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Abstract

Mitochondria generate energy through cellular 
respiration and regulate various cellular processes 
such as heat production, generation and detoxification 
of reactive oxygen species, metabolism, apoptosis, 
and calcium homeostasis. In human cells, large 
numbers of mitochondria are present, each containing 
multiple copies of mitochondrial DNA. Variations in 
mitochondrial DNA have been associated with the 
onset and progression of various diseases, including 
neurological, cardiovascular, and metabolic disorders 
and also several cancers. These variants can be 
important drivers of cancer and may play a crucial 
role in tumor development. Additionally, mitochondrial 

copy number changes and structural variations, such 
as deletions can be associated with different types of 
cancer. Therefore, understanding the fundamental 
mechanisms is highly crucial. The molecular genetic 
correlations of mitochondrial DNA alterations and 
cancer, emphasize the importance of mitochondrial 
integrity in maintaining cellular homeostasis. Gaining 
knowledge of these associations can help us 
comprehend cancer processes as well as potential 
routes for targeted treatments and prevention, while 
further investigation is still required.
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Structure and Function of Mitochondria 
Mitochondria are organelles found in eukaryotic 
cells, which are responsible for generating energy 
in the form of adenosine triphosphate (ATP) through 
a process called cellular respiration (1). They are 
commonly referred to as the "powerhouses" of the 
cell because of their role in producing ATP, which 

is essential for a wide range of cellular functions, 
including metabolism, growth, and movement (2).

Organization of mitochondria is in the form of four 
morphologically and functionally distinct parts: (i) 
the outer membrane, permeable to ions and small 
molecules, whose traffic is mediated by specific 
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transporters and channels; (ii) the intermembrane 
space, the region between the matrix and the cytosol, 
where important processes such as the exchange 
of proteins, lipids, metal ions and initiation of the 
apoptotic pathway occur; (iii) the inner membrane, 
comprised of respiratory complexes in its inward folds 
(cristae), which surrounds the matrix and enables 
the transport of ions, metabolites, proteins through 
specialized transporters; (iv) the matrix, containing 
mitochondrial DNA (mtDNA) and proteins, which 
are associated with important biochemical pathways 
such as the citric acid cycle and beta-oxidation of 
fatty acids (3-6). The process of cellular respiration 
involves a series of chemical reactions that take place 
within these compartments, which ultimately result in 
the production of ATP (7).

The oxidative phosphorylation system includes five 
protein complexes and two electron carriers embedded 
in the inner mitochondrial membrane (5). During 
respiration, electrons from nicotinamide adenine 
dinucleotide + hydrogen (NADH) and succinate are 
transferred to ubiquinone via complexes I and II, 
then pass through complex III, cytochrome c, and 
end at complex IV. The energy from electron transfer 
through complexes I, III, and IV pumps protons from 
the mitochondrial matrix to the intermembrane space 
which in turn activates ATP synthesis in complex V 
(7-11). The structure of mitochondria and energy 
metabolism is summarized in Figures 1a and 1b, 
respectively.

In addition to producing ATP, mitochondria are also 
involved in several other important cellular processes 
such as heat production, generation and detoxification 
of reactive oxygen species (ROS), regulation of 

intracellular calcium (important for muscle contraction 
and other cellular processes), lipid metabolism, 
synthesis of steroid hormone, certain amino acids and 
heme (9). Mitochondria also play a role in apoptosis 
(programmed cell death), which is an important 
process for removing damaged or unwanted cells from 
the body. Mitochondria release certain proteins that 
trigger the apoptotic pathway when a cell is damaged 
or no longer needed in mammalian cells (12).

Mitochondria have their DNA, known as the 
mitochondrial genome or mtDNA, which is separate 
from the cell's nuclear DNA (nDNA), and are believed 
to have originated from free-living bacteria that were 
engulfed by ancestral eukaryotic cells in a process 
called endosymbiosis (13). This is supported by the 
fact that mitochondria have their ribosomes, and the 
structure of their DNA is similar to that of bacteria 
(14).  

Mitochondrial Genome      
Margit Nass and Sylvan Nass first described and 
isolated mitochondrial DNA in 1963 (15). However, 
the first complete mtDNA sequence was published 
18 years later in 1981 as the mtDNA Cambridge 
reference sequence (CRS) (16, 17). Currently, the 
revised CRS (rCRS—revised Cambridge Reference 
Sequence), a modified version of the sequence 
presented by Anderson et al., is used for nucleotide 
numbering of the mitochondrial genome (16-19).

The mtDNA is a circular double-stranded DNA 
molecule that is typically between 16,000 and 20,000 
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Figure 1A
Represents morphological and functional organiza-
tion of mitochondria. 

Figure 1B
Illustrates and summarizes the energy metabolism 
pathways (Glycolysis, Tricarboxylic acid (TCA) cycle 
and Electron transport system (ETS), FADH2: Flavin 
adenine dinucleotide) Adapted from: Libretext 2020 
120 & Koklesova 2022 121 (Created in Biorender.
com)
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base pairs long, depending on the organism (20, 21). 
In humans, the mitochondrial genome contains no 
histones and is only 16,569 base pairs long (2, 7). 
There are no introns in the mitochondrial genome 
and all genes are adjacent to each other with few 
exceptions. It consists of a total of 37 genes, including 
13 polypeptides encoding four of the five complexes 
(complexes I, III, IV, and V) that make up the oxidative 
phosphorylation system discussed previously, as 
well as 22 transfer RNAs (tRNA) and 12S and 16S 
ribosomal RNAs (rRNA) required for mitochondrial 
protein synthesis. Along with mitochondrial genes, 
nuclear genes also play a role in the assembly 
mechanism of oxidative phosphorylation complexes 
(5, 7, 11, 22).

The two mtDNA chains, named light (L) and heavy 
(H), are quite different in their base composition. The 
heavy chain is rich in purines and the light chain is 
rich in pyrimidines. The distribution of genes in the 
two chains is asymmetrical. The L-chain contains 
only the ND6 gene and some t-RNA-encoding genes, 
while the 12S and 16S ribosomal RNAs and tRNAs 

and most of the genes encoding proteins are located 
on the H-chain (13, 23, 24). The approximately 1 kb 
long non-coding region (Displacement loop, D-loop) 
contains the H-chain replication origin and promoters 
required for the transcription of both chains. The 
mitochondrial DNA is illustrated in Figure 2.

The genetic code of mitochondrial DNA shows some 
differences compared to the universal genetic code. 
The “UGA” stop codon in the human nuclear code 
encodes tryptophan, and the “AUA” (isoleucine) 
is encoded as methionine in the mitochondrial 
genome. “AGA” and “AGG”, which encode arginine, 
are arguably known as non-standard stop codons in 
mitochondria (19).

Mitochondrial DNA has a 10-20 times faster evolution 
rate than the nDNA and is therefore, more susceptible 
to mutations (25). Lack of protective histones, lack of 
intronic regions, ineffective repair mechanisms, high 
replication speed in mtDNA, and low fidelity of mtDNA 
polymerase are the reasons for the higher incidence 
of mtDNA mutations (25-27).
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Figure 2
Mitochondrial DNA 

The mitochondrial genome is represented in the figure. Cyt b: Cytochrome B; ND6: Mitochondrially Encoded 
NADH:Ubiquinone Oxidoreductase Core Subunit 6; ND5: Mitochondrially Encoded NADH:Ubiquinone Ox-
idoreductase Core Subunit 5; ND4: Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 
4; ND4L: Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 4L; ND3: Mitochondrially 
Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 3; COIII (or MTCO3): Mitochondrially Encoded Cy-
tochrome C Oxidase III; ATPase 6 (or MT-ATP6): Mitochondrially Encoded ATP Synthase Membrane Subunit 
6; ATPase 8 (or  MT-ATP8): Mitochondrially Encoded ATP Synthase Membrane Subunit 8; COII (or MTCO2): 
Mitochondrially Encoded Cytochrome C Oxidase II; COI: or MTCO1): Mitochondrially Encoded Cytochrome 
C Oxidase I; ND2: Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 2; ND1: Mito-
chondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 1; 16s rRNA: 16S ribosomal RNA; 12s 
rRNA: 12S ribosomal RNA. Adapted from: Cold Spring Harbor Laboratory's DNA Learning Center 2024 122 
(Created in Biorender.com)
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Unlike the nuclear genome, which is inherited 
according to Mendelian inheritance laws, the 
mitochondrial genome shows matrilineal inheritance 
(28). This is because the developing embryo receives 
the majority of its cytoplasm and organelles, including 
its mitochondria, from the egg cell (29). 

Heteroplasmy and Threshold Effect
There are hundreds to several thousand mitochondria 
in every human cell. Each mitochondrion contains up 
to ten copies of mtDNA packaged in nucleoprotein 
structures called nucleoids (30). Cells and tissues 
that need more energy usually have more mtDNA. 
Mostly, all mtDNA copies are identical and this is 
called homoplasmy (31, 32). However, errors that 
occur during mtDNA replication or repair can result in 
the formation of a mutant mtDNA molecule, and these 
can proliferate clonally by unknown mechanisms, 
eventually resulting in a metastable state called 
heteroplasmy (33, 34). In heteroplasmy, mutant and 
wild-type genomes coexist at different rates in the 
same organelle/cell/tissue (35). It has been shown that 
a low level of heteroplasmy can also occur in normal 
cells, and therefore the mutation load of mtDNA must 
exceed the minimum critical biochemical threshold 
(usually 70-90%) for mitochondrial dysfunction 
to occur in a tissue (31, 32). Since the energy 
requirements of tissues and organs are different from 
each other, the symptomatic effect of mutant mtDNA 
ratio differs according to organs (33). 

In some cases, heteroplasmy can be benign and 
have no noticeable effect on the organism. In other 
cases, it can lead to mitochondrial diseases or 
disorders, which can affect a wide range of functions 
in the body that rely on energy production (36). As a 
result, mutations in the mitochondrial genome have 
been implicated in a variety of diseases, including 
neurodegenerative disorders, metabolic disorders, 
and aging. Additionally, mitochondrial haplotypes 
refer to a set of genetic variations or polymorphisms 
that are inherited together on the mtDNA from a single 
parent or ancestor and are used to trace maternal 
lineages and evolutionary population history (37-
40). The analysis of mitochondrial haplogroups has 
been used to investigate a range of topics, including 
human migration patterns, genetic diversity within 
populations, and the association between specific 
haplogroups and disease susceptibility, including 
cancer (41-43).

Mitochondrial Variants and Cancer Relationship
In literature, mitochondrial mutations have been 
associated with different mitochondrial diseases that 
mostly affect the nervous system and muscle tissues 

(44, 45). Primary mtDNA diseases are mostly due 
to maternally inherited point mutations and large 
deletions that usually occur de novo during embryonic 
development (46-55). Recently, it was shown that 
mitochondrial dysfunction plays a key role in diseases 
such as Alzheimer’s, major depressive disorder, and 
coronary artery disease (56-61). However, precise 
mechanisms of pathogenesis are still unknown. 

Contrary to conventional wisdom, functional 
mitochondria are essential for the cancer cell. 
Although mutations in mitochondrial genes are 
common in cancer cells, they do not generally 
inactivate mitochondrial energy metabolism but rather 
alter the mitochondrial bioenergetic and biosynthetic 
state (62). It has been reported that the rate of 
individuals with somatic mutations in the nuclear and/
or mitochondrial genome may differ between 13% 
and 63% depending on the type of cancer (63, 64). 
Additionally, it is possible to identify mtDNA variations 
in a single tumor type or different cancer types (65).

Somatic mutations that may be associated with 
tumorigenesis have been reported in many 
mitochondrial genes, particularly those encoding the 
mitochondrial respiratory chain proteins (64, 66, 67). 
These mutations include both synonymous and non-
synonymous somatic mtDNA alterations (63, 68). 
In general, the most common variations associated 
with carcinogenesis are in complex I genes (69). In 
contrast, the number of somatic variations reported 
for complex III (cytochrome b, mt-CYB gene), which 
is solely encoded by mtDNA, is scarce, except for 
bladder cancer (70). Among the protein-coding genes, 
complex I and IV mutations are thought to be more 
potent in inducing carcinogenesis (67, 71). 

Both the coding and non-coding sections of the 
mtDNA have been found to include mutations in 
all forms of cancers including glioblastoma (72, 
73). Strong selection is applied to tumor cells as a 
result of metabolic dysregulation and its aftereffects. 
Therefore, it appears that obtaining somatic mtDNA 
mutations that affect oxidative phosphorylation is 
another way to promote tumor growth (63).  

Various cancers have been associated with mtDNA 
mutations in D-loop and other mitochondrial genes. 
Particularly those in the genes ND4 and ND5 that 
encode the subunits of Complex I of the respiratory 
chain, have been linked to several malignancies, 
including those of the liver and kidney (76). These 
alterations frequently increase cellular proliferation 
and apoptosis resistance, advancing cancer. 
Moreover, conflicting data links the ND3 G10398A 
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mutation to an increased risk of cancer, particularly 
breast cancer (77, 78) and the T16519C mtDNA 
control region variant is associated with endometrial 
cancer (79). Also, mutations in ND5, ATP6, and 
ATP8 are frequently observed in breast cancer 
(66).  Additionally, a synonymous T6777C SNP in 
cytochrome c oxidase subunit 1 (CO1), seems to 
lower the incidence of ovarian cancer along with 
variants in several nDNA mitochondrial genes (80, 
81). In colorectal cancers, rRNA point mutations are 
more common than tRNA and both non-synonymous 
and synonymous mutations can be observed in all 
mitochondrial genes; controversially, in stomach and 
lung cancers, point and indel mutations are detected 
in tRNA  (82, 83). Furthermore, D310 instability is also 
commonly detected, especially in bladder, breast, 
colorectal, head and neck, and lung cancers (66). 
Finally, the mtDNA control region variant C150 has 
been associated with an increased risk of human 
papillomavirus (HPV) infection and cervical cancer 
(64, 84). 

The polymorphic D-Loop region is thought to be 
critical for modulating mtDNA transcription and 
replication. D-loop polymorphisms have been linked 
to an increased risk of numerous cancers, including 

breast, cervical, skin, liver, stomach, and colon 
(85). In addition, our study suggested that some 
unique mitochondrial variations may be evaluated 
as prospective cancer biomarkers for the risk and 
progression of brain tumors and that the D-loop 
individual variations in mtDNA may play a crucial role 
in glioma biology (86). Therefore, in cancer research, 
the analysis of the non-coding D-loop control region 
as well as the coding regions of the mitochondrial 
genome is also important (87, 88). Somatic mutations 
of the D-loop region are detected more frequently in 
advanced cancers (89). In several tumors, increased 
mutation numbers have been associated with poor 
prognosis (90). 

Although mutations in tRNAs encoded by mitochondria 
have been reported frequently in other respiratory 
chain diseases, the number of variations associated 
with cancer is quite low (22). This is because tRNA 
mutations affect secondary structures and alter 
mitochondrial function by causing instability in the 
stem and loop regions (68, 91). Similarly, the impacts 
of rRNA mutations are substantially more severe than 
alterations in protein-coding genes, making rRNA 
modifications uncommon (22).
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Figure 3
Mitochondrial DNA and related cancers 

Human mitochondrial DNA is a ~16 kbp circular, double-stranded DNA containing 37 genes, encoding 13 elec-
tron transfer complex (ETC) component proteins, 2 ribosomal RNAs, and 22 transfer RNAs. The mutations 
of ETC coding regions, D-loop and rRNA genes in mtDNA were commonly found in various cancers. mtDNA 
mutations in each region and related cancers are illustrated. Black arrowheads represent the mtDNA somatic 
mutations by homoplasmic alterations; blue arrowheads are rarer heteroplasmic substitutions and red arrow-
heads are mixed homoplasmic/heteroplasmic variants. Adapted from: Errichiello et.al 2018 123 (Created in 
Biorender.com)
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Furthermore, deletions detected in mtDNA have 
also been associated with different cancers. A 21 
bp deletion causing increased cell growth due to 
overexpression of the mt-CYB gene has been found 
in bladder cancer (92, 93). The other most frequently 
detected structural variation is a 4977 bp deletion 
that has been found in different cancer types such 
as breast, colorectal, stomach and head & neck, 
comprising five tRNA genes and seven protein-coding 
genes (34, 66, 94). Figure 3 summarizes the mtDNA 
variations related to several cancers.

Mitochondrial copy number may also vary in several 
cancers. It has been shown that the mtDNA copy 
number is increased in some cancers (such as thyroid, 
pancreas and prostate) and decreased in others (for 
instance bladder, breast, colorectal and stomach), 
but the findings of several investigations contradict 
one another (64, 95). The exact mechanism of copy 
number variations (CNV) is still unknown. However, 
it is considered that the increase may be due to 
compensation for impaired oxidative phosphorylation, 
while the decrease in CNV might be caused by 
mutations in the D-loop region, which plays a role in 
replication (64, 88, 89).

Apart from mutations, structural variations and copy 
number changes in mitochondria, mutations in nuclear 
genes that are part of the mitochondrial proteome 
can also cause copy number and stability changes 
in mtDNA and thus play a role in the formation and 
development of cancer (96-98). 

Overall, while more research is needed to understand 
the relationship between mtDNA mutations and cancer 
fully, there is growing evidence that these mutations 
may be important drivers of tumorigenesis and could 
serve as potential targets for cancer prevention and 
treatment. 

Mitochondrial Bioenergetics and 
Cancer Relationship
Common disorders caused by defects in mitochondrial 
function are known to influence energy production in 
cells and can produce a wide range of symptoms across 
different organs. (99). Moreover, using Genome-Wide 
Association Studies (GWAS), mitochondrial variations 
were investigated to identify their possible contribution 
to cancer risk (100).  To determine the causal link 
between mitochondrial-related genetic variations and 
various cancer types, Mendelian Randomization (MR) 
methodology was applied to the variants, which helps 
in overcoming reverse causality and confounding 
variables that frequently restrict observational studies. 
As a result, strong evidence has been discovered 

correlating a fundamental enzyme for the production 
of isoprenoid, Farnesyl Diphosphate Synthase 
(FDPS) expression level with the risk of breast cancer 
(101, 102).  On the other hand, the NOP2/Sun RNA 
Methyltransferase 4 (NSUN4) (takes part in the 
assembly of the mitochondrial ribosome) expression 
level is associated with prostate and breast cancers 
(100). 

Cancer cells use glycolysis and the mitochondrial 
oxidative phosphorylation system (OXPHOS) as 
their principal energy sources. There is often a shift 
in energy metabolism from oxidative phosphorylation 
to glycolysis, a process known as the Warburg effect 
(103). This change enables cancer cells to survive 
and proliferate even in the absence of oxygen, a 
condition known as hypoxia. The specific mechanisms 
underlying this shift are not fully understood, however, 
it is thought to be linked to mutations in genes involved 
in mitochondrial metabolism and changes in signaling 
pathways (104).

There may be two classes of mutations in cancer cell 
mtDNA: mutations that impair OXPHOS and serve to 
stimulate neoplastic transformation, and those that 
facilitate cancer cell adaption to changing bioenergetic 
environments (62). Thus, tumor growth can be 
inhibited by modifying the production of metabolites 
in mitochondria or the OXPHOS genes (105). Instead 
of using glycolysis, a wide variety of cancer cell 
types rely on OXPHOS to increase their potential 
for tumorigenicity (106). Cancer cells upregulate 
the OXPHOS and TCA cycles to produce more 
ATP than the surrounding normal cells and develop 
resistance to chemotherapy (105, 107). OXPHOS 
allows mitochondria to produce ATP primarily by 
using pyruvate produced during glycolysis. Thus, 
mitochondrial malfunction in cancer cells can cause 
an increase in ROS production, contributing to 
genomic instability and cancer progression.

The absence of histones, inefficient DNA repair 
mechanisms, and proximity to ROS generated by the 
OXPHOS system all contribute to the high mutation 
rate observed in mtDNA, which is approximately 10–
17 times higher than that of the nuclear genome (35). 
Furthermore, altered mitochondrial function can affect 
the expression of genes implicated in apoptosis, 
conferring resistance to chemotherapy and radiation 
therapy (108).

In summary, mitochondrial bioenergetics plays a 
critical role in cancer development and progression. 
Understanding the mechanisms underlying mito-
chondrial dysfunction in cancer cells and developing 
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strategies to target these pathways could lead to new 
and effective cancer treatments.

Future Aspect: Mitochondria-targeted 
Approaches in Cancer
Targeting mitochondrial bioenergetics has emerged as 
a potential therapeutic strategy for cancer treatment. 
For instance, extracellular citrate is imported by cancer 
cells to stimulate their proliferation, and it is oxidized 
in the mitochondrial TCA cycle to make ATP. Similar 
to citrate, isocitrate is an intermediate metabolite in 
the citric acid cycle that is present in both the cytosolic 
component and the mitochondria (105). On the other 
hand, for the past 100 years, metformin has been used 
to treat diabetes. Clinical investigations conducted in 
the past few years have demonstrated its efficacy 
against cancer (109). Because insulin stimulates the 
growth of breast cancer cells, metformin lowers insulin 
levels in breast cancer patients to diminish tumor cell 
proliferation. At the same time, it suppresses tumor 
progression by blocking complex I and PI3K pathway 
(105). On the other hand; in the form of ammonium 
cations, rhodamine can selectively target mitochondria 
because of the inner mitochondrial membrane's (IMM) 
negative potential, shown in MCF-7 cells- which is a 
widely used human breast cancer cell line (110).

Furthermore, Atovaquone is an approved antimicrobial 
medication that has lately shown anti-cancer activity 
and potential in clinical trials treating ovarian 
cancer (108). It reduces ATP synthesis by blocking 
mitochondrial complex III and increasing ROS levels, 
which in turn limits tumor cell proliferation (103).

Dichloroacetic acid is a novel anti-cancer drug that 
inhibits the TCA cycle and has been demonstrated in 
clinical trials to have both synergistic and inhibitory 
effects on liver cancer cells (109). Additionally, IACS-
010759 is a small molecule of therapeutic grade 
that inhibits complex I of the mitochondrial electron 
transport chain, which is effective in treating acute 
myeloid leukemia (AML) and brain malignancies (103). 
Nevirolol is a third-generation beta-1 adrenoceptor 
inhibitor. Not only was it initially used to treat heart 
failure and hypertension, but it can also be used as a 
novel anti-cancer drug to treat cancer patients (111).
 
A recent technique known as " RNA polymerase 
mitochondria (POLRMT) targeting" suppresses 
mitochondrial transcription, depriving tumor cells of 
an energy source (112). Small compounds that are 
lipophilic and positively charged, peptide carriers, or 
metal complexes like ruthenium or iridium can all be 
used as mitochondrial targeting agents (111).

At present, methods for delivering medications that 
target mitochondria include surface modification 
of nanocarriers or chemical ligation of active 
pharmaceuticals by pro-mitochondrial agents (111). 
In contrast to traditional methods of delivering 
drugs to the mitochondria, mitochondria-targeted 
nanosystems provide the following advantages: 
delivering conventional medications via nanomaterials 
can improve drug solubility, extend drug half-life in 
vivo and enhance bioavailability, reduce side effects, 
and increase drug concentration and therapeutic 
index at the tumor site.

The primary method of delivering anti-cancer 
medications or nanoparticles to mitochondria is 
destroying mitochondria using mitochondria-cytotoxic 
peptides or peptide assemblies and combining 
them with chemotherapy or photothermal-promoted 
morphology transformation (PMT) (113). Furthermore, 
using nanoscale tubes, researchers proved that 
cancer cells can take over the mitochondria of immune 
cells. This discovery demonstrates how cancer cells 
rely on healthy cells for survival and proliferation (35).

Moreover, triphenylphosphonium (TPP) can 
preferentially target mammalian cells' mitochondria 
(111, 114). TPP-based anti-cancer drugs primarily 
target cancers with high membrane potential and 
deliver the medication to the tumor cell mitochondria 
for treatment. TPP's lipid solubility allows it to cross 
biological membranes easily. Currently, TPP is used 
in two ways: directly coupled with pharmaceutical 
compounds or modified to target mitochondrial 
nanosystems (111). Other TPP derivatives, alone or 
in combination with other therapeutic compounds, 
have shown promising anti-cancer properties. For 
example, dodecyl TPP inhibited the proliferation 
of suspended breast cancer stem cells in a dose-
dependent manner (111, 115). However, difficulties 
can arise since TPP does not target all tumor cells due 
to its limited applicability as a mitochondrial targeting 
agent for tumor cells. 

Furthermore, drug combinations incorporating 
functional peptides that target the mitochondria 
can increase tumor cell targeting, but they do not 
completely protect normal cells. Peptide-drug 
conjugates (PDCs) appear to respond mostly 
to single-factor stimuli (113). Although some 
studies have shown that functional peptides are 
biocompatible, there is still dispute about their tumor 
degradation rate and long-term safety.  The U.S. Food 
and Drug Administration (FDA) has approved two 
PDCs for use in clinical trials: LUTATHERA (Novartis 
Pharmaceuticals Corporation; Basel, Switzerland) 
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which treats somatostatin receptor-positive pancreatic 
and gastrointestinal neurosecretory cancers, and 
PEPAXTO (Oncopeptides AB; Stockholm, Sweden) 
which treats recurrent bone marrow cancer (115, 117, 
121).

Finally, Photodynamic therapy (PDT), photothermal 
therapy (PTT), chemodynamic therapy (CDT) and 
sonodynamic therapy (SDT) have been highly 
discussed in recent years (118, 119).  PDT and 
PTT are non-invasive, easy to control, and possess 
low side effects but face problems of reduced depth 
of penetration and toxicity. On the other hand, 
CDT employs endogenous hydrogen peroxide 
but is interfered with by glutathione in tumor cells. 
In addition, SDT utilizes ultrasound for deeper 
penetration, however, the process is ineffective in 
hypoxic conditions. The combination of all these 
treatment modalities increases the overall efficacy 
and decreases the risk of tumor recurrence (118, 
119). In summary, various mitochondria-targeted 
cancer therapies have been explored, each with its 
own benefits and limitations.

Conclusion

Mutations and alterations in mtDNA have been 
linked to various forms of cancer, as these genetic 
changes can disrupt normal mitochondrial function, 
leading to increased oxidative stress and impaired 
cellular energy metabolism. The molecular genetic 
associations between mtDNA mutations and cancer 
highlight the importance of mitochondrial integrity 
in maintaining cellular homeostasis. Understanding 
these connections provides valuable insights into the 
mechanisms of tumorigenesis and opens potential 
avenues for targeted therapies and diagnostic tools 
in oncology. Overall, while more research is needed 
to fully understand the relationship between mtDNA 
mutations and cancer, there is growing evidence 
that these mutations may be important drivers of 
tumorigenesis and could serve as potential targets for 
cancer prevention and treatment. 
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