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Abstract − In this study, the rational system

xn+1 = α1 +β1 yn−1

a1 +b1 yn
, yn+1 = α2 +β2xn−1

a2 +b2xn
, n ∈N0,

where αi , βi , ai , bi , (i = 1,2), and x− j , y− j , ( j = 0,1), are positive real numbers, is defined and its

qualitative behavior is discussed. The system in question is a two-dimensional extension of an old

difference equation in the literature. The results obtained generalize the results in the literature on

the equation in question.

Subject Classification (2020): 39A20, 39A23, 39A30.

1. Introduction

Difference equations have occurred in many scientific areas such as biology, physics, engineering, and eco-

nomics. Particularly, rational difference equations and their systems have great importance in applications.

See [4, 11, 23, 24]. As a natural consequence of this, it is very worthy to examine the qualitative analy-

ses of such equations and their systems. Over the past two decades, many studies have been published

on the qualitative behavior of difference equations and systems. For example, see [1–3, 5, 6, 8–10, 12–

15, 21, 22, 25, 29, 30, 32, 34, 36, 38, 40–42, 44] and therein references. Below, we present a prototype, among

others, that caught our attention, along with its two extensions. Gibbons et al. [16] analyzed the bound-

edness, the oscillatory and periodicity, and the global stability of the nonnegative solutions of the rational

difference equation

xn+1 = α+βxn−1

γ+xn
, n ∈N0, (1.1)

where the parameters α, β and γ are nonnegative and real. Din et al. [8] investigated the boundedness, the

local and global stability, the periodicity, and the rate of convergence of positive solutions of the system of

difference equations

xn+1 = α1 +β1xn−1

a1 +b1 yn
, yn+1 = α2 +β2 yn−1

a2 +b2xn
, n ∈N0, (1.2)
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where αi , βi , ai , bi , (i = 1,2), and x− j , y− j , ( j = 0,1), are positive real numbers. Din [10] investigated the

boundedness, the local and global stability behavior, the periodicity, and the rate of convergence of positive

solutions of the system of rational difference equations

xn+1 = α1 +β1 yn−1

a1 +b1xn
, yn+1 = α2 +β2xn−1

a2 +b2 yn
, n ∈N0, (1.3)

where αi , βi , ai , bi , (i = 1,2), and x− j , y− j , ( j = 0,1), are positive real numbers.

Studies on the qualitative behavior of the difference equations and systems still continue actively. For recent

studies, see, for example [7, 17–20, 26–28, 32, 33, 35, 37, 39, 43] and therein references.

The systems in (1.2) and (1.3) are two-dimensional symmetric extensions of (1.1). Apart from these, there is

another two-dimensional symmetric extension of (1.1). In this paper, we define the aforementioned exten-

sion of (1.1). That is, we define the rational system

xn+1 = α1 +β1 yn−1

a1 +b1 yn
, yn+1 = α2 +β2xn−1

a2 +b2xn
, (1.4)

where αi , βi , ai , bi , (i = 1,2) are positive real parameters, and x− j , y− j , ( j = 0,1) are positive real initial

conditions, and discuss qualitative behavior of its solutions. More concretely, we investigate existence of a

unique positive equilibrium, local and global stability of the equilibrium, rate of convergence of a solution

converging to the equilibrium, existence of unbounded solutions and the periodicity of solutions.

2. Preliminaries

Assume that I , J are some intervals of real numbers and

f1 : I 2 × J 2 → I , f2 : I 2 × J 2 → J

are continuously differentiable functions. Then, for every set of initial conditions x−1, x0 ∈ I and y−1, y0 ∈ J ,

the system of difference equations

xn+1 = f1
(
xn , xn−1, yn , yn−1

)
, yn+1 = f2

(
xn , xn−1, yn , yn−1

)
, n ∈N0, (2.1)

has a unique solution denoted by
{
(xn , yn)

}∞
n=−1. An equilibrium point of system (2.1) is a point

(
x, y

) ∈ I × J

that satisfies

x = f1
(
x, x, y , y

)
, y = f2

(
x, x, y , y

)
.

For stability analysis, we use some key results of the multivariable calculus. Hence we transform system

(2.1) into the vector system

Xn+1 = F (Xn) , n ∈N0, (2.2)

where Xn = (
xn , yn , xn−1, yn−1

)T , F is a vector map such that F : I 2 × J 2 → I 2 × J 2 and

F


xn

yn

xn−1

yn−1

=


f1

(
xn , yn , xn−1, yn−1

)
f2

(
xn , yn , xn−1, yn−1

)
xn

yn

 .
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It is obvious that if an equilibrium point of system (2.1) is
(
x, y

)
, then the corresponding equilibrium point

of system (2.2) is the point X = (
x, y , x, y

)T .

By ∥·∥, we denote any convenient vector norm and the corresponding matrix norm. Also, X0 ∈ I×J×I×J is an

initial condition of the vector system (2.2) corresponding to the initial conditions x−1, x0 ∈ I and y−1, y0 ∈ J

of system (2.1).

Definition 2.1. [23] Let X be an equilibrium of system (2.2). Then,

i) The equilibrium X is called stable if for any ϵ > 0 there exists δ > 0 such that
∥∥∥X0 −X

∥∥∥ < δ implies∥∥∥Xn −X
∥∥∥< ϵ, for all n ≥ 0. Otherwise, the equilibrium point X is called unstable.

ii) The equilibrium X is called locally asymptotically stable if it is stable and there exists γ> 0 such that∥∥∥X0 −X
∥∥∥< γ and Xn → X as n →∞.

iii) The equilibrium X is called a global attractor if Xn → X as n →∞.

iv) The equilibrium X is called globally asymptotically stable if it is both locally asymptotically stable and

global attractor.

The linearized system of (2.2) about the equilibrium X is of the form

Zn+1 = JF Zn , n ∈N0, (2.3)

where JF is the Jacobian of the map F at the equilibrium X . The characteristic polynomial of (2.3) at the

equilibrium X is

P (λ) = a0λ
4 +a1λ

3 +a2λ
2 +a3λ+a4, (2.4)

with real coefficients and a0 > 0.

Theorem 2.2. [23] Let X be any equilibrium of (2.2). If all eigenvalues of JF at X lie in the open unit disk

|λ| < 1, then the equilibrium point X is local asymptotically stable. If one of the eigenvalues has a modulus

greater than one, then the equilibrium point X is unstable.

The next results deal with the rate of convergence for a solution converging to an equilibrium of a system of

difference equations. See [11, 31] for more details.

Consider the system of difference equations

Xn+1 = (A+Bn) Xn , n ∈N0, (2.5)

where Xn is an m−dimensional vector, A ∈ C m×m is a constant matrix, and B : Z+ → C m×m is a matrix

function satisfying

∥Bn∥→ 0 (2.6)

as n →∞.

Theorem 2.3 (Perron’s First Theorem). Suppose that condition (2.6) holds. If Xn is a solution of (2.5), then

either Xn = 0 for all large n or

ρ = lim
n→∞

∥Xn+1∥
∥Xn∥

(2.7)
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exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 2.4 (Perron’s Second Theorem). Suppose that condition (2.6) holds. If Xn is a solution of (2.5),

then either Xn = 0 for all large n or

ρ = lim
n→∞ (∥Xn∥)1/n (2.8)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

The following lemma is the second part of Lemma 3.1 in [30].

Lemma 2.5. Let f : R+×R+ → R+, g : R+×R+ → R+ be continuous functions and a1, b1, a2, b2 be positive

numbers such that a1 < b1, a2 < b2. Suppose that

f : [a2,b2]× [a2,b2] → [a1,b1], g : [a1,b1]× [a1,b1] → [a2,b2].

In addition, assume that f (u, v) is a decreasing (resp. increasing) function with respect to u (resp. v) for

every v (resp. u) and g (z, w) is a decreasing (resp. increasing) function with respect to z (resp. w) for every

w (resp. z). Finally suppose that if the real numbers m, M , r , R satisfy the system

M = f (r,R), m = f (R,r ), R = g (m, M), r = g (M ,m)

then m = M and r = R. Then the system of difference equations

xn+1 = f (yn , yn−1), yn+1 = g (xn , xn−1), n ∈N0, (2.9)

has a unique positive equilibrium (x, y) and every positive solution
{
(xn , yn)

}∞
n=−1 of the system (2.9) which

satisfies

xn0 ∈ [a1,b1], xn0+1 ∈ [a1,b1], yn0 ∈ [a2,b2], yn0+1 ∈ [a2,b2], n0 ∈N

tends to the unique positive equilibrium of (2.9).

3. Main results

In this section, we express and prove our main results on the system of difference equations (1.4).

3.1. Boundedness and persistence of the system

In this subsection, the boundedness and the persistence of (1.4) are investigated. The following theorem

states the result obtained.

Theorem 3.1. If β1β2 < a1a2, then every solution of the system of difference equations (1.4) is bounded and

persist.

Proof.

From (1.4), we have the following system of difference inequalities

xn+1 ≤ α1

a1
+ β1

a1
yn−1, yn+1 ≤ α2

a2
+ β2

a2
xn−1, n ∈N0. (3.1)



Durhasan Turgut Tollu et al. / IKJM / 6(2) (2024) 45-62 49

We pay regard to the system of nonhomogeneous linear difference equations

un+1 = α1

a1
+ β1

a1
vn−1, vn+1 = α2

a2
+ β2

a2
un−1, n ∈N0, (3.2)

with u−1 = x−1, u0 = x0, v−1 = y−1 and v0 = y0. System (3.2) yields the following independent equatios

un+1 = α1

a1
+ β1

a1

α2

a2
+ β1

a1

β2

a2
un−3, n ≥ 2, (3.3)

and

vn+1 = α2

a2
+ β2

a2

α1

a1
+ β1

a1

β2

a2
vn−3, n ≥ 2. (3.4)

The general solutions of (3.3) and (3.4) are given by

un = α1a2 +α2β1

a1a2 −β1β2
+ c1

(
4

√
β1

a1

β2

a2

)n

+c2

(
− 4

√
β1

a1

β2

a2

)n

+ c3

(
−i 4

√
β1

a1

β2

a2

)n

+ c4

(
i 4

√
β1

a1

β2

a2

)n

(3.5)

and

vn = α2a1 +α1β2

a1a2 −β1β2
+ c5

(
4

√
β1

a1

β2

a2

)n

+c6

(
− 4

√
β1

a1

β2

a2

)n

+ c7

(
−i 4

√
β1

a1

β2

a2

)n

+ c8

(
i 4

√
β1

a1

β2

a2

)n

, (3.6)

where cs , (s = 1,2, ...,8), are arbitrary constants and i is the imaginary unit. From (3.5) and (3.6), it follows

that if β1β2 < a1a2, then there exist the limits

lim
n→∞un = α1a2 +α2β1

a1a2 −β1β2
(3.7)

and

lim
n→∞vn = α2a1 +α1β2

a1a2 −β1β2
, (3.8)

and so the sequences {un} and {vn} are bounded. Also, since u−1 = x−1, u0 = x0, v−1 = y−1 and v0 = y0, by

comparison method, we find xn ≤ un and yn ≤ vn , and so

xn ≤ α1a2 +α2β1

a1a2 −β1β2
=U1 (3.9)

and

yn ≤ α2a1 +α1β2

a1a2 −β1β2
=U2. (3.10)

Therefore, the sequences {xn} and {yn} are also bounded. On the other hand, from (1.4), (3.9) and (3.10), it

follows that

xn+1 ≥ α1

a1 +b1 yn
≥ α1

a1 +b1
a1α2+α1β2

a1a2−β1β2

= α1
(
a1a2 −β1β2

)
a1(a1a2 −β1β2)+b1

(
a1α2 +α1β2

) = L1 (3.11)
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and

yn+1 ≥ α2

a2 +b2xn
≥ a2

a2 +b2
α1a2+β1α2

a1a2−β1β2

= α2
(
a1a2 −β1β2

)
a2

(
a1a2 −β1β2

)+b2
(
α1a2 +β1α2

) = L2. (3.12)

Consequently, from (3.9), (3.10), (3.11) and (3.12), for n ≥ 1, we have

L1 ≤ xn ≤U1, L2 ≤ yn ≤U2 (3.13)

which means that {xn} and {yn} are bounded and persist. The proof is completed.

Theorem 3.2. If β1β2 < a1a2, then the set [L1,U1]× [L2,U2] is invariant set of (1.4).

Proof.

Let
{
(xn , yn)

}∞
n=−1 be an arbitrary positive solution of (1.4). If β1β2 < a1a2, then the bounds L1, U1, L2 and

U2 exist. Also, let x−1, x0 ∈ [L1,U1] and y−1, y0 ∈ [L2,U2]. Then, from (1.4), we have

x1 = α1 +β1 y−1

a1 +b1 y0
≤ α1 +β1U2

a1
=U1, y1 = α2 +β2x−1

a2 +b2x0
≤ α2 +β2U1

a2
=U2,

x2 = α1 +β1 y0

a1 +b1 y1
≤ α1 +β1U2

a1
=U1, y2 = α2 +β2x0

a2 +b2x1
≤ α2 +β2U1

a2
=U2,

x3 = α1 +β1 y1

a1 +b1 y2
≤ α1 +β1U2

a1
=U1, y3 = α2 +β2x1

a2 +b2x2
≤ α2 +β2U1

a2
=U2,

...

and

x1 = α1 +β1 y−1

a1 +b1 y0
≥ α1

a1 +b1U2
= L1, y1 = α2 +β2x−1

a2 +b2x0
≥ α2

a2 +b2U1
= L2,

x2 = α1 +β1 y0

a1 +b1 y1
≥ α1

a1 +b1U2
= L1, y2 = α2 +β2x0

a2 +b2x1
≥ α2

a2 +b2U1
= L2,

x3 = α1 +β1 y1

a1 +b1 y2
≥ α1

a1 +b1U2
= L1, y3 = α2 +β2x1

a2 +b2x2
≥ α2

a2 +b2U1
= L2,

...

Considering inductively, it can be easily shown that xn ∈ [L1,U1] and yn ∈ [L2,U2] for n ≥−1. So the proof is

completed.

3.2. Stability analysis

In this subsection, the existence of the unique positive equilibrium of (1.4) and local asymptotic stability

and global asymptotic stability of the equilibrium are investigated.

Lemma 3.3. System (1.4) possesses a unique positive equilibrium point. If β1β2 < a1a2, then the equilib-

rium point is in the set [L1,U1]× [L2,U2].

Proof.
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For the equilibrium points of (1.4) we consider the system

x = α1 +β1 y

a1 +b1 y
, y = α2 +β2x

a2 +b2x
. (3.14)

From (3.14) we have the independent quadratic equations

D1x2 + (C1 −B1)x − A1 = 0, D2 y2 + (C2 −B2)y − A2 = 0, (3.15)

where

A1 = α1a2 +β1α2,

B1 = α1b2 +β1β2,

C1 = a1a2 +b1α2,

D1 = a1b2 +b1β2,

A2 = a1α2 +α1β2,

B2 = α2b1 +β1β2,

C2 = a1a2 +b2α1,

D2 = a2b1 +b2β1.

Hence, from (3.15), we have

∆x = (C1 −B1)2 +4A1D1 > 0, ∆y = (C2 −B2)2 +4A2D2 > 0

which implies that they have two real simple roots. Also, since −A1/D1 < 0 and −A2/D2 < 0, both equations

in (3.15) have one negative and one positive root. Therefore there exists the unique positive equilibrium

point of (1.4).

Consider the inequalities

x ≤ α1 +β1 y

a1
, y ≤ α2 +β2x

a2
,

which is obtained from (3.14). Using these two inequalities within each other we get the following inequal-

ities

x ≤ α1

a1
+ β1

a1
y ≤ α1

a1
+ β1

a1

α2

a2
+ β1

a1

β2

a2
x,

y ≤ α2

a2
+ β2

a2
x ≤ α2

a2
+ β2

a2

α1

a1
+ β2

a2

β1

a1
y .

If β1β2 < a1a2, from the last inequalities, it follows that

x ≤ α1a2 +α2β1

a1a2 −β1β2
=U1, y ≤ α2a1 +α1β2

a1a2 −β1β2
=U2.
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Moreover, from (3.14) and the inequalities x ≤U1, y ≤U2, we obtain the inequalities

x ≥ α1

a1 +b1 y
≥ α1

a1 +b1U2
= L1, y ≥ α2

a2 +b2x
≥ α2

a2 +b2U1
= L2.

Thus, for the aforementioned equilibrium point, we have
(
x, y

) ∈ [L1,U1]× [L2,U2]. So the proof is com-

pleted.

Theorem 3.4. If β1β2 < a1a2, then the unique positive equilibrium of system (1.4) is locally asymptotically

stable.

Proof.

We know from Lemma 3.3 that (1.4) has the unique positive equilibrium
(
x, y

)
. In this case, the vector

system corresponding to (1.4) also has the equilibrium point X = (
x, y , x, y

)T . The aforementioned vector

system is given by the vector map

F


xn

yn

xn−1

yn−1

=


α1+β1 yn−1

a1+b1 yn
α2+β2xn−1

a2+b2xn

xn

yn


The linearized system of the vector system about X = (

x, y , x, y
)T is the system

Zn+1 = JF (X )Zn , (3.16)

where the vector Zn is

Zn =


zn

zn−1

zn−2

zn−3


and JF at X is

JF (X ) =


0 − b1x

a1+b1 y 0 β1

a1+b1 y

− b2 y
a2+b2x 0 β2

a2+b2x 0

1 0 0 0

0 1 0 0

 . (3.17)

The characteristic polynomial of (3.16) at X is

P (λ) =λ4 − b1b2x y(
a2 +b2x

)(
a1 +b1 y

)λ2 + b1β2x +β1b2 y(
a2 +b2x

)(
a1 +b1 y

)λ− β1β2(
a2 +b2x

)(
a1 +b1 y

)
or

P (λ) =λ4 −
(
β1 −b1xλ

)(
β2 −b2 yλ

)(
a1 +b1 y

)(
a2 +b2x

) . (3.18)

Let us consider the polynomial equation P (λ) = 0. Obviously, since β1β2 ̸= 0, λ ̸= 0. In this case, it can be

seen from (3.18) that there are two cases to consider.
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(i) If β1 < b1xλ and β2 < b2 yλ, then we have

λ4 =
(
β1 −b1xλ

)(
β2 −b2 yλ

)(
a1 +b1 y

)(
a2 +b2x

) < b1xλb2 yλ(
a1 +b1 y

)(
a2 +b2x

) < b1xλb2 yλ

b1 yb2x
=λ2

from which it follows that |λ| < 1.

(ii) If β1 > b1xλ and β2 > b2 yλ, then we have

λ4 =
(
β1 −b1xλ

)(
β2 −b2 yλ

)(
a1 +b1 y

)(
a2 +b2x

) < β1β2(
a1 +b1 y

)(
a2 +b2x

) < β1β2

a1a2
.

Hence if β1β2 < a1a2, then we obtain that |λ| < 1. Therefore the proof is completed.

Theorem 3.5. If β1β2 < a1a2, then the unique positive equilibrium point of (1.4) is a global attractor.

Proof.

We will use Lemma 2.5 to prove the theorem. Let
{
(xn , yn)

}∞
n=−1 be any solution of system (1.4). We know

that if the inequality β1β2 < a1a2 is satisfied, then
{
(xn , yn)

}∞
n=−1 is bounded and persist. Suppose that

f (u, v) = α1 +β1v

a1 +b1u
, g

(
x, y

)= α2 +β2 y

a2 +b2x
.

Then we have

fu (u, v) =−
(
α1 +β1v

)
b1

(a1 +ub1)2 < 0, fv (u, v) = β1

a1 +ub1
> 0

for (u, v) ∈ (L2,U2)× (L2,U2) and

gx
(
x, y

)=−
(
α2 +β2 y

)
b2

(a2 +xb2)2 < 0, g y
(
x, y

)= β2

a2 +xb2
> 0

for
(
x, y

) ∈ (L1,U1)× (L1,U1). Therefore, the function f (u, v) is decreasing with respect to u for every v ∈
(L2,U2) and it is increasing with respect to v for every u ∈ (L2,U2), and also the function g (x, y) is decreasing

with respect to x for every y ∈ (L1,U1) and it is increasing with respect to y for every x ∈ (L1,U1).

Let

limsup
n→∞

xn = M1, liminf
n→∞ xn = m1, limsup

n→∞
yn = M2, liminf

n→∞ yn = m2.

In this case we can define the system

M1 = α1 +β1M2

a1 +b1m2
, m1 = α1 +β1m2

a1 +b1M2
, M2 = α2 +β2M1

a2 +b2m1
, m2 = α2 +β2m1

a2 +b2M1
. (3.19)

From (3.19), we have

a1M1 +b1M1m2 =α1 +β1M2, a1m1 +b1m1M2 =α1 +β1m2, (3.20)

a2M2 +b2M2m1 =α2 +β2M1, a2m2 +b2m2M1 =α2 +β2m1. (3.21)
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Furthermore, from (3.20) and (3.21), we have

a1 (M1 −m1)+b1 (M1m2 −m1M2) =β1 (M2 −m2) (3.22)

and

a2 (M2 −m2)+b2 (m1M2 −M1m2) =β2 (M1 −m1) , (3.23)

respectively. If M1 = m1, then it is seen from (3.22) that m2 = M2. On the other hand, if m2 = M2, then it

is seen from (3.23) that M1 = m1. Therefore, we will just show that M2 = m2. After some operations, the

equalities (3.22) and (3.23) yield the equality(
a1

b1
− β2

b2

)
(M1 −m1)+

(
a2

b2
− β1

b1

)
(M2 −m2) = 0. (3.24)

We rewrite (3.24) as

M1 −m1 =
a2
b2

− β1

b1

a1
b1

− β2

b2

(m2 −M2) . (3.25)

If β1β2 < a1a2, then (3.2) becomes

M1 −m1 = a2

β2
(M2 −m2) .

Using this result in (3.23), we obtain

m1M2 −M1m2 = 0.

Using the last two results in (3.22), we obtain

(
a1a2 −β1β2

)
(M2 −m2) = 0

which implies that M2 = m2. So the proof is completed. In order to verify the theoretical result we obtained

in Theorem 3.5, a special case obtained by giving some values to the parameters and initial conditions of

system (1.4) is given in the example below.

Example 3.6. If α1 = 1, β1 = 13.1, a1 = 7, b1 = 3, α2 = 12, β2 = 3.5, a2 = 8.2, b2 = 1, then (1.4) becomes

xn+1 = 1+12.1yn−1

7+3yn
, yn+1 = 12+3.5xn−1

6+xn
. (3.26)

The unique positive equilibrium of (3.26) is (2.364109242,1.919175757). Plot of the corresponding solution

to x−1 = 5.4, x0 = 9.5, y−1 = 7 and y0 = 1.7 is given by Figure 1 and Figure 2.

According to the item iv) of Definition 2.1, we give the next result from Theorem 3.4 and Theorem 3.5.

Theorem 3.7. If β1β2 < a1a2, then the unique positive equilibrium point of (1.4) is globally asymptotically

stable.

3.3. Rate of convergence of solutions

In this subsection, the rate of convergence of a solution converging to the unique positive equilibrium of

(1.4) is studied.
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Figure 1. Plot of (xn) converging to x Figure 2. Plot of (yn) converging to y

Let
{
(xn , yn)

}∞
n=−1 be any solution of (1.4) such that

lim
n→∞xn = x and lim

n→∞ yn = y , (3.27)

where x ∈ [L1,U1] and y ∈ [L2,U2]. From (1.4), we have

xn+1 −x = α1 +β1 yn−1

a1 +b1 yn
− α1 +β1 y

a1 +b1 y

= −b1
(
α1 +β1 y

)
(a1 +b1 yn)

(
a1 +b1 y

) (
yn − y

)+ β1
(
a1 +b1 y

)
(a1 +b1 yn)

(
a1 +b1 y

) (
yn−1 − y

)
or after some operations and by using (3.14)

xn+1 −x = −b1x(
a1 +b1 yn

) (
yn − y

)+ β1(
a1 +b1 yn

) (
yn−1 − y

)
. (3.28)

Similarly, from (1.4), we have

yn+1 − y = α2+β2xn−1

a2 +b2xn
− α2 +β2x

a2 +b2x

= −b2(α2 +β2x)

(a2 +b2xn)
(
a2 +b2x

) (
xn −x

)+ β2
(
a2 +b2x

)
(a2 +b2xn)

(
a2 +b2x

) (
xn−1 −x

)
and so, by (3.14),

yn+1 − y = −b2 y

(a2 +b2xn)

(
xn −x

)+ β2

(a2 +b2xn)

(
xn−1 −x

)
. (3.29)

If the error terms e1
n = xn −−

x, e2
n = yn − −

y , then we can write the system of the error terms as follows

e1
n+1 = ane2

n +bne2
n−1,

e2
n+1 = cne1

n +dne1
n−1,
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where

an = −b1x

a1 +b1 yn
, bn = β1

a1 +b1 yn
, cn = −b2 y

a2 +b2xn
, dn = β2

a2 +b2xn
. (3.30)

From (3.30), we obtain the limits

lim
n→∞an = −b1x

a1 +b1 y
, (3.31)

lim
n→∞bn = β1

a1 +b1 y
, (3.32)

lim
n→∞cn = −b2 y

a2 +b2x
, (3.33)

lim
n→∞dn = β2

a2 +b2x
. (3.34)

Consequently, from (3.31)-(3.34), we have the following system


e1

n+1

e2
n+1

e1
n

e2
n

=



0
−b1x

a1 +b1 y
0

β1

a1 +b1 y
−b2 y

a2 +b2x
0

β2

a2 +b2x
0

1 0 0 0

0 1 0 0




e1

n

e2
n

e1
n−1

e2
n−1

 , (3.35)

which resembles the linearized system of (1.4) about the equilibrium X . In this case, one can obtain from

Theorem 2.3 and Theorem 2.4 the following results.

Theorem 3.8. Let
{
(xn , yn)

}∞
n=−1 be any positive solution of (1.4) satisfying (3.27). Then, the error vector(

e1
n ,e2

n ,e1
n−1,e2

n−1

)T
of the solution

{
(xn , yn)

}∞
n=−1 of (1.4) satisfies the asymptotic relations

lim
n→∞ (||en ||)

1
n = ∣∣λ1,2,3,4 JF

(
x, y

)∣∣
and

lim
n→∞

||en+1||
||en ||

= ∣∣λ1,2,3,4 JF
(
x, y

)∣∣ ,

where the values λ1,2,3,4 are the eigenvalues of the Jacobian JF (x, y) .

3.4. Existence of unbounded solutions

In this subsection, the existence of unbounded solutions of (1.4) is proven.

Theorem 3.9. If β1β2 > a1a2, then every positive solution of (1.4) is unbounded.

Proof.

From (1.4) we have the system of difference inequalities

xn+1 = α1 +β1 yn−1

a1 +b1 yn
≥ α1 +β1 yn−1

a1 +b1U2
, (3.36)



Durhasan Turgut Tollu et al. / IKJM / 6(2) (2024) 45-62 57

and

yn+1 = α2 +β2xn−1

a2 +b2xn
≥ α2 +β2xn−1

a2 +b2U1
, (3.37)

where U1 and U2 are given by (3.9) and (3.10), respectively. Now we can consider the system of nonhomo-

geneous linear equations

wn+1 = c2 +d2zn−1, zn+1 = c1 +d1wn−1, n ∈N0, (3.38)

where

c1 = α1

a1 +b1U2
, d1 = β1

a1 +b1U2
, c2 = α2

a2 +b2U1
, d2 = β2

a2 +b2U1

and w−1 = x−1, w0 = x0, z−1 = y−1, z0 = y0. The general solution of (3.38) is given by the formulas

wn = c2 + c1d2

1−d1d2
+k1

(
4
√

d1d2

)n +k2

(
−

√
d1d2

)n +k3

(
−i 4

√
d1d2

)n +k4

(
i 4
√

d1d2

)n
(3.39)

and

zn = c1 + c2d1

1−d1d2
+k5

(
4
√

d1d2

)n +k6

(
−

√
d1d2

)n +k7

(
−i 4

√
d1d2

)n +k8

(
i 4
√

d1d2

)n
, (3.40)

where ks , (s = 1,2, ...,8) are arbitrary constants and i is the imaginary unit. It is easy to see from (3.39) and

(3.40) that if d1d2 > 1, that is,

β1β2 > (a1 +b1U2) (a2 +b2U1) > a1a2

then the sequences (wn) and (zn) are unbounded. Therefore, since w−1 = x−1, w0 = x0, z−1 = y−1 and

z0 = y0, by comparison method, we have the inequalities xn ≥ wn , yn ≥ zn . Hence the sequences {xn} and

{yn} are unbounded. The proof is completed.

Example 3.10. If α1 = 1, β1 = 12.1, a1 = 3.6, b1 = 3, α2 = 12, β2 = 3.5, a2 = 6, b2 = 1, then (1.4) becomes

xn+1 = 1+12.1yn−1

3.6+3yn
, yn+1 = 12+3.5xn−1

6+xn
. (3.41)

The unique positive equilibrium of (3.41) is (2.808100791,2.478213327) and unstable. Plot of the corre-

sponding solution to x−1 = 5.4, x0 = 9.5, y−1 = 7 and y0 = 1.7 is given by Figure 3 and Figure 4.

3.5. Period two solutions

In this subsection, the existence of two-periodic solutions of (1.4) is investigated. The next result states the

existence of such solutions.

Theorem 3.11. If a1a2 =β1β2, then the system of difference equations (1.4) has two-periodic solutions.

Proof.

Let a two-periodic solution of (1.4) be

..., (p1, q1), (p2, q2), (p1, q1), (p2, q2), ..., (3.42)
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Figure 3. Plot of unbounded (xn) Figure 4. Plot of unbounded (yn)

where p1, p2, q1, q2 are positive real numbers such that p1 ̸= p2 ve q1 ̸= q2. Then, from (1.4) and (3.42), we

have the system

p1 = α1 +β1q1

a1 +b1q2
, p2 = α1 +β1q2

a1 +b1q1
, q1 = α2 +β2p1

a2 +b2p2
, q2 = α2 +β2p2

a2 +b2p1
,

from which it follows that

a1p1 +b1p1q2 =α1 +β1q1, a1p2 +b1p2q1 =α1 +β1q2 (3.43)

and

a2q1 +b2q1p2 =α2 +β2p1, a2q2 +b2q2p1 =α2 +β2p2. (3.44)

After some basic operations, from (3.43) and (3.44), we get the equalities

a1
(
p1 −p2

)+b1
(
p1q2 −p2q1

)=β1
(
q1 −q2

)
and

a2
(
q1 −q2

)+b2
(
q1p2 −q2p1

)=β2
(
p1 −p2

)
.

The last equalities yield

(a1b2 −b1β2)(p1 −p2)+ (a2b1 −b2β1)(q1 −q2) = 0. (3.45)

It is obvious from (3.45) and the assumptions p1 ̸= p2 and q1 ̸= q2 that if

a1b2 −b1β2 = 0 and a2b1 −b2β1 = 0, (3.46)

then system (1.4) has two-periodic solutions. Note that (3.46) is equivalent to the desired equality a1a2 =
β1β2. So the proof is completed.
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Example 3.12. If α1 = 3, β1 = 6, a1 = 12, b1 = 9, α2 = 2, β2 = 4, a2 = 2, b2 = 3, then system (1.4) becomes

xn+1 = 3+6yn−1

12+9yn
, yn+1 = 2+4xn−1

2+3xn
. (3.47)

The unique positive equilibrium point of (3.47) is (0.4413911092,1.132782218) and it is unstable. Also, the

solution converges a two-periodic solution of the system. Plot of the corresponding solution with x−1 = 3,

x0 = 2, y−1 = 1.3 and y0 = 7 is given by Figure 5 and Figure 6.

Figure 5. (xn) converging to a two-periodic so-
lution

Figure 6. (yn) converging to a two-periodic so-
lution

4. Conclusion

In this study, the qualitative behavior of the positive solutions of (1.4) was investigated. The results obtained

are summarized below.

1. If β1β2 < a1a2, then the solutions of the system are bounded and persist. In addition, the unique

positive equilibrium of the system is globally asymptotically stable.

2. If β1β2 = a1a2, then the system has two-periodic solutions.

3. If β1β2 > a1a2, then the system has unbounded solutions.

Availability of data and materials Not applicable.
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