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Abstract. In this paper, we will investigate the infinite Coxeter groups B̃n

and D̃n. Their Gröbner-Shirshov bases and classifications of normal forms

are achieved by leveraging results from the infinite Coxeter groups of types

C̃n. Additionally, new algorithms are presented for obtaining normal forms of
elements within these groups.

1. Introduction

To begin with, we revisit certain ideas related to the Gröbner-Shirshov basis
theory. Let S represent a set, and S∗ denote the free monoid of strings formed by
S. We refer to the empty string as e. A well-ordering < on S∗ is referred to as a
monomial order if x < y implies axb < ayb for all a, b ∈ S∗. Let 〈S〉 denote the free
associative algebra generated by S over a field k. Given 0 6= f ∈ 〈S〉, we denote
by f the leading word of f concerning a specified monomial order. For two monic
polynomials f and g, f〈S〉 if there exists a word w such that w = fb = ag for some
a, b ∈ S∗. The intersection composition of f and g is defined by 〈f, g〉w = fb−ag. If
f = agb for some a, b ∈ S∗, the inclusion composition is defined as 〈f, g〉 = f −agb.
In this scenario, the transformation f → f −agb is known as the elimination of the
leading word (ELW) of f in g. Let R ⊆ 〈S〉 be a collection of monic polynomials,
and let f be another monic polynomial. We say that f is reduced to h modulo R
if f is derived from a sequence of ELWs involving elements of R, and no further
ELWs of r are possible. A set R ⊆ 〈S〉 is termed a Gröbner-Shirshov basis, denoted
by GSB if every composition of polynomials from R is reduced to zero modulo R.
A GSB R is considered minimal if there are no inclusion compositions within R. If
R ⊆ 〈S〉 is not a GSB, take a composition of intersections of polynomials from R
and reduce it modulo R. If this reduction results in a non-zero polynomial r, add
r to the set R. Continue this process for each composition of polynomials from R
until no further enlargements are required. The final set obtained will be a GSB.
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This procedure is referred to as the Shirshov algorithm. The Composition Diamond
Lemma ([13]) is valuable for finding the normal form of a group through its GSB.

When a group G is defined by generators S and relations R, each relation x = y
in R can be associated with a polynomial x− y. Thus, the set of relations can be
viewed as a subset of k〈S〉. Consequently, a GSB of R, referred to as a GSB for the
group G, can be found. It’s worth noting that R comprises ”biwords,” essentially
differences of words. The Shirshov algorithm maintains this property throughout
the computation. Therefore, a GSB of a group can be considered a unique set of
relations for that group. Furthermore, the set

Red(R) = {w ∈ S∗|w 6= xsy, x, y ∈ S∗, s ∈ R}
constitutes the set of all normal forms of G, as established by the Composition
Diamond lemma.

Coxeter groups, known as Weyl groups, represent one of the most significant
examples of groups defined by generators and defining relations. Consequently, the
pursuit of finding GSB for these groups has attracted considerable attention from
researchers. GSB for finite Coxeter groups can be found in [1]. For the finite excep-
tional Coxeter group of type E8, a GSB has been established in [3], while for the
finite exceptional Coxeter groups of type E6 and E7, a GSB can be found in [4].
The method of GSB bases introduces a new algorithm for deriving normal forms of
elements in groups, monoids, and semigroups, providing a fresh approach to solving
the word problem in these algebraic structures. The word problem for a finitely
generated group G involves the algorithmic challenge of determining whether two
words formed by the generators represent the same element. A novel algorithm for
obtaining normal forms and addressing the word problem for Extended Modular,
Extended Hecke, and Picard groups through their GSB is explored in [5]. Compa-
rable findings for the singular part of the Brauer semigroup and braid groups via
the complex reflection group G12 are presented in [11] and [14], respectively. In
[6], the authors establish a connection between graph theory and GSB of groups.
This article aims to pave the way for further research in this area. GSB for infinite

Coxeter groups of type Ãn, C̃n, as well as for finite Coxeter groups of type An, Bn,
and Dn, have been obtained in [8], [15], and [12], respectively. Additionally, for
the infinite exceptional Weyl group of type F4, a GSB has been constructed in [10].

The author worked on GSB bases for infinite Coxeter group of type Ãn in [7] and
the results in this article were obtained from [13].

The primary objective of this article is to derive GSB and normal forms for

infinite Coxeter groups of types B̃n and D̃n.

2. Gröbner-Shirshov Bases

This section focuses on the discussion of GSB for the infinite Coxeter groups of

Types B̃n and D̃n.

2.1. GSB for B̃n.

Definition 2.1. The presentation of the infinite Coxeter group of type B̃n includes
generators S = {s0, s1, . . . , sn} for a positive integer n ≥ 2 and the following
defining relations:

(RB1) sasa = e for 0 ≤ a ≤ n,
(RB2) sasb = sbsa for 0 ≤ a < b− 1 < n but (a, b) 6= (0, 2),
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(RB3) sasa+1sa = sa+1sasa+1 for 1 ≤ a < n− 1,
(RB4) s0s1 = s1s0,
(RB5) sn−1snsn−1sn = snsn−1snsn−1,
(RB6) s0s2s0 = s2s0s2.

where e represents the identity element of the group.
For the sake of convenience, let us assume that

sab =

 sasa+1 · · · sb, if 1 ≤ a ≤ b < n ;
sasa+1 · · · snsn−1 · · · sc, if 1 ≤ a ≤ c = 2n− j ≤ n;
e, if 0 ≤ b = a− 1 < n.

and

s−1
ab =

 sbsb−1 · · · sa, if 1 ≤ a ≤ b < n ;
scsc+1 · · · snsn−1 · · · sa, if 1 ≤ a ≤ c = 2n− j ≤ n;
e, if 0 ≤ b = a− 1 < n.

It is important to note that s−1
ab is, in fact, the inverse of sab since sasa = e for

each a.

Lemma 2.2. Assume that < denotes the degree lexicographic order on S∗. A GSB

for the infinite Coxeter group of type B̃n with respect to < includes the following
polynomials:

• f (a)
1 = sasa − 1 if 0 ≤ a ≤ n,

• f (a,b)
2 = sasb − sbsa if 0 ≤ a < b− 1 < n but (a, b) 6= (0, 2),

• f (a,b)
3 = sabsa − sa+1sab if 1 ≤ a ≤ n− 2 and a < b < 2n− a− 1,

• f (a)
4 = sa,2n−asa+1 − sa+1sa,2n−a if 1 ≤ a ≤ n− 1,

• f (a)
5 = s0s2as1a − s1s0s2as1,a−1 if 1 ≤ a ≤ n− 1,

• f (a)
6 = s0s2,2n−as1,2n−a+1 − s1s0s2,2n−as1,2n−a if 2 ≤ a ≤ n,

• f (a,b)
7 = s0s2as1bs0 − s2s0s2as1b if 2 ≤ a ≤ 2n− 3 and 0 ≤ b ≤ 1,

• f (a,b)
8 = s0s2as1bs0s2b − s2s0s2as1bs0s2,a−1 if 2 ≤ b < a ≤ n,

• f (a,b)
9 = s0s2,2n−as1bs0s2b − s2s0s2,2n−as1as0s2,b−1 if 3 ≤ a ≤ n − 1 and

2 ≤ b ≤ n− 1,

• f (a,b)
10 = s0s2,2n−2s1as0s2bs1 − s2s0s2,2n−2s1as0s2b if 1 ≤ a ≤ 2 and 2 ≤
b ≤ 2n− 3,

• f (a,b)
11 = s0s2,2n−2s1as0s2bs1,a−1 − s2s0s2,2n−2s1as0s2bs1,a−2 if 3 ≤ a ≤
n− 1, 3 ≤ b ≤ n and a ≤ b,

• f12 = s0s2,2n−2s0s2 − s2s0s2,2n−2s0,

• f (a,b)
13 = s0s2,2n−2s1as0s2,2n−bs1a−s2s0s2,2n−2s1as0s2,2n−bs1,a−1 if 2 ≤ b ≤
a ≤ n− 1,

• f (a,b)
14 = s0s2,2n−2s1,2n−a−1s0s2,2n−bs1,2n−a

−s2s0s2,2n−2s1,2n−a−1s0s2,2n−bs1,2n−a−1 if 2 ≤ b ≤ a ≤ n− 1,

• f (a,b)
15 = s0s2,2n−as1,2n−b−1s0s2,2n−b

− s2s0s2,2n−as1,2n−b−1s0s2,2n−b−1 if 2 ≤ a− 1 ≤ b ≤ n− 1,
• f16 = s0s2,2n−2s1s0s2,2n−2s1s2 − s2s0s2,2n−2s1s0s0s2,2n−2s1,

• f (a,b)
17 = s0s2,2n−2s1bs0s2,2n−as1,b−1 − s2s0s2,2n−2s1bs0s2,2n−as1,b−2 if 3 ≤
b < a ≤ n− 1.
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Proof. The proof is conducted using the Shirshov algorithm.

< f12, f
(2)
5 >= f

(1,2)
10 − s2s0s2,2n−2f

(1)
5 s2,

< f
(1,b)
10 , f

(b,1)
7 >= f

(2,b)
10 − s2s0s2,2n−2s1f

(b,0)
7 if 2 ≤ b ≤ n,

Similarly, other elements can also be found.For a detailed proof, you can refer
to the thesis [13] �

Let RB denote the set of polynomials as outlined in Lemma 2.2. Currently,
we are unable to demonstrate that the provided polynomials in the lemma form

a GSB for the infinite Coxeter group of type B̃n. Verifying this would involve
intricate computations to confirm that the remaining compositions in RB reduce
to zero modulo RB . Instead, we will utilize the Composition Diamond lemma to

establish that R serves as a GSB for the infinite Coxeter group of type B̃n.

2.2. GSB for D̃n.

Definition 2.3. The presentation of the infinite Coxeter group of type D̃n includes
generators S = {s0, s1, . . . , sn} for a positive integer n ≥ 4 and the following
defining relations:

(RD1) sasa = 1 for 0 ≤ a ≤ n,
(RD2) sasb = sbsa for 0 < a < b − 1 < n but (a, b) 6= (0, 2) and (a, b) 6=

(n− 2, n),
(RD3) sasa+1sa = sa+1sasa+1 where 1 ≤ a < n− 1,
(RD4) sn−2snsn−2 = snsn−2sn,
(RD5) s0s2s0 = s2s0s2.

For the sake of convenience, let us assume that

sij =


sasa+1 · · · sb, if 1 ≤ a < b < n ;
sasa+1 · · · sn−2snsn−1 · · · s2n−b, if 1 ≤ a ≤ n− 1 < b ≤ 2n− a;
sa, if b = a;
1, if b = a− 1.

From this point forward, we will refrain from using superscripts unless it becomes

necessary to distinguish between the groups B̃n and D̃n.

Lemma 2.4. Assume that < denotes the degree lexicographic order on S∗. A GSB

for the infinite Coxeter group of type D̃n with respect to < includes the following
polynomials:

• g(a)
1 = sasa − 1 if 0 ≤ a ≤ n,

• g(a,b)
2 = sasb − sbsa if 1 < b− a but (a, b) 6= (0, 2) and (a, b) 6= (n− 2, n),

• g(a)
3 = sa,a+1 − sa+1sa if a = 0, n− 1,

• g4 = sn−2,nsn−2 − snsn−2,n,

• g(a,b)
5 = sabsa − sa+1sab if (1 ≤ a < b ≤ n − 1) or (1 ≤ a < n − 2 and
n ≤ b ≤ 2n− 3 and 2n− b− 1 > 1),

• g(a)
6 = sa,2n−asa+1 − sa+1sa,2n−a if 1 ≤ a ≤ n− 3,

• g7 = sn−2,n+2sn − sn−1sn−2,n+2,
• g8 = sn−2,n+2sn−1 − snsn−2,n+2,

• g(a,b)
9 = s0s2as1bs0 − s2s0s2as1b if 0 ≤ b ≤ 1 and 2 ≤ a ≤ 2n− 3,

• g(a)
10 = s0s2as1a − s1s0s2as1,a−1 if 2 ≤ a ≤ n− 1,
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• g11 = s0s2ns1n − s1s0s2ns1,n−2,
• g12 = s0s2,n−1s1,n+1 − s1s0s2,n−1s1n,

• g(a)
13 = s0s2,2n−as1,2n−a+1 − s1s0s2,2n−as1,2n−a if 2 ≤ a < n,

• g(a,b)
14 = s0s2as1bs0s2b − s2s0s2as1bs0s2,b−1 if (2 ≤ b ≤ n − 1 and n ≤ a ≤

2n− 3) or (2 ≤ b < n− 1 and 3 ≤ a ≤ n− 1 and b < a),
• g15 = s0s2,n−1s1ns0s2n − s2s0s2,n−1s1ns0s2,n−2,

• g(a,b)
16 = s0s2,2n−2s1as0s2bs1,a−1 − s2s0s2,2n−2s1as0s2bs1,a−2 if 2 ≤ a ≤ b ≤
n− 1,

• g17 = s0s2,2n−2s0s2 − s2s0s2,2n−2s0,

• g(a,b)
18 = s0s2,2n−2s1as0s2bs1 − s2s0s2,2n−2s1as0s2b if (a = 1 and 2 ≤ b ≤
n− 1) or (1 ≤ a ≤ 2 and n ≤ b ≤ 2n− 3),

• g(a)
19 = s0s2,2n−as1,n−1s0s2,n+1 − s2s0s2,2n−as1,n−1s0s2n if 3 ≤ a ≤ n,

• g(a)
20 = s0s2,2n−as1ns0s2n − s2s0s2,2n−as1ns0s2,n−2 if 3 ≤ a ≤ n− 1,

• g(a)
21 = s0s2,2n−2s1as0s2,2n−2s12 − s2s0s2,2n−2s1as0s2,2n−2s1 if 1 ≤ a ≤ 2,

• g22 = s0s2,2n−2s1ns0s2ns1,n−2 − s2s0s2,2n−2s1ns0s2ns1,n−3,

• g(a)
23 = s0s2,2n−2s1,n−1s0s2,2n−as1n − s2s0s2,2n−2s1,n−1s0s2,2n−as1,n−2 if

2 ≤ a ≤ n− 1,

• g(a)
24 = s0s2,2n−2s1ns0s2,2n−as1,n−1 − s2s0s2,2n−2s1ns0s2,2n−as1,n−2 if 2 ≤
a ≤ n− 1,

• g(a,b)
25 = s0s2,2n−2s1,2n−as0s2,2n−bs1,2n−a+1

− s2s0s2,2n−2s1,2n−as0s2,2n−bs1,2n−a if 2 ≤ b < a ≤ n,

• g(a,b)
26 = s0s2,2n−as1,2n−bs0s2,2n−b+1 − s2s0s2,2n−as1,2n−bs0s2,2n−b if 3 ≤
a ≤ b ≤ n− 1,

• g(a,b,c)
27 = s0s2,2n−2s1as0s2,2n−bs1c− s2s0s2,2n−2s1as0s2,2n−bs1,c−1 if (c = a

and 2 ≤ b ≤ n− 2 and 3 ≤ a ≤ n− 2) or (c = a− 1 and 3 ≤ a ≤ n− 2 and
a < b ≤ n),

Proof. As in the case of B̃n, the proof is established using the Shirshov algorithm.
For a detailed proof, you can refer to the thesis [13].

�

At this stage, we are unable to demonstrate that the polynomials provided in the

lemma form GSB for the infinite Coxeter group of type D̃n. We will demonstrate

that the set of polynomials found for B̃n and D̃n indeed forms GSB for the infinite

Coxeter group of types B̃n and D̃n by examining their normal forms, respectively.

3. Normal Forms

The necessary definitions and properties for the normal forms of C̃n are provided
in [13] and [15].

3.1. Normal Forms for B̃n. For v ∈ S̃n
C

, let us define v[a, b] = |{t ∈ Z :

t ≤ a, v(t) ≥ b}| for all a, b ∈ Z. Now, consider S̃Bn = {u ∈ S̃Cn : u[n, n +

1] ≡ 0 mod 2} which is a subgroup of S̃Cn consisting of elements in the form

{u ∈ SCn : u[n, n + 1] ≡ 0 mod 2}. It is clear that S̃Bn is a subgroup of S̃Cn
with an index of 2. Moreover, for any u ∈ S̃Bn , we can represent it as u =

(sCnbns
C
n−1,bn−1

· · · sC1b1)(sC0 s
C
1,2n−1)α2n−1 · · · (sC0 sC1 )α1(sC0 )α0 where

∑2n−1
t=0 αt is an
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even number. The following proposition affirms that S̃Bn is indeed the infinite

Coxeter group of type B̃n.

Proposition 3.1. ([2], Proposition 8.5.3)

The group S̃Bn with generating set {sB0 , sB1 , . . . , sBn } is the infinite Coxeter group

of type B̃n where sBa = sCi for a = 1, 2, . . . , n and sB0 = [2n− 1, 2n, 3, . . . , n].

First of all, we give some relations between words in B̃n and words in C̃n.

Lemma 3.2. The following statements are equivalent.

(i) sC0 s
C
1 s

C
0 = sB0 ,

(ii) (sC0 s
C
1a)(sC0 s

C
1b) = sB0 s

B
2as

B
1b for 0 ≤ a 0 b ≤ 2n− 2.

Proof. (i) sC0 s
C
1 s

C
0 = [2n, 2, . . . , n][2, 1, 3, . . . , n][2n, 2, . . . , n] = sB0 .

(ii) sB0 s
B
2as

B
1b = sC0 s

C
1 s

C
0 s

C
2as

C
1b = sC0 s

C
1as

C
0 s

C
1b by a series of ELW in f

(0,c)
2 .

�

It’s worth mentioning that the length of a word in C̃n is two greater than the

length of the corresponding word in B̃n.

Lemma 3.3. In the context of the infinite Coxeter group of type C̃n, the following
relation is valid:

(sC0 s
C
1,2n−2)(sC0 s

C
1b)(s

C
0 s

C
1a) =

 (sC0 s
C
1,2n−1)(sC0 s

C
1a)(sC0 s

C
1,b−1), if a+ b < 2n,

(sC0 s
C
1,2n−1)(sC0 s

C
1,a−1)(sC0 s

C
1b), if a+ b ≥ 2n.

This equation is applicable for 1 ≤ a, b ≤ 2n− 1 with the condition that b ≤ a when
a < n or a < b when a ≥ n.

Proof. In the scenario where a+ b < 2n, there are two distinct cases to consider:

(i) 1 ≤ b ≤ a < n,
(ii) 1 ≤ b < n ≤ a < 2n− b.

In both of these cases, the following relationships hold:
(sC0 s

C
1,2n−2)(sC0 s

C
1b)(s

C
0 s

C
1a) = (sC0 s

C
1,2n−1)(sC0 s

C
1b)(s

C
0 s

C
1b−1)(sC0 s

C
b+1,a) applying by

an ELW in f
(b)
5 .

(sC0 s
C
1,2n−1)(sC0 s

C
1b)(s

C
0 s

C
1b−1)(sC0 s

C
b+1,a) = (sC0 s

C
1,2n−1)(sC0 s

C
1a)(sC0 s

C
1,b−1) apply-

ing by a series of ELW in f2.
In the case where 2n ≤ a+ b, we have n ≤ b < a ≤ 2n− 2. Let a = 2n− c and

j = 2n− d. Therefore;

(sC0 s
C
1,2n−2)(sC0 s

C
1b)(s

C
0 s

C
1a) = (sC0 s

C
1,2n−1)(sC0 s

C
1b)(s

C
0 s

C
1b)sd−2sd−3 · · · sc

due to an ELW in f
(b)
6 . Furthermore; (sC0 s

C
1a)st = (sc0s

C
1,t−1)sCt+1s

C
tb by an ELW

in f
(t,b)
3 . (sc0s

C
1,t−1)sCt+1s

C
tb = sCt+1s

C
1b by a series of ELW in f2. This results in the

desired equality. �

Corollary 3.4.

(sC0 s
C
1,2n−1)(sC0 s

C
1a)(sC0 s

C
1b) =

{
(sB0 s

B
2,2n−2s

B
1,b+1)(sC0 s

C
1a), a+ b < 2n− 1,

(sB0 s
B
2,2n−2s

B
1b)(s

C
0 s

C
1,a+1), a+ b ≥ 2n− 1.

This equation holds for 1 ≤ b 0 a ≤ 2n− 2.
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Lemma 3.5. Let m ≥ 1.

(i) (sC0 s
C
1,2n−1)2m = (sB0 s

B
2,2n−2s

B
1 )2m,

(ii) (sC0 s
C
1,2n−1)2m−1(sC0 s

C
1b) = (sB0 s

B
2,2n−2s

B
1 )2m−1(sB0 s

B
2b) for 2 ≤ b ≤ 2n− 2,

(iii) (sC0 s
C
1,2n−1)2m−1sC0 = (sB0 s

B
2,2n−2s

B
1 )2(m−1)(sB0 s

B
2,2n−2)(sB0 ),

Proof.

(i) We will utilize induction with respect to m. (sB0 s
B
2,2n−2s

B
1 )(sB0 s

B
2,2n−2s

B
1 ) =

(sC0 s
C
1,2n−2s

C
0 s

C
1 )(sC0 s

C
1,2n−2s

C
0 s

C
1 ) = (sC0 s

C
1,2n−2)(sC1 s

C
0 s

C
1 s

C
0 )(sC2,2n−2s

C
0 s

C
1 ) =

(sC0 s
C
1,2n−1)(sC0 s

C
1,2n−2)(sC0 s

C
0 s

C
1 ) = (sC0 s

C
1,2n−1)2. The first equality is de-

rived from Lemma 3.2, and the second and the third equalities stem from

ELW in f
(1)
5 and f

(0,c)
2 , respectively. Assume that (sB0 s

B
2,2n−2s

B
1 )2c =

(sC0 s
C
1,2n−1)2c for a positive integer c. Consequently, (sB0 s

B
2,2n−2s

B
1 )2(c+1) =

(sC0 s
C
1,2n−1)2c(sB0 s

B
2,2n−2s

B
1 )2 = (sC0 s

C
1,2n−1)2(c+1).

(ii) (sB0 s
B
2,2n−2s

B
1 )2m+1(sB0 s

B
2b) = (sC0 s

C
1,2n−1)2m(sC0 s

C
1,2n−2s

C
0 s

C
1 )(sC0 s

C
1bs

C
0 ) by

Lemma 3.2.
(sC0 s

C
1,2n−1)2m(sC0 s

C
1,2n−2s

C
0 s

C
1 )(sC0 s

C
1bs

C
0 ) = (sC0 s

C
1,2n−1)2msC0 s

C
1,2n−2s

C
1 s

C
0 s

C
1 s

C
0 s

C
2bs

C
0

by ELW in f
(1)
5 .

(sC0 s
C
1,2n−1)2msC0 s

C
1,2n−2s

C
1 s

C
0 s

C
1 s

C
0 s

C
2bs

C
0 = (sC0 s

C
1,2n−1)2m+1sC0 s

C
1bs

C
0 s

C
0 by a series of

ELW in f
(0,c)
2 .

(sC0 s
C
1,2n−1)2m+1sC0 s

C
1bs

C
0 s

C
0 = (sC0 s

C
1,2n−1)2m+1sC0 s

C
1b by ELW in f

(0)
1 .

(iii) (sB0 s
B
2,2n−1)(sB0 ) = (sC0 s

C
1,2n−2s

C
0 )(sC0 s

C
1 s

C
0 ) by Lemma 3.2.

(sC0 s
C
1,2n−2s

C
0 )(sC0 s

C
1 s

C
0 ) = sC0 s

C
1,2n−1s

C
0 .

The remaining part follows as a straightforward consequence of part (i). �

It should be noted that the length of word in C̃n is 2m greater than the length

of the corresponding word in B̃n.

Definition 3.6. The following words are defined in B̃n :

(i) w0 = sBndn · · · s
B
ada
· · · sB1d1 for a− 1 ≤ da ≤ 2n− a and a = 1, . . . , n.

(ii) w1 =
∏t
i=1(sB0 s

B
2,2n−2s

B
1ai) for t ≥ 0 and 1 ≤ ai 0 ai−1 ≤ 2n− 2.

(iii) w2 =
∏s
i=1(sB0 s

B
2,b2i−1

sB1b2i) for s ≥ 0 and 0 ≤ bi 0 bi−1 ≤ 2n− 3.

(iv) w3 =


(sB0 s

B
2n−2s

B
1 )2m,

(sB0 s
B
2n−2s

B
1 )2m−1(sB0 s

B
2b),

(sB0 s
B
2n−2s

B
1 )2(m−1)(sB0 s

B
2,2n−2)sB0 .

for m ≥ 0 and 1 ≤ b ≤ 2n−2,

(v) w4 = w0w1w2 where at ≥ 2 and either b1 0 at or b1 60 at but{
b2 0 at, at + b1 ≥ 2n;
b2 + 1 < at, at + b1 < 2n.

,

(vi) w5 = w0w1w3.
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Let WB = {w4, w5}.

Theorem 3.7. Any word w ∈ WC in which number of appearance of s0 is even
can be converted into a word in WB.

Proof. Since sBa = sCa for a = 1, . . . , n, we focus on words of the form w =

(sC0 s
C
1,2n−1)m

∏t
i=1(sC0 s

C
1bi

) where m+ t is even 0 ≤ bi 0 bi−1 ≤ 2n− 2.

If m = 0, then according to Lemma 3.2,we can write w =
∏ t

2
i=1(sB0 s

B
2,b2i−1

sBb2i).

As a result, w belongs to WB .
Suppose that m ≥ 1 and 2n − 2 = b1 = b2 = · · · = bd > bd+1. Then

w =
(∏b d+1

2 c
i=1 (sB0 s

B
2,b2i−1

sB1,b2i)
)
w
′

where w
′

= (sC0 s
C
1,2n−1)m

∏t
i=2b d+1

2 c+1(sC0 s
C
1bi

)

by repeated applications of Corollary 3.4 and Lemma 3.2. Let us rewrite w
′

as
follows, w

′
= (sC0 s

C
1,2n−1)m(sC0 s

C
1a)
∏p
i=0(sC0 s

C
1ai). Assume that a+ i+ ai ≥ 2n− 1

for 0 ≤ i ≤ q ≤ p and a+ q+1+ai < 2n−1 for q+1 ≤ i ≤ p. Let x = (2n−2)−a.
Now we investigate each case separately. There are 6 cases.

Case (i): q ≥ x − 1 and m > x. Corollary 3.4 and Lemma 3.2 imply that

w
′

=
∏x
i=0(sB0 s

B
2,2n−2s

B
1ai)w

′′
where w

′′
= (sC0 s

C
1,2n−1)m−x

∏p
i=x+1(sC0 s

C
1,xi

). Now

same process can be applied to w
′′
. This should be repeated until one of the

conditions is not met. Therefore we can assume that w
′

does not satisfy one of the
conditions without loss of generality.

Case (ii): q ≥ x− 1 and m = x. Corollary 3.4 and Lemma 3.2 suggest that w
′

=∏m
i=0(sB0 s

B
2,2n−2s

B
1ai)

∏ p
2

i= m+2
2

(sB0 s
B
2,a2i−1

s1,a2i) because of ax 0 ax+1, w
′ ∈WB and

so is w.
Case (iii): q ≥ x − 1 and m < x. Corollary 3.4 and Lemma 3.2 suggest that

w
′

=
(∏m−1

i=0 (sB0 s
B
2,2n−2s

B
1ai)

)
(sB0 s

B
2,a+ms

B
1am)

∏ p
2

i= m+2
2

(sB0 s
B
2,a2i−1

s1,a2i). If a+m 0

am−1, then clearly w
′ ∈WB which implies w ∈WB . Suppose a+m 60 am−1. Since

am−1 +m+ a ≥ 2n and am 0 am−1, w
′ ∈WB and so is w.

Case (iv): q < x− 1 and m ≤ q. Similar to the scenario in case (iii).

Case (v): q < x− 1 and q < m ≤ p. w′ equals

( q∏
i=0

(sB0 s2,2n−2s
B
1ai)

)( m−1∏
i=q+1

(sB0 s
B
2,2n−2s

B
1ai+1)

)
(sB0 s

B
2,a+q+1s

B
1am)

p
2∏

i= m+2
2

(sB0 s
B
2,a2i−1

s1,a2i)

by Corollary 3.4 and Lemma 3.2. We can observe that aq > aq+1. If a + q +

1 0 am−1 + 1, then it is evident that w
′ ∈ WB which consequently implies that

w ∈ WB . Now consider the scenario where a + q + 1 60 am−1 + 1. In this case,
am−1 + 1 ≤ a + q + 1 and am + a + q + 1 < 2n − 1. It follows that am < n and

consequently am + 1 < am−1 + 1. Therefore, we can conclude that w
′ ∈ WB and

hence w is also an element of WB .
Case (vi): Applying Corollary 3.4 and Lemma 3.2 repeatedly provides the fol-

lowing, w
′

=
(∏q

i=0(sB0 s2,2n−2s
B
1ai)

)(∏p
i=q+1(sB0 s

B
2,2n−2s

B
1ai+1)

)
w
′′

where

w
′′

=


(sB0 s

B
2,2n−2s

B
1 )m−p, a+ q + 1 = 2n− 2

(sB0 s
B
2,2n−2s

B
1 )m−p−1(sB0 s

B
2,a+q+1), 1 ≤ a+ q + 1 ≤ 2n− 3

(sB0 s
B
2,2n−2s

B
1 )m−p−2(sB0 s

B
2,2n−2)(sB0 ), a+ q + 1 = 0
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by Lemma 3.5. Thus, it is evident that w
′ ∈ WB and consequently, w is also an

element of WB .
�

Lemma 3.8. The generating function for words in WB is given by the expression:
n∏
a=1

(1 + y + · · ·+ y2a−1)
1 + ya

1− yn+a
.

Proof. We have established a one to one correspondence between words in WB

and words in WC with the even number of occurrence of s0. Consider a word
in WC of the form w = (sCndns

C
n−1,dn−1

· · · sC1d1)
∏t
i=1(sC0 s

C
1bi

) where t is even and

0 ≤ bi 0 bi−1 ≤ 2n − 1. Since sCa = sBa for a = 1, . . . , n, sCndns
C
n−1,dn−1

· · · sC1d1 =

sBndns
B
n−1,dn−1

· · · sB1d1 , we can express this word in WB as sBndns
B
n−1,dn−1

· · · sB1d1 .

The generating function for this form of word in WB is
∏n
a=1(1 + y + · · ·+ y2a−1).

When converting the
∏t
i=1(sC0 s

C
1bi

) part into a word in WB , the corresponding word
losses length by the number of occurrences of s0. The generating function for the

words in the form
∏t
i=1(sC0 s

C
1bi

) where t ≥ 0 in WC is
∏n
a=1

1+ya

1−yn+a . It is important

to note we consider all words of the form
∏t
i=1(sC0 s

C
1bi

) where t ≥ 0, and we can

add or remove sC0 from the end of the word if the number of occurrences of sC0 is
odd, without affecting the result. �

Consider the generating function for the infinite Coxeter group of type B̃n
n∏
a=1

1 + y + · · ·+ y2a−1

1− y2a−1
.

Using Section 7.1 in [2] we can express this as:
n∏
a=1

(1 + y + · · ·+ y2a−1)(
1 + ya

1− yn+a
) =

n∏
a=1

1 + y + · · ·+ y2a−1

1− y2a−1

which corresponds to the generating function for words in WB .
With t is understanding in place, we can now proceed to unveil the main result

about a GSB for the infinite Coxeter group of type B̃n..

Theorem 3.9. Let RB represent the set of all polynomials as described in Lemma
2.2. Then,

(i) WB = Red(RB).

(ii) RB serves as a GSB for the infinite Coxeter group of type B̃n.

Proof. (i) It is evident that any word in WB is RB-reduced. Thus, we have
WB ⊆ Red(RB). Conversely, if w ∈ Red(RB), then w can be expressed as

a permutation in S̃Bn . According to Theorem 3.7, this permutation corre-
sponds to a word in WB . Consequently, we obtain Red(RB) ⊆WB .

(ii) We know that any polynomial in RB is part of a GSB for the infinite

Coxeter group of type B̃n. If RB were not a GSB, then, by the Composition
Diamond lemma, Red(RB) should be a proper subset of the set of normal

forms in the infinite Coxeter group of type B̃n. This would contradict the
fact that WB and the normal forms of the infinite Coxeter group of type

B̃n share the same generating functions.
�
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3.2. Normal Forms for D̃n. Define S̃Dn as a subgroup of S̃Bn consisting of those

elements in S̃Bn which, in their complete notation, exhibit an even number of neg-

ative entries to the right of 0. S̃Dn = {u ∈ S̃Bn : u[0, 1] ≡ 0 (mod2)}. Hence, it

follows that S̃Dn is a subgroup of S̃Bn with an index of 2.

Proposition 3.10. ([2], Proposition 8.6.3)

The group S̃Dn generated by {sD0 , sD1 , . . . , sDn }, constitutes the infinite Coxeter

group of type D̃n. In this group, sDa = sBa for a = 0, 1, 2, . . . , n − 1 and sDn =
[(n− 1 − n)].

Now, let’s attempt to find normal form representations of elements in D̃n with
respect to these generators. First and foremost, we’ll present some relations between

words in D̃n and words in B̃n.

Lemma 3.11. (i) sBn s
B
n−1 = sDn s

B
n ,

(ii) sBn s
B
n−1s

B
n = sDn ,

(iii) sBn−1s
B
n s

B
n−1 = sDn s

D
n−1s

B
n ,

(iv) sBn s
B
n−1s

B
n s

B
n−1 = sDn s

D
n−1.

Proof. (i) sBn s
B
n−1 = [(n − n)][(n− 1 n)] = [(n− 1 − n)][(n − n)] = sDn s

B
n .

(ii) sBn s
B
n−1s

B
n = sDn s

B
n s

B
n = sDn by part (i).

(iii) sBn−1s
B
n s

B
n−1 = sDn s

D
n−1s

B
n by applying part (i) and ELW in g

(n−1)
3 , respec-

tively.
(iv) sBn s

B
n−1s

B
n s

B
n−1 = sDn s

D
n−1 by part (ii).

�

Lemma 3.12. For 1 ≤ a ≤ n− 2

sBaba =


sDaba , ba < n;
sDa,n−1s

B
n , ba = n;

sDabis
B
n , ba > n.

Proof. Since sBa = sDa for 1 ≤ a ≤ n − 1, we also have sBaba = sDaba for ba < n.

Similarly sBan = sDa,n−1s
B
n . Now, let us consider the case where ba > n and a ≤ n−2.

Then, if part (ii) of Lemma 3.11, ELW’s in f
(i,n)
2 where i = 2n− ba, . . . , n− 2 and

ELW’s in f
(n−1)
4 are applied, respectively, then sDabas

B
n = sBaba will be obtained.

�

Lemma 3.13. For 1 ≤ a ≤ n− 2

sBn s
B
aba =


sDabas

B
n , ba ≤ n− 2;

sDans
B
n , ba = n− 1;

sDan, ba = n;
sDaba , ba > n.

Proof. (i) sBn s
B
aba

= [(n −n)][(a a+ 1 · · · ba+ 1)] = [(a a+ 1 · · · ba+ 1)][(n −
n)] = sBabas

B
n because ba + 1 < n. sBabas

B
n = sDabas

B
n because sBaba = sDaba .

(ii) sDans
B
n = sBa,n−2s

B
n s

B
n−1s

B
n s

B
n . If ELW’s in f

(n)
1 and ELW’s in f

(i,n)
2 for i =

n− 2, . . . , a are applied, respectively, then sBa,n−2s
B
n s

B
n−1s

B
n s

B
n = sBn s

B
a,n−1.

(iii) sBn s
B
an = sBn s

B
a,n−1s

B
n . Using part (ii), then sBn s

B
a,n−1s

B
n = sDa,ns

B
n s

B
n = sDa,n.
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(iv) sBn s
B
aba

= sBn s
B
a,ns

B
n−1 · · · sB2n−ba . Using part (ii), then sBn s

B
a,ns

B
n−1 · · · sB2n−ba =

sDans
B
n−1 · · · sB2n−ba = sDaba since sBi = sDi for i 6= n.

�

Definition 3.14. Let us consider a word w of the form sBnjns
B
n−1,bn−1

· · · sBaba · · · s
B
1b1

where each ba satisfies a− 1 ≤ ba ≤ 2n− a for 1 ≤ a ≤ n. We will define a function
n(w), which counts the number of occurrences of sn in the word w.

The following corollary is a result of the equalities sBn s
B
0 = sB0 s

B
n , sB0 = sD0 and

the lemmas discussed above.

Corollary 3.15. Let 1 ≤ b 0 a ≤ 2n− 2.

sB0 s
B
2as

B
1b =



sD0 s
D
2as

D
1b, a ≤ n− 1 or b > n

sD0 s
D
2,n−1s

D
1bs

B
n , a = n and b < n− 1

sD0 s
D
2,n−1s

D
1ns

B
n , a = n and b = n− 1

sD0 s
D
2,n−1s

D
1n, a = n and b = n

sD0 s
D
2as

D
1bs

B
n , a > n and b < n− 1

sD0 s
D
2as

D
1ns

B
n , a > n and b = n− 1

sD0 s
D
2as

D
1n, a > n and a = n

Corollary 3.16. Let 1 ≤ b 0 a ≤ 2n− 2.

sBn s
B
0 s

B
2as

B
1b =


sD0 s

D
2as

D
1bs

B
n , a ≤ n− 1 or b > n

sD0 s
D
2ns

D
1bs

B
n , a = n− 1

sD0 s
D
2as

D
1b, a ≥ n and b < n

sD0 s
D
2as

D
1,n−1s

B
n , a ≥ n and b = n

Definition 3.17.

al b =

 a ≤ b, if a ≥ n+ 1;
b = n− 1 or b ≥ n+ 1, if a = n;
a < b, if a ≤ n− 1.

It is clear that n and n− 1 are not directly comparable. However, we can say that
nl n− 1 and n− 1 l n.

Definition 3.18.

a . b =

 a ≤ b, if a ≥ n;
b = n− 1 or b ≥ n+ 1, if a = n− 1;
a < b, if a < n− 1.

Indeed, it is important to note that n and n−1 are not directly comparable to each
other.

Definition 3.19. We define the following words in D̃n,

(i) w0 = sDndn · · · s
D
ada
· · · sD1d1 where a−1 ≤ da ≤ 2n−a for a = 1, . . . , n except

n− 2 ≤ dn−1 ≤ n− 1.

(ii) w1 =
∏t
i=1(sD0 s

D
2,2n−2s

D
1,ai) for t ≥ 0, 1 ≤ ai . ai−1 ≤ 2n− 2.

(iii) w2 =
∏s
i=1(sD0 s

D
2,b2i−1

sD1,b2i) for s ≥ 0, 1 ≤ bi l bi−1 ≤ 2n− 3.

(iv) w3 =


(sD0 s

D
2,2n−2s

D
1,b2i

)2m,

(sD0 s
D
2,2n−2s

D
1,b2i

)2m−1(sD0 s
D
2b),

(sD0 s
D
2,2n−2s

D
1,b2i

)2(m−1)(sD0 s
D
2,2n−2)sD0 ,

for m ≥ 0 and 1 ≤ b ≤

2n− 2.
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(v) w4 = w0w1w2 where at ≥ 2 and either b1 l at or b1 6 lat
but

{
b2 . at, at + b1 ≥ 2n;
b2 + 1 < at, at + b1 < 2n.

(vi) w5 = w0w1w3

Let WD = {w4, w5}.

Theorem 3.20. Any word w ∈WB where n(w) is even can be transformed into a
word in WD.

Proof. Let w0 = sBnbns
B
n−1,bn−1

· · · sBaba · · · s
B
1b1

where a − 1 ≤ ba ≤ 2n − a for 1 ≤
a ≤ n. Let ta = n(sBnbn · · · s

B
a+1,ba+1

). Then

w0 =

{
(sDn,dn · · · s

D
ada
· · · sD1,d1), n(w) is even;

(sDn,dn · · · s
D
ada
· · · sD1,d1)sBn , n(w) is odd.

where

dn =

{
n, bn = n or bn−1 = n+ 1;
n− 1, otherwise.

,

dn−1 =

 n− 1, bn−1 = n− 1 or bn−1 = n; and bn = n− 1;
n− 1, bn−1 = n+ 1;
n− 2, otherwise.

and

di =

 ba, ba 6= n− 1, n;
n− 1, ba = n− 1 or ba = n; and ta is even;
n, ba = n− 1 or ba = n; and ta is odd.

for a = n− 2, n− 3, . . . , 1.
The values of dn and dn−1 can be easily determined using Lemma 3.11. To find

the values of other da, apply recursively either Lemma 3.12 or Lemma 3.13 for
a = n− 2, n− 3, . . . , 1 while using the fact that sBn s

B
n = 1.

Consider w1 =
∏t
i=1(sB0 s

B
2,2n−2s

B
ai) for t ≥ 0 and 1 ≤ ai 0 ai−1 ≤ 2n− 2 and let

ζ be the count of ai’s that are less than or equal to n− 1 in w1. Through multiple
applications of Corollary 3.15 and Corollary 3.16 imply that

w1 =

{ ∏t
i=1(sD0 s

D
2,2n−2s

D
ai), ζ is even;

(
∏t
i=1(sD0 s

D
2,2n−2s

D
ai))s

B
0 , ζ is odd.

where bi = ai if ai 6= n− 1 and bi = n if ai = n− 1.
Now consider w̄1 = sBnw1. Similarly

w̄1 =

{ ∏t
i=1(sD0 s

D
2,2n−2s

D
ai), ζ is odd;

(
∏t
i=1(sD0 s

D
2,2n−2s

D
ai))s

B
0 , ζ is even.

where bi = ai if ai 6= n and bi = n− 1 if ai = n.
Hence both w1 and w̄1 can be transformed one of the following{ ∏t

i=1(sD0 s
D
2,2n−2s

D
ai),

(
∏t
i=1(sD0 s

D
2,2n−2s

D
ai))s

B
0 ,

where for t ≥ 0, 1 ≤ ai . ai−1 ≤ 2n− 2.
�
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Lemma 3.21.
n−1∏
a=1

[(1+y+y2+. . .+ya)(1+ya)] = (1+y+y2+. . .+yn−1)

n−1∏
a=1

(1+y+y2+. . .+y2a−1)

Proof. If n is odd, then
n−3
2∏
i=1

(1 + y + y2 + · · ·+ y2k)

n−1∏
t=1

(1 + yt) =

n−3
2∏
i=1

(
1− y2i+1

1− y
)

n−1∏
t=1

(
1− y2t

1− yt
)

=
(1− yn+1)(1− yn+3) · · · (1− y2n−2)

(1− y)
n−1
2

=
1− yn+1

1− y
1− yn+3

1− y
· · · 1− y

2n−2

1− y

=

n−3
2∏

m=0

(1 + y + y2 + · · ·+ yn+2m).

If n is even, then
n−2
2∏
i=1

(1 + y + y2 + · · ·+ y2k)

n−1∏
t=1

(1 + yt) =

n−2
2∏
i=1

(
1− y2i+1

1− xi
)

n−1∏
t=1

(
1− y2t

1− yt
)

=
(1− yn)(1− yn+2) · · · (1− y2n−2)

(1− y)
n
2

=
1− yn

1− y
1− yn+2

1− y
· · · 1− y

2n−2

1− y

=

n−1
2∏

m=0

(1 + y + y2 + · · ·+ yn+2m−2).

�

Lemma 3.22. The generating function for word in WD is given by:

1 + y + · · ·+ yn−1

1− yn−1

n−1∏
a=1

1 + ya

1− yn−1+a
.

Proof. We have established one to one correspondence between words in WD and
the words in WC where the numbers of occurrences of both s0 and sn are even. Let
us consider a word w of the form:

w = (sCndns
C
n−1,dn−1

· · · sC1,d1)

t∏
i=1

(sC0 s
C
1bi).

Here, t is even, n(w) is even and 0 ≤ bi 0 bi−1 ≤ 2n − 1. First, we examiner the
part of the word sCndns

C
n−1,dn−1

· · · sC1,d1 , which corresponds to sBndns
B
n−1,dn−1

· · · sB1,d1
in WB . According to Theorem 3.20, the corresponding word in WD has

sDn s
D
n−1s

D
n−2,bn−2

· · · sD1b1
where a − 1 ≤ ba ≤ 2n − a. The generating function for these words is (1 +

y)2
∏n−1
a=2 (1 + y + y2 + · · ·+ ya−1 + 2ya + ya+1 + · · ·+ y2a) =

∏n−1
a=1 (1 + y + · · ·+

yi)(1 + yi) = (1 + y + y2 + · · ·+ yn−1)
∏n−1
a=1 (1 + y + y2 + · · ·+ y2a−1) as given by
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Lemma 3.21. Now, let us analyze the word w =
∏t
i=1(sC0 s

C
1bi

), where t is even, and

n(w) is even. We are assuming that n(sBnbns
B
n−1,bn−1

· · · sB1,b1) is even; otherwise,

we would consider the word sBnw. When converting the word
∏t
i=1(sC0 s

C
1bi

) into a
word in WD, the resulting word loses its length due to the number of occurrences
of both s0 and sn. The generating function for words in the form

∏t
i=1(sC0 s

C
1bi

) in

WC is given by
∏n
a=1

1+ya

1−yn+a . Hence, the generating function for the corresponding

words in WD is (1+y)(1+y2)···(1+yn−1)
(1−yn−1)(1−yn)···(1−y2n−2) = 1

yn−1

∏n−1
a=1

1+ya

1−yn−1+a . �

We’ve established that the generating function for the infinite Coxeter group of

type D̃n can be expressed as:

1 + y + · · ·+ yn−1

1− yn−1

n−1∏
a=1

1 + y + . . .+ y2a−1

1− y2a−1
.

Using Section 7.1 in [2], we can simplify this expression to

1 + y + · · ·+ yn−1

1− yn−1

n−1∏
a=1

1 + y + . . .+ y2a−1

1− y2a−1
= (

n−1∏
a=1

(1+y+. . .+y2a−1)(
1 + ya

1− yn−1+a
)).

This result matches the generating function of words in WD.
Now, we are ready to present the main result about a GSB for the infinite Coxeter

group of type D̃n.

Theorem 3.23. Let RD be the set of all polynomials as provided in Lemma 2.4.
Then

(i) WD = Red(RD).

(ii) RD is a GSB for the infinite Coxeter group of type D̃n.

Proof. (i) It is evident that any word in WD is RD-reduced. Therefore, we have
WD ⊆ Red(RD). Conversely, if w ∈ Red(RD), then w can be expressed as

a permutation in S̃Dn , and this permutation corresponds to a word in WD

according to Theorem 3.20. Hence, we have Red(RD) ⊆WD.
(ii) We understand that any polynomial in RD forms part of a GSB of the

infinite Coxeter group of type D̃n. If, hypothetically, RD were not a GSB,
then according to Composition Diamond lemma, Red(RD) = WB would be
a proper subset of the set of normal forms of the infinite Coxeter group of

type D̃n. This would contradict to the fact that WD and normal forms of

the infinite Coxeter group of type D̃n share same generating functions.
�

4. Conclusion

The main purpose of this article is to derive the GSB and normal forms for

infinite Coxeter groups of type B̃n and D̃n. Similar to many previously mentioned
papers, we use the Shirshov algorithm to obtain a set of R relations. We used it
partially. We then asserted that Red(R) is equal to the set of normal forms of

infinite Coxeter groups of type B̃n and D̃n. Then, by applying the Composition
Diamond lemma, we find that R forms a GSB. At this stage, we took advantage

of the combinatorial properties of infinite Coxeter groups of type B̃n and D̃n as
presented in [2]. Using this information, we determined a set of normal forms for
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this group and designed a method to determine the normal form of each element
of the group when provided in permutation form. As a result, we have determined
the normal form of the product of two normal forms. As a result, the group is
completely characterized in terms of these normal forms.
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