 

score equating method is more resilient to violations of the local independence assumption. The 

other equating method used in the study, the SS-MIRT observed score equating method, was 

compared with CTT-based equating methods and the IRT observed score equating method in 

terms of RMSE values. The comparison revealed that the SS-MIRT observed score equating 

method has lower RMSE values compared to the other methods. It was found that the method 

with the greatest variation in RMSE values based on the proportion of items loading on the 

second dimension is the traditional equating methods, whereas the variation is less in IRT-based 

equating methods. Additionally, the least variation was found under the SS-MIRT observed 

score equating method. Based on these findings, it can be concluded that when both test forms 

are multidimensional, the SS-MIRT equating method is less affected by violations of the local 

independence assumption. 

Upon reviewing the literature, it has been observed that studies comparing MIRT-based 

equating methods with other equating methods have yielded more accurate results from MIRT 

methods (Choi, 2019; Kim, 2018; Kim et al., 2020; Lee & Brossman, 2012; Lee & Lee, 2016; 

Lee et al., 2014; Peterson & Lee, 2014; Tao & Cao, 2016). The results obtained from our 

research align with these findings. Lee and Brossman (2012) argued that in their studies, where 

they took the equipercentile equating method as a reference value, the results of the SS-MIRT 

observed score equating method were more similar to those of the equipercentile equating 

method. According to the researchers, this is because the test forms to be equated are not 

unidimensional, which may cause IRT equating methods to be more affected by violations of 

this assumption. They suggested that the SS-MIRT observed score equating method, by taking 

multidimensionality into account and due to the lack of an assumption regarding 

unidimensionality in the equipercentile equating method, is less affected by the violation of this 

assumption compared to IRT equating methods. In this research, when comparing the results 

obtained from CTT-based equating methods with those obtained from IRT equating methods, 

it was found that, contrary to the aforementioned study, CTT-based equating methods were 

more affected by the violation of the local independence assumption in cases where the test 

forms were multidimensional. This aspect distinguishes our study from the previously 

mentioned research. While Lee et al. (2014) noted that IRT-based equating methods performed 

better than equipercentile equating methods, Peterson and Lee (2014) indicated that MIRT and 

IRT methods yielded similar results, but the equipercentile equating method produced more 

divergent results. In this regard, the findings of these two studies are consistent with the results 

of our research. 

Like any scientific study, this research has certain limitations. First, the research results were 

obtained from simulation datasets, and the findings are constrained by the simulation 

conditions. Additionally, it is always beneficial to conduct similar studies using real datasets 

and compare the results with those of this research. Another significant limitation of this study 

is the lack of an absolute criterion to assess the accuracy and precision of the compared equating 

methods. A review of the literature shows that many studies use different evaluation criteria to 
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assess equating methods. Finally, since this research is a simulation study, the generated data 

were produced within the framework of IRT and MIRT. This may have provided an advantage 

for IRT and MIRT-based equating methods compared to traditional equating methods. This 

concern can be addressed through equating studies conducted with real datasets. 

Based on the results presented above, it is an undeniable reality that the dimensional structure 

of the data must be meticulously examined when conducting equating. Many tests, especially 

educational and psychological assessments, are inherently multidimensional. Moreover, this 

multidimensionality can have various sources. While the theoretical assumption that a test 

participant needs only a single latent trait to answer an item correctly may seem ideal, in 

practice, the cognitive processes of the test participants can be somewhat more complex. If any 

evidence of multidimensionality is obtained as a result of the analyses conducted, the preference 

for multidimensional IRT equating methods, as indicated by the findings of this research, will 

enable more accurate equating results to be achieved.  
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APPENDIX 

Table S1. Item parameter estimates for unidimensional and SS-MIRT  models - PISA 2018 Mathematics Test - Form 1 (Türkiye sample). 

Items  D a1  D a1 a2 

M1 -.439 .590  -.223 .515  
M2 -.517 .656  -.284 .559  
M3 .451 .284  .123 .275  
M4 .663 .855  .431 .656  
M5 1.249 .481  .541 .440  
M6 1.525 1.102  1.129 .750  
M7 1.032 .946  .709 .696  
M8 2.848 .108  .304 .110  
M9 .636 1.013  .452 .719  
M10 -.087 .792  -.054 .629  
M11 -1.499 .730  -.884 .599  
M12 .531 .665  .294 .562  
M13 1.772 .805  1.111 .635  
M14 1.758 .371  .611 .348  
M15 .344 .496  .153 .451  
M16 1.133 .965  .787  .902 

M17 .754 .696  .431  .720 

M18 .719 .394  .264  .481 

Mean .715 .663  .327 .529 .701 

Std. Deviation .988 .270  .493 .178 .211 

D = Item difficulty index, a1 = Item discrimination index for the first dimension, a2 = Item discrimination index for the second dimension 
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Table S2. Item residual correlation matrix. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 
                    

2 .03 
                   

3 .00 .07 
                  

4 .05 .01 .01 
                 

5 .01 .05 .01 .05 
                

6 .00 .00 .01 .02 .01 
               

7 .02 .01 .03 .05 .02 .02 
              

8 .02 .01 .08 .02 .01 .04 .03 
             

9 .01 .04 .04 .06 .02 .01 .00 .04 
            

10 .00 .05 .02 .08 .01 .05 .05 .03 .03 
           

11 .01 .05 .06 .07 .04 .01 .03 .03 .01 .01 
          

12 .01 .02 .01 .03 .02 .02 .01 .01 .03 .02 .05 
         

13 .01 .10 .01 .03 .02 .02 .02 .00 .07 .00 .04 .02 
        

14 .02 .01 .05 .04 .04 .02 .04 .02 .04 .03 .05 .02 .02 
       

15 .01 .00 .03 .07 .02 .06 .03 .05 .03 .04 .06 .04 .03 .01 
      

16 .03 .02 .03 .03 .03 .01 .03 .01 .00 .01 .06 .11 .05 .01 .06 
     

17 .03 .02 .01 .00 .01 .04 .03 .04 .01 .02 .02 .02 .00 .00 .05 .01 
    

18 .06 .06 .07 .06 .06 .02 .04 .11 .00 .02 .05 .01 .07 .01 .01 .07 .08 
   

19 .09 .01 .02 .06 .04 .04 .03 .04 .01 .03 .06 .08 .02 .03 .01 .05 .03 .34 
  

20 .04 .08 .01 .02 .09 .04 .08 .02 .00 .00 .02 .09 .01 .02 .06 .04 .10 .31 .31   

Color coding of residual item correlations: blue indicates negative values, white represents positive values, and green highlights residual item correlations that suggest violations of the local 

independence assumption. 
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This table presents the mean standard errors of equating obtained across various sample sizes (250, 1000, and 5000), test lengths (20, 40, and 60 items), 

and proportions of items loaded onto the second dimension (0%, 15%, 30%, and 50%). Four different equating methods—mean equating, linear 

equating, unsmoothed equipercentile equating, and smoothed equipercentile equating-were compared. 

Table S3. Mean standard errors of equating obtained from traditional equating methods. 

 
  Number of items in the test 

N 
Item 20 40 60 

Ratio Mean Linear U-Eq S-Eq Mean Linear U-Eq S-Eq Mean Linear U-Eq S-Eq 

2
5

0
 

0% .0255 .0180 .0342 .0347 .0249 .0303 .0335 .0340 .0253 .0504 .0340 .0354 

15% .0253 .0167 .0327 .0332 .0247 .0287 .0326 .0331 .0245 .0470 .0318 .0337 

30% .0241 .0147 .0323 .0326 .0236 .0282 .0313 .032 .0238 .0455 .0307 .0326 

50% .0238 .0144 .0322 .0324 .0230 .0277 .0303 .0313 .0237 .0452 .0307 .0323 

1
0

0
0
 

0% .0132 .0041 .0180 .0181 .0131 .0084 .0175 .0176 .0128 .0119 .0173 .0174 

15% .0129 .0041 .0173 .0176 .0122 .0077 .0162 .0163 .0120 .0114 .0161 .0163 

30% .0120 .0039 .0164 .0165 .0115 .0074 .0155 .0157 .0116 .0109 .0157 .0158 

50% .0120 .0040 .0166 .0164 .0113 .0072 .0154 .0156 .0113 .0107 .0155 .0157 

5
0

0
0
 

0% .0058 .0008 .0079 .0079 .0057 .0017 .0078 .0078 .0055 .0025 .0076 .0077 

15% .0055 .0007 .0073 .0073 .0054 .0015 .0073 .0073 .0053 .0023 .0071 .0071 

30% .0053 .0007 .0072 .0072 .0052 .0015 .0070 .0070 .0051 .0022 .0069 .0069 

50% .0053 .0007 .0070 .0071 .0051 .0014 .0070 .0071 .0050 .0022 .0069 .0069 

Note. U-Eq = Unsmoothed Equipercentile, S-Eq = Smoothed Equipercentile, Item Ratio = Number of items loaded onto the second dimension  
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This table presents the mean bias values calculated for different simulation conditions, including variations in sample size, test length, and 

the proportion of items violating the local independence assumption. Comparisons were made across four traditional equating methods. 
 

Table S4. Mean bias values obtained from traditional equating methods. 

    Number of items in the test 

N 

Item 20 40 60 

Ratio Mean Linear U-Eq S-Eq Mean Linear U-Eq S-Eq Mean Linear U-Eq S-Eq 

2
5
0

 

0% .0442 .0461 .0439 .0440 -.0375 -.0412 -.0399 -.0398 -.0112 -.0119 -.0116 -.0118 

15% .0601 .0598 .0550 .0552 -.0266 -.0298 -.0279 -.0294 -.0164 -.0170 -.0157 -.0162 

30% .0293 .0261 .0243 .0241 -.0102 -.0127 -.0123 -.0133 -.0030 -.0035 -.0026 -.0032 

50% .0407 .0359 .0326 .0327 .0016 -.0012 -.0029 -.0033 .0019 .0016 .0018 .0014 

1
0
0
0
 

0% -.0121 -.0147 -.0147 -.0148 -.0183 -.0181 -.0176 -.0177 -.0008 -.0029 -.0028 -.0028 

15% -.0190 -.0194 -.0188 -.0191 -.0208 -.0202 -.0188 -.0187 -.0124 -.0124 -.0124 -.0121 

30% .0097 .0086 .0072 .0072 -.0120 -.0115 -.0103 -.0102 -.0144 -.0149 -.0151 -.0148 

50% -.0036 -.0032 -.003 -.0032 -.0079 -.0074 -.0070 -.0069 -.0018 -.0027 -.0045 -.0044 

5
0

0
0
 

0% -.0339 -.0339 -.0330 -.0331 .0188 .0194 .0188 .0188 .0096 .0097 .0093 .0094 

15% -.0408 -.0410 -.0386 -.0387 -.0073 -.0078 -.0079 -.0078 .0084 .0102 .0089 .0091 

30% -.0241 -.0249 -.0229 -.0230 -.0107 -.0113 -.0110 -.0110 .0083 .0102 .0087 .0090 

50% -.0192 -.0201 -.0195 -.0196 -.0288 -.0298 -.0273 -.0273 .0049 .0062 .0055 .0058 
 

Note. U-Eq = Unsmoothed Equipercentile, S-Eq = Smoothed Equipercentile, Item Ratio = Number of items loaded onto the second dimension  
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This table presents the mean standard errors of observed and true score equating obtained using the mean-standard deviation, mean-mean, Stocking-

Lord, and Haebara scale transformation methods across different sample sizes, test lengths, and levels of multidimensionality. 

Table S5. Standard errors of equating obtained in observed and true score equating using scale transformation methods. 

  
    Number of items in the test 

  N 
Item  20 40 60 

  Ratio M-M M-S H S.L M-M M-S H S.L M-M M-S H S.L 

O
b

se
rv

ed
 S

co
re

 E
q

u
at

in
g

 

2
5

0
 

0% .0050 .0143 .0043 .0021 .0033 .0127 .0030 .0014 .0026 .0096 .0026 .0012 

15% .0076 .0224 .0044 .0024 .0041 .0136 .0033 .0017 .0031 .0116 .0026 .0013 

30% .0071 .0203 .0042 .0024 .0038 .0130 .0032 .0017 .0027 .0111 .0025 .0012 

50% .0066 .0174 .0056 .0025 .0038 .0141 .0031 .0016 .003 .0114 .0026 .0013 

1
0

0
0
 

0% .0020 .0076 .0020 .0009 .0013 .0059 .0014 .0006 .0012 .0045 .0013 .0005 

15% .0032 .0127 .0021 .0011 .0021 .0081 .0016 .0008 .0016 .0052 .0013 .0007 

30% .0029 .0116 .0020 .0011 .0019 .0067 .0016 .0008 .0014 .005 .0013 .0006 

50% .0020 .0085 .0018 .0008 .0017 .0061 .0015 .0007 .0015 .0058 .0013 .0007 

5
0

0
0
 

0% .0008 .0034 .0009 .0004 .0006 .0025 .0005 .0003 .0005 .0021 .0005 .0002 

15% .0012 .0041 .0009 .0005 .0008 .0029 .0007 .0004 .0007 .0025 .0006 .0003 

30% .0011 .0037 .0009 .0004 .0007 .0029 .0007 .0003 .0006 .0024 .0006 .0003 

50% .0014 .0039 .0010 .0005 .0008 .0031 .0007 .0003 .0006 .0025 .0005 .0003 

T
ru

e 
S

co
re

 E
q

u
at

in
g

 2
5

0
 

0% .0052 .0152 .0046 .0024 .0034 .0130 .0031 .0016 .0026 .0097 .0026 .0012 

15% .0081 .0236 .0049 .0030 .0042 .0140 .0034 .0019 .0032 .0118 .0027 .0014 

30% .0077 .0217 .0048 .0032 .0040 .0133 .0034 .0019 .0028 .0113 .0025 .0013 

50% .0067 .0186 .0060 .0030 .0039 .0146 .0032 .0017 .0031 .0116 .0026 .0014 

1
0

0
0
 

0% .0020 .0079 .0021 .0010 .0014 .0061 .0014 .0007 .0012 .0046 .0012 .0006 

15% .0033 .0132 .0022 .0012 .0021 .0083 .0016 .0009 .0016 .0052 .0014 .0007 

30% .0031 .0121 .0022 .0013 .0020 .0070 .0016 .0009 .0015 .0051 .0013 .0007 

50% .0021 .0089 .0019 .0010 .0017 .0064 .0015 .0008 .0015 .0059 .0013 .0007 

5
0

0
0
 

0% .0009 .0036 .0009 .0004 .0006 .0025 .0006 .0003 .0005 .0021 .0005 .0002 

15% .0012 .0045 .0010 .0006 .0009 .0030 .0007 .0004 .0007 .0026 .0006 .0003 

30% .0011 .0039 .0010 .0005 .0008 .0030 .0007 .0004 .0007 .0024 .0006 .0003 

50% .0014 .0043 .0011 .0006 .0007 .0033 .0007 .0004 .0006 .0026 .0005 .0003 

Note. M-M = Mean-Mean, M-S = Mean-Sigma, H = Haebara, S.L = Stocking and Lord, Item Ratio  = Number of items loaded onto the second dimension 
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This table presents the mean bias values of observed and true score equating obtained using the mean-standard deviation, mean-mean, Stocking-Lord, 

and Haebara scale transformation methods across different sample sizes, test lengths, and levels of multidimensionality. 

Table S6. Bias values obtained in observed and true score equating using scale transformation methods. 

      Number of items in the test 

 N 
Item  20 40 60 

  Ratio M-M M-S H S.L M-M M-S H S.L M-M M-S H S.L 

O
b

se
rv

ed
 S

co
re

 E
q

u
at

in
g

 

2
5

0
 

0% -.0001 0,0000 -.0015 -.0003 -.0007 .0004 -.0001 .0002 -.0012 -.0013 .0014 .0005 

15% -.0101 -.0096 -.0018 .0010 .0032 .0039 -.0034 -.0006 .0024 .0025 -.0009 -.0005 

30% -.0121 -.0108 .0001 .0019 .0039 .0042 -.0063 -.0014 .0022 .0022 -.0017 -.0008 

50% -.0028 -.0041 -.0090 .0012 -.0005 .0013 .0007 .0003 -.0025 -.0027 .0045 .0010 

1
0

0
0
 

0% -.0011 .0008 -.0021 .0005 -.0016 -.0018 .0010 .0005 .0016 .0017 -.0014 -.0005 

15% -.0011 -.0005 .0009 .0003 .0013 .0005 0,0000 -.0003 .0021 .0029 -.0019 -.0006 

30% -.0055 -.0040 .0033 .0014 .0014 .0009 -.0017 -.0006 .0023 .0028 -.0031 -.0008 

50% -.0006 .0003 .0013 .0002 -.0018 -.0019 .0028 .0009 0,0000 .0007 .0029 .0002 

5
0

0
0
 

0% -.0002 -.0005 .0024 .0002 .0009 .0009 -.0015 -.0005 -.0006 -.0005 -.0024 .0001 

15% .0013 .0015 .0008 -.0002 -.0030 -.0024 .0021 .0010 -.0008 -.0007 -.0018 0,0000 

30% .0034 .0034 -.0027 -.0012 -.0021 -.0017 .0026 .0009 -.0010 -.0007 -.0017 0,0000 

50% -.0008 -.0020 .0041 .0008 .0015 .0020 -.0020 -.0008 .0010 .0007 -.0036 -.0004 

T
ru

e 
S

co
re

 E
q

u
at

in
g

 2
5

0
 

0% -.0001 .0004 -.0011 -.0003 -.0007 .0002 .0001 .0002 -.0013 -.0013 .0016 .0005 

15% -.0096 -.0092 -.0013 .0012 .0032 .0037 -.0033 -.0006 .0024 .0025 -.0008 -.0005 

30% -.0114 -.0102 .0007 .0023 .0039 .0039 -.0062 -.0013 .0022 .0023 -.0016 -.0008 

50% -.0029 -.0038 -.0088 .0010 -.0005 .0008 .0007 .0002 -.0025 -.0027 .0046 .0010 

1
0

0
0
 

0% -.0011 .0002 -.0018 .0004 -.0016 -.0017 .0011 .0005 .0016 .0017 -.0013 -.0005 

15% -.0012 -.0006 .0011 .0002 .0013 .0006 .0001 -.0003 .0021 .0026 -.0018 -.0006 

30% -.0053 -.0043 .0036 .0013 .0014 .0010 -.0014 -.0006 .0022 .0025 -.0029 -.0008 

50% -.0005 -.0002 .0015 .0002 -.0019 -.0017 .0029 .0009 -.0001 .0004 .0028 .0001 

5
0

0
0
 

0% -.0003 -.0002 .0028 .0002 .0010 .0008 -.0014 -.0005 -.0006 -.0005 -.0024 .0001 

15% .0013 .0016 .0011 -.0002 -.0029 -.0027 .0022 .0009 -.0007 -.0007 -.0017 0,0000 

30% .0034 .0038 -.0024 -.0011 -.0020 -.0021 .0028 .0009 -.0009 -.0007 -.0015 0,0000 

50% -.0008 -.0017 .0042 .0007 .0014 .0017 -.0020 -.0008 .0010 .0008 -.0035 -.0003 

 Note. M-M = Mean-Mean, M-S = Mean-Sigma, H = Haebara, S.L = Stocking and Lord, Item Ratio = Number of items loaded onto the second dimension 
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