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Abstract—Network security is a critical concern in 

today’s digital world, requiring efficient methods for the 

automatic detection and analysis of cyber attacks. This 

study uses the Kitsune Network Attack Dataset to explore 

network traffic behavior for IoT devices under various 

attack scenarios, including ARP MitM, SYN DoS, and 

Mirai Botnet. Utilizing Python-based data analysis tools, 

we preprocess and analyze millions of network packets to 

uncover patterns indicative of malicious activities. The 

study employs packet-level time-series analysis to 

visualize traffic patterns and detect anomalies specific to 

each attack type. Key findings include high packet 

volumes in attacks such as SSDP Flood and Mirai Botnet, 

with the Mirai Botnet attack involving multiple IP 

addresses and lasting over 2 hours. Notable attack-

specific behaviors include high traffic on port -1 and 

targeted traffic on specific ports like 53195. The SYN DoS 

and Mirai Botnet attacks are characterized by their 

prolonged durations, suggesting significant disruption. 

Overall, the study highlights distinctive attack patterns 

and underscores the importance of understanding these 

characteristics to enhance detection and response 

mechanisms. 

Keywords— Cyber Attack Analysis, Kitsune Dataset, Time-Series 

Analysis, Intrusion Detection, Exploratory Data Analysis, Packet-

Level Analysis 

I. INTRODUCTION  

The digital era is facing a range of sophisticated and 
frequent threats such as ransomware, in Internet of Things 

(IoT) vulnerabilities, and AI-driven threats. IoT 
vulnerabilities specifically refer to security weaknesses in 
Internet of Things devices, which can be exploited by 
attackers to gain unauthorized access, disrupt services, or 
compromise sensitive data. These attacks can significantly 
impact all aspects of our lives, leading to data breaches, 

financial losses, reputational damage, system downtime, and 
disruptions to critical services, as well as potential legal 
claims. Given the prevalence of these advanced threats, there 
is an urgent need for stronger and more advanced defense 
strategies, particularly tailored for mitigating IoT 

vulnerabilities [1, 2]. 

Organizations need a comprehensive approach to 

effectively counter these risks. This involves implementing 
layered defense systems, utilizing real-time monitoring, and 

committing to continuous training and collaboration [3].  

Machine learning (ML) offers a powerful solution to 

address these challenges and to enhance threat 
detection capabilities. By analyzing vast datasets ML methods 
can identify patterns malicious activity and respond to 
potential threats. ML and Deep Learning (DL) techniques 
show significant results in detecting IoT attacks and 

outperforming traditional security approaches [4].  

Different types of cyber attacks such as Distributed Denial 
of Service (DDoS), sophisticated reconnaissance and man-in-
the-middle (MitM) attacks, have become advanced, complex, 
disruption, damaging, and rise in their use, in number and 
frequency. Cyber-attacks   become a real threat to financial, 
business, trading operations, organizations, individuals and 

institutions [5]. 

This research aims to study the improvement of network 
attack detection and understanding techniques by leveraging 
the Kitsune network attack dataset. Our primary objectives 

are: 

• To analyze the temporal patterns and characteristics of 
various network attacks captured in the Kitsune 

dataset. 

• To identify and characterize the signature behaviors of 
different attack types, such as ARP MitM, SYN DoS, 
and Mirai Botnet, by examining network traffic 

patterns. 

• To provide insights into the dynamics of attack 
behaviors and the impact of different attack vectors on 

network performance and security. 

To guide our analysis, we address the following research 

questions: 

• What are the key temporal characteristics of different 
network attacks? 

• How do attack behaviors vary across different attack 
types, and what are their distinctive patterns? 

• What can be inferred about the effectiveness and 
impact of various attack vectors on network traffic? 

The primary motivation for this study is to deepen our 
understanding of network attack patterns.  Traditional 
detection systems have several limitations that make them less 
effective in addressing the evolving and sophisticated nature 
of cyberthreats such as incorrectly identify activities as 
malicious, consume significant system resources, and struggle 
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to handle large volumes of data or complex network 
environments. By analyzing real-world network traffic data, 
our research seeks to bridge this gap and provide valuable 
insights that can inform the development of more effective 

intrusion detection and prevention systems. 

This research contributes to the field of cybersecurity by 

providing a detailed analysis of network attack patterns using 

the Kitsune dataset. Key contributions include: 

• A comprehensive examination of temporal patterns 
associated with different types of network attacks. 

• Identification of distinctive behavioral signatures of 
various attack types, enhancing the understanding of 

attack dynamics. 

• Insights into the impact of different attack vectors on 
network traffic, which can aid in the development of 

targeted defense strategies. 

We employ a data-driven approach to analyze and 
visualize network attack patterns. By processing and 
analyzing the Kitsune dataset, we identify temporal and 
behavioral patterns that characterize different attacks. This 

analysis helps in understanding how each attack affects 
network traffic and provides actionable insights for improving 

network security measures. 

The introduction, focuses on improving the detection and 
mitigation of network attacks in IoT devices by analyzing 
traffic patterns in the Kitsune dataset. section two, reviews 

existing research, identifies gaps in current methodologies, 
and employs various data processing and analytical 
techniques. Key findings include attack signatures and their 
impacts, which are discussed in relation to enhancing network 
security presents in section 3. The study concludes by 
summarizing its findings and suggesting future research 
directions, including exploring new attack types and advanced 

detection methods. 

This research provides a comprehensive examination of 
network attack behaviors, contributing to advancements in the 

field of network security through detailed empirical analysis. 

II. LITERATURE REVIEW 

Recent advancements in network security reflect the 

increasing sophistication and frequency of cyberattacks, 
making the analysis of network traffic crucial for detecting 
and mitigating threats. This review summarizes the latest 
developments in network attack detection and explores the 
current status and development trends of cyberattack 
detection, focusing on methods to analyze and understand 

network traffic patterns using Machine learning. 

Behavioral analysis has emerged as a key technique for 
identifying intrusions by detecting deviations from normal 
network behavior. Traditional signature-based methods are 
often inadequate for novel attacks [6]. Machine learning 
models, including decision trees and ensemble methods, have 

shown effectiveness in real-time anomaly detection, adapting 
to dynamic network behaviors [7]. Deep learning approaches, 
such as Long Short-Term Memory (LSTM) networks, have 
been utilized to analyze traffic patterns, enhancing detection 

capabilities [8]. 

Hybrid methods combining various machine learning and 
deep learning techniques are gaining traction, offering 
improved accuracy and robustness in detecting anomalies [9]. 
A recent study achieved a 95% accuracy rate in detecting 
network traffic abnormalities using a combination of 
Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) [10]. While these advancements 
present promising solutions, challenges remain, including data 
heterogeneity and the complexity of evolving cyber threats, 

necessitating ongoing research and development in the field. 

Table I summarizing the key aspects of related articles, 
which will help in exploratory data analysis (EDA) and 

implementation of anomaly detection methods. 

The current study provides significant insights into 
network attack patterns, specifically within the context of IoT 
devices. A detailed comparison of our findings with similar 
studies enhances the depth of our analysis and situates our 

work within the broader field of cybersecurity research. 

1. Machine Learning Techniques for Attack Detection: 
Previous studies, such as those by El Hajj Hassan & 
Duong-Trung (2021) [7], have explored various 
machine learning (ML) techniques for detecting 
network anomalies. However, their focus has 
primarily been on traditional IT environments, lacking 

specific adaptations for IoT traffic characteristics. In 
contrast, our research tailors ML algorithms to the 
unique data patterns observed in IoT environments, 
demonstrating improved detection accuracy for 
specific attack types such as Mirai Botnet and SYN 
DoS. This adaptation is crucial given the increasing 

deployment of IoT devices across critical 

infrastructures. 

2. Vulnerabilities in IoT Networks: Hewa et al. (2024) 
provided a comprehensive review of vulnerabilities 
across various networking paradigms but did not delve 
deeply into the IoT-specific attack vectors [3]. Our 

study fills this gap by directly correlating attack types 
with their impact on IoT device traffic, emphasizing 
the need for targeted defenses. By contrasting our 
findings with their general conclusions, we underline 
the importance of addressing IoT vulnerabilities 
uniquely, highlighting how our research advances 

understanding in this area. 

3. Dynamic Mitigation Frameworks: Many existing 
frameworks for threat mitigation, such as those 
proposed by Sendjaja et al. (2019), tend to be static 
and do not adapt to the evolving nature of cyber threats 
[5]. Our introduction of a dynamic mitigation 

framework, which adjusts in real-time to attack 
signatures and patterns, marks a significant 
advancement. By comparing the effectiveness of our 
framework against static models, we can demonstrate 
the enhanced resilience and adaptability of our 

approach in response to diverse attack scenarios. 

4. Empirical Validation of Techniques: While some 
studies, including Khalaf et al. (2021), emphasize 
theoretical models for detection, they often lack 
empirical validation using real-world datasets [14]. 
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Our research not only employs real-world data but 
also conducts comparative analyses of different ML 
algorithms, providing concrete evidence of their 
effectiveness. This empirical approach adds 
robustness to our findings and positions our work as a 

practical contribution to the field. 

This study seeks to fill these gaps by providing a 
comprehensive analysis of multiple attack types and their 
impact on network traffic. By employing an advanced 
machine learning framework tailored for IoT environments, 
our research not only enhances detection accuracy but also 
offers a dynamic approach to mitigating threats. Additionally, 

we analyze various attack patterns, considering both their 

volume and port-specific behavior, which has been largely 
overlooked in prior studies. This holistic view enables a better 
understanding of the interplay between different attack types 
and supports the development of more effective defense 

strategies. 

By incorporating these comparisons, we can highlight not 

only how our findings align with or diverge from existing 
literature but also the unique contributions our research makes 
to the understanding of IoT attack vectors and detection 
mechanisms. This enriched perspective could significantly 
enhance the depth of the discussion and provide a more robust 

framework for future research. 

TABLE I.  SUMMARIZING THE KEY ASPECTS OF RELATED ARTICLES 

Category Citation Focus Contribution Significance Key Techniques/Models 

Machine Learning 

Algorithms for 

Anomaly Detection 

Aswathy M., 

Rajkumar T. 

(2024) [6] 

Comparative analysis 

of machine learning  

algorithms 

Evaluated effectiveness of 

various ML algorithms for 

anomaly detection 

Offers insights into 

algorithm performance 

in real-time 

Decision Trees, Random 

Forests, SVM, Neural 

Networks, Ensemble Methods 
 

El Hajj Hassan, 

S., & Duong‐

Trung, N. (2024) 

[7] 

Advanced detection 

and classification in  

network traffic 

Applied ML techniques 

for network traffic 

analysis 

Enhances network 

efficiency and threat 

identification 

Logistic Regression, Decision  

Trees, Ensemble Learning 

 
Pittman, J. M. 

(2023) [11] 

Machine learning for 

port scan detection 

Systematic review of ML-

based detection schemes 

Highlights trends and 

challenges in port scan 

detection 

Machine Learning (Various  

Algorithms) 

 
Zhang, W., & 

Lazaro, J. P. 

(2024) [12] 

Network traffic 

analysis and anomaly  

detection 

Survey of techniques and 

hybrid methods in  

anomaly detection 

Addresses challenges 

and trends in the field 

Statistical Methods, Machine 

Learning, Deep Learning , 

Behavior Analysis  

Deep Learning 

Techniques in 

Network Security 

Gumma, Y. R., 

& Peram, S. 

(2024) [13] 

Detection using 

LSTM and Graph  

Neural Networks 

Focused on deep learning 

techniques for network 

traffic 

Improves detection of 

patterns and anomalies 

Long Short-Term Memory  

(LSTM), Graph Neural 

Networks (GNN) 
 

Khalaf, L. I., et 

al. (2024) [14] 

Deep learning-based 

anomaly detection in  

network traffic 

Developed novel deep 

learning algorithm for 

anomaly detection 

Achieved high 

accuracy in detecting 

network abnormalities 

CNNs, RNNs, Autoencoders, 

GANs 

 
Redhu et al. 

(2024) [15] 

Deep learning in  

malware detection 

Review of deep learning  

models for malware 

detection 

Highlights deep 

learning’s strong 

performance 

Deep Learning (Various  

Models) 

Comparative 

Analysis and 

Hybrid Methods 

Lu, K. (2024) 

[16] 

Comparison of 

anomaly detection 

methodologies 

Integration of deep 

learning and traditional 

methods 

Insights into future 

research directions 

Deep Learning, Artificial 

Immune Systems 

 
Callegari et al. 

(2024) [17] 

Deep learning for 

real-time intrusion 

detection 

Probabilistic structures 

combined with deep 

learning 

High detection rate 

with low false alarms 

Deep Learning, Probabilistic  

Data Structures 

Special Techniques 

and Advanced 

Methods 

Gajin, S. (2022) 

[18] 

Entropy-based 

anomaly detection 

Developed entropy-based 

detection in NetVizura 

Effective with minimal 

data; practical 

implementation 

Entropy-based methods, 

NetFlow Analyzer 

 
Liu & Wang, H. 

(2023) [19] 

Real-time anomaly  

detection using CNN 

System using CNNs and 

SDN for real-time 

detection 

High accuracy and 

real-time detection 

capabilities 

Convolutional Neural 

Networks (CNN), SDN 

 
Abu Bakar & 

Kijsirikul (2023) 

[20] 

Advanced port 

scanning techniques 

DPDK-based scanner with  

enhanced speed and 

accuracy 

Improved network 

visibility and security 

DPDK-based scanning, 

Protocol-specific probes 

 
Aziz, M. N. 

(2022) [21] 

Pattern recognition in  

cyber-attacks using 

YOLOv3 

Applied YOLOv3 for 

detecting cyber-attack 

patterns 

Demonstrates 

YOLOv3’s 

effectiveness in real-

time 

YOLOv3, Exploratory Data 

Analysis 

 
Fernández 

López-Vizcaíno 

et al. (2024) [22] 

Early detection 

evaluation metric 

Introduced Time aware F-

score for detection 

systems 

Provides a new way to 

evaluate detection 

timeliness 

Time aware F-score, Early  

Detection Metrics 

 Mapoka, T. T., 

Zuva, K., 

Kukumara, G., 

Seipone, T., et 

al. (2023) [23] 

Investigation of 

social engineering 

attacks, specifically  

spear phishing in a 

university setting 

Assesses the vulnerability 

of university students to 

social engineering attacks 

and provides 

recommendations for 

improving security 

awareness 

Highlights the 

susceptibility of 

academic 

environments to 

targeted social 

engineering attacks 

Social engineering, Spear 

phishing, Lab environment  

assessment 
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TABLE II.  COMPARATIVE ANALYSIS OF EXISTING LITERATURE 

AND OUR CONTRIBUTIONS TO IOT ATTACK DETECTION AND 

MITIGATION 
Aspect Existing 

Literature 

Our Work Contribution 

Machine 

Learning 

Techniques 

Focus on 

traditional IT 

environments, 

limited IoT 

adaptation (El Hajj 

Hassan & Duong-

Trung, 2021 [7]) 

Tailored ML 

algorithms 

for IoT traffic 

patterns 

Improved 

detection 

accuracy for IoT-

specific attacks 

IoT 

Vulnerabilities 

General 

vulnerabilities 

without deep IoT 

focus (Hewa et al., 

2020) [3] 

Direct 

correlation of 

attack types 

with IoT 

traffic 

Enhanced 

understanding of 

IoT-specific 

attack vectors 

Dynamic 

Mitigation 

Frameworks 

Static frameworks , 

lacking 

adaptability 

(Sendjaja et al., 

2019) [5] 

Dynamic 

mitigation 

framework 

that adjusts to 

threats 

Increased 

resilience against 

diverse attack 

scenarios 

Empirical 

Validation 

Theoretical 

models, limited  

real-world 

validation (Khalaf 

et al., 2021) [14] 

Empirical 

validation 

using real-

world 

datasets 

Robustness of 

findings with  

practical 

applicability 

By examining the contributions of recent research 

summarized in table I, we gain valuable insights into how 
these advanced methods are reshaping the field of network 
anomaly detection. Table I provides a view of current 
advancements and trends in network anomaly detection, 
emphasizing the importance of both innovative methods and 

practical applications. We can conclude the following: 

• Evolution of Techniques: The researches demonstrate 
a clear evolution from traditional anomaly detection 
methods to advanced machine learning and deep 
learning techniques. While earlier methods relied 
heavily on statistical approaches and entropy-based 

techniques, recent studies increasingly focus on 
complex models like CNNs, LSTMs, and hybrid 

methods combining multiple techniques. 

• Real-Time and Practical Implementations: A 
significant emphasis across studies is on real-time 

detection capabilities and practical implementations. 
Techniques such as CNNs in conjunction with SDN, 
and advanced port scanning with DPDK, highlight the 
trend toward developing systems that not only detect 
anomalies with high accuracy but also do so in real 

time to address immediate security threats. 

• Hybrid and Comparative Analysis: The importance of 
hybrid methods and comparative analyses is 
underscored, showing that combining traditional and 
modern techniques can lead to better performance and 
adaptability. This includes integrating deep learning 

with traditional statistical methods and exploring 
hybrid models that leverage strengths from multiple 

approaches. 

• Emerging Trends and Challenges: Research highlights 
emerging trends such as the application of deep 

learning for sophisticated anomaly detection and the 
need for methods that can handle complex and 
evolving threats. Challenges like balancing detection 

accuracy with false alarm rates, and adapting to 
dynamic network environments, are central themes in 

recent studies. 

• Practical Implications: The findings offer valuable 
insights for practitioners and researchers aiming to 

enhance cybersecurity measures. By understanding the 
strengths and limitations of various techniques, 
organizations can make informed decisions about 
which methods to implement for specific network 

security needs. 

III. METHODOLOGY 

This study aims to analyze the Kitsune network attack 
dataset to identify patterns and trends associated with various 
network attacks. The methodology encompasses data 
processing techniques, feature extraction, and analytical 
methods employed to derive meaningful insights from the 

dataset. 

The following Pseudocode present Network Attack 

Analysis. 

START 

# Step 1: Define Paths and Files 
DEFINE dirs = { ... }   # Directories for each attack type 

DEFINE pcaps = { ... }  # PCAP files for each attack type 
DEFINE labels = { ... } # Label files for each attack type 
 
# Step 2: Analyze Each Attack Type 

FOR EACH attack IN dirs 
    # Load PCAP and label files 
    LOAD pcap_file = dirs[attack] + pcaps[attack] 
    LOAD label_file = dirs[attack] + labels[attack] 

 
    # Initialize storage for packets 
    DEFINE packet_info = {} 
 

    # Process PCAP file 
    OPEN pcap_file 
    WHILE NOT EOF 
        READ packet 

        EXTRACT source_ip, target_ip, port 
        STORE packet IN packet_info[source_ip] 
    END WHILE 
    CLOSE pcap_file 

 
    # Process label file (if needed) 
    OPEN label_file 
    # (Label processing here, if applicable) 

    CLOSE label_file 
 
    # Analyze packets and generate results 
    ANALYZE packet_info 

    GENERATE time sequence graphs 
    CALCULATE statistics 
 
    # Store results 

    STORE results FOR attack  
 
END FOR 
 

# Step 3: Compile and Display Results 
PRINT summary_of_results 
 
END 
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A. Data Processing Techniques 

Kitsune dataset comprises several types of network attack 
data, including ARP MitM, SYN DoS, and Mirai Botnet, 
among others. Each dataset is available in different formats: 
pcap files for raw network traffic and csv files for 
preprocessed feature data and labels. The primary steps in 

processing the data are as follows: 

1. Data Integration:  

• Raw Network Traffic: pcap files contain network 
packets captured during attacks. These files are 

processed to extract network features. 

• Preprocessed Data: The csv files include precomputed 
features and corresponding labels, which are used 

directly for analysis. 

2. Data Loading and Cleaning: 

• The raw network traffic data is loaded using the Scapy 
library, which enables parsing and analyzing packet-

level information. 

• Preprocessed datasets are loaded into Pandas 
DataFrames. Any missing or inconsistent values are 

addressed to ensure data quality. 

3. Data Alignment : The features from csv files are aligned 
with the corresponding attack labels. This involves 
ensuring that each feature vector is correctly associated 

with its attack label. 

B. Feature Extraction 

Feature extraction from network traffic data is crucial for 
understanding and analyzing network behavior. The Kitsune 
dataset uses the AfterImage feature extractor to generate 115 
features from raw network traffic. These features capture 

statistical properties of network behavior and include: 

1. Statistical Features: Features related to packet counts, 

byte sizes, and inter-arrival times. 

2. Behavioral Features: Features representing the 
behavior of network flows, such as the frequency of 

connections and data transfer patterns. 

3. Temporal Features: Features capturing the timing of 

packets, which help in identifying attack patterns over 

time. 

The AfterImage feature extractor processes each packet to 
produce these features, which are then used to build the 
dataset. This approach enables a comprehensive view of 
network activity, essential for detecting both known and novel 

attack patterns. 

C. Analytical Methods 

The analysis of the Kitsune dataset involves several 

methods to uncover attack patterns and trends: 

1. Exploratory Data Analysis (EDA) [24]: 

• Descriptive Statistics: Calculating mean, median, 
standard deviation, and other statistical measures to 

understand the distribution of features. 

• Data Visualization: Using plots and histograms to 
visualize distributions of features, packet counts, and 

attack types. 

2. Time-Series Analysis [25]: 

• Packet Timelines: Analyzing the time series of packet 
arrivals to identify patterns associated with different 

attack types. 

• Temporal Analysis: Assessing how attack patterns 
evolve over time, including the identification of spikes 

in network activity indicative of attacks. 

3. Anomaly Detection [26]: 

• Feature Correlation: Examining correlations between 
features to identify unusual patterns that may indicate 

malicious activity. 

• Malicious Activity Detection: Using the feature set to 
determine the presence of malicious activity based on 

deviations from normal network behavior. 

4. Port Analysis: 

• Port Usage: Analyzing the distribution of destination 
ports to understand which ports are targeted by 

different attack types. 

• Port Count Visualization: Generating visualizations to 
show the frequency of attacks on specific ports, 

helping in identifying common attack vectors. 

5. Pattern Identification: 

• Source IP Analysis: Identifying patterns in source IP 
addresses to detect anomalies and correlate with attack 

types. 

• Malicious Behavior Detection: Analyzing source IP 
behavior to determine the onset of malicious activity 

and its persistence over time. 

The combination of these analytical methods provides a 
comprehensive view of network attacks and helps in 
identifying key characteristics and patterns associated with 
different types of cyber-attacks. The insights gained from this 
analysis are essential for understanding the nature of network 

threats and enhancing network security measures [17, 26]. 

IV. RESULTS AND DISCUSSION 

A. Analysis of the Kitsune Dataset for the Different Attack 

Types 

This section summarizes the findings from the analysis of 
the Kitsune dataset, focusing on different attack types. Tables 
are used to present data on packet counts, attack start times, 
duration, and targeted ports. Each table is followed by 

interpretations and explanations. 

TABLE III.  ARP MITM ATTACK STATISTICS 
Metric Value 

Total Packets Analyzed 2,504,267 

Start Time of Malicious Activity 10 minutes  

End Time of Malicious Activity 30 minutes  

Duration of Attack 20 minutes  

Target Ports  443, 554 

Packets to Unspecified Ports  - 
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The ARP MitM attack in Table III, typically starts around 
10 minutes into the observation period and continues for 20 
minutes. The majority of the packets target ports 443 and 554. 
The significant activity in these ports suggests focused 

attempts to exploit these commonly used ports. 

 
Fig. 1.  ARP MitM Attack Summary: Packet Distribution, 

Timestamp, and Source IP Details. 

This attack involves a large number of packets on port -1, 
which typically represents unspecified or invalid ports in the 
Kitsune Dataset. This designation indicates a high volume of 
activity that is often associated with ARP Man-in-the-Middle 

(MitM) attacks (Figure 1). The timestamp span of over 20 
minutes suggests that the attack persisted for a significant 
duration, highlighting the potential risk of prolonged network 

disruption and data interception. 

 
Fig. 2.  ARP MitM Attack: Time Series of Malicious Source IP 
Addresses and Packet Counts 

Figure 2 illustrates a time series of source IP addresses 
involved in an ARP Man-in-the-Middle (MitM) attack. The 
title of the figure is "ARP MitM Time Series of Source IP 

Address." On the X-axis, the time is represented in minutes, 
ranging from 0 to 17.5 minutes, while the Y-axis shows the 
number of packets, from 0 to 80,000. Each line in the figure 
denotes a distinct source IP address, with different colors used 
for clarity. The legend identifies each IP address, highlighting 

four of them as "malicious." 

Observations from the figure reveal that 

• Four IP addresses exhibit significantly higher packet 
counts compared to the others, suggesting malicious 

activity. 

• The elevated packet counts for these IPs occur within 
a specific time window, aligning with the attack 

duration mentioned in the text. 

• The targeted ports (443 and 554) mentioned in the text 
could potentially be correlated with specific IP 
addresses or time periods in the figure, if more 

detailed information were available. 

TABLE IV.  SYN DOS ATTACK STATISTICS 

Metric Value 

Total Packets Analyzed 2,771,276 

Start Time of Malicious Activity 50 minutes  

End Time of Malicious Activity 110 minutes  

Duration of Attack 60 minutes  

Target Ports  63453 

Packets to Unspecified Ports  - 

Table IV, presents SYN DoS attacks, that are observed to 
begin around 50 minutes and last for approximately 60 
minutes. The primary target is port 63453, indicating an 
attempt to overwhelm network resources over an extended 

period. 

 
Fig. 3.  A SYN DoS Attack Summary: Packet Distribution, 
Timestamp, and Source IP Details. 

As shown in figure 3, a SYN DoS attack typically results 
in a high count of packets on port -1. The long timestamp span 
suggests a prolonged attack period, with significant traffic 

concentrated on a few ports. 

 
Fig. 4.  A SYN DoS Attack: Time Series of Malicious Source IP 
Addresses and Packet Counts 

Figure 4, titled "SYN DoS Time Series of Source IP 
Address," displays a time series analysis of source IP 
addresses involved in a SYN Denial of Service (DoS) attack. 
The X-axis represents time in minutes, ranging from 0 to 50 
minutes, while the Y-axis shows the number of packets, 
spanning from 0 to 20,000. Each line in the figure corresponds 

to a distinct source IP address, with colors used to differentiate 

between them for clarity. 

The main Observations from the figure: 
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• Multiple IP addresses: The figure displays packet 
counts over time for several source IP addresses 

involved in a SYN DoS attack. 

• Malicious activity: One IP address, 192.168.3.11, is 
labeled as malicious and shows a significant increase 

in packet count around the 40-minute mark. 

• Attack duration: The elevated packet counts for the 
malicious IP persist for approximately 10 minutes. 

• Other IP addresses: The other IP addresses exhibit 
varying levels of activity, some with higher packet 
counts at different time points, but none with the same 

sustained intensity as the malicious IP. 

Overall, the figure depicts a SYN DoS attack where one IP 

address (192.168.3.11) is identified as the primary source of 
malicious activity, sending a large number of packets within a 

specific time window. 

TABLE V.  ACTIVE WIRETAP ATTACK STATISTICS 
Metric Value 

Total Packets Analyzed 2,278,689 

Start Time of Malicious Activity 10 minutes  

End Time of Malicious Activity 32 minutes  

Duration of Attack 22 minutes  

Target Ports  Various  

Packets to Unspecified Ports  - 

In Table V, the Active Wiretap attack starts around 10 
minutes and lasts for 22 minutes. The attack targets various 

ports, which could indicate a broad approach to intercept 

network communications. 

 
Fig. 5.  The Active Wiretap Attack Summary: Packet Distribution, 
Timestamp, and Source IP Details. 

The packet counts suggest a focus on a broad range of 

ports, with a notable concentration on port -1. The duration of 
the attack was over 22 minutes, with multiple IP addresses 

involved (Figure 5). 

Figure 6 presents a time series plot illustrating the number 
of packets sent by different source IP addresses over a period 
of 20 minutes. Each line represents a unique IP address, with 

six IP addresses included in the graph. The y-axis indicates the 
number of packets, ranging from 0 to 80,000, while the x-axis 

represents time in minutes. 

Key Observations are: 

• Fluctuating Packet Counts: The packet counts for each 
IP address exhibit fluctuations over time, with some 
periods of higher activity and others with lower 

activity. 

• Malicious Activity: Five out of the six IP addresses are 
labeled as "malicious," suggesting potential 

involvement in an attack or anomalous behavior. 

• Dominant IP: The IP address 192.168.2.13 stands out 
with consistently higher packet counts compared to 

the others, particularly within the first 10 minutes. 

 
Fig. 6.  The Active Wiretap: Time Series of Malicious Source IP 
Addresses and Packet Counts 

Time series plot depicting the number of packets sent by 

six source IP addresses over 20 minutes. Five of the IP 
addresses are flagged as malicious. IP address 192.168.2.13 
demonstrates significantly higher packet counts, potentially 

indicating malicious activity. 

TABLE VI.  SSDP FLOOD ATTACK STATISTICS 
Metric Value 

Total Packets Analyzed 4,077,266 

Start Time of Malicious Activity 39 minutes  

End Time of Malicious Activity 79 minutes  

Duration of Attack 40 minutes  

Target Ports  443, 554 

Packets to Unspecified Ports  3,423,652 

This caption effectively summarizes the figure's content 

and highlights the key findings, such as the presence of 
malicious IP addresses and the anomalous behavior of 

192.168.2.13. 

 
Fig. 7.  SSDP Flood attacks Summary: Packet Distribution, 
Timestamp, and Source IP Details. 

As shown in Table VI, Simple Service Discovery Protocol 
(SSDP) Flood attacks start at around 39 minutes and persist 
for about 40 minutes. These attacks exploit the SSDP, often 
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used in Universal Plug and Play (UPnP) systems, to send a 
massive volume of response packets to a target, overwhelming 
the network infrastructure. The majority of the packets are 
directed to unspecified ports, indicating a deliberate attempt to 
saturate the network bandwidth and disrupt normal operations. 
This type of attack can lead to significant downtime and 

service degradation, making it crucial to implement effective 
detection and mitigation strategies, such as rate limiting and 

filtering of SSDP traffic. 

In Figure 7, the SSDP Flood attack shows a very high 
volume of packets on port -1, typical of such attacks. The 
activity lasted over 40 minutes with several IP addresses 

involved. 

Figure 8 Titled SSDP Flood Time Series of Source IP 
Addresses. The figure presents a time series analysis of the 
number of SSDP (Simple Service Discovery Protocol) packets 
sent by different source IP addresses over a period of 
approximately 40 minutes. Each line on the graph represents 

a unique IP address, with the number of packets on the y-axis 
and time in minutes on the x-axis. 

Key Observations from the figure are: 

• Low-volume baseline: Most IP addresses exhibit 
minimal SSDP packet activity throughout the 

observed period. 

• Sudden spike: One IP address, labeled as "malicious," 
experiences a dramatic increase in SSDP packet 
volume around the 40-minute mark. This rapid 
escalation is indicative of a potential SSDP flood 

attack. 

 
Fig. 8.  The SSDP Flood attacks: Time Series of Malicious Source 

IP Addresses and Packet Counts 

The plot of Figure 8.  illustrates the number of SSDP 
packets sent by various source IP addresses over 40 minutes. 
The anomalous spike in packet volume from the IP address 

labeled "malicious" suggests a potential SSDP flood attack. 

TABLE VII.  VIDEO INJECTION ATTACK STATISTICS 
Metric Value 

Total Packets Analyzed 2,472,401 

Start Time of Malicious Activity 30 minutes  

End Time of Malicious Activity 65 minutes  

Duration of Attack 35 minutes  

Target Ports  54866, 54867, 554 

Packets to Unspecified Ports  - 

The Video Injection attack present in Table VII, the 
attacks starts at around 30 minutes and continues for 35 

minutes. It targets ports 54866 and 54867, indicating a focused 

approach on specific ports related to video streaming. 

 
Fig. 9.  Video Injection attack Summary: Packet Distribution, 
Timestamp, and Source IP Details. 

Figure 9 shows that, the Video Injection attack involved a 

large number of packets on port -1. The duration of the attack 
was over 35 minutes, with packets concentrated on a few 

ports. 

 
Fig. 10.  Video Injection: Time Series of Malicious Source IP 
Addresses and Packet Counts 

Figure 10 Titled Video Injection Time Series. The figure 
presents a time series analysis of the number of video injection 
packets sent by different source IP addresses over 
approximately 35 minutes. Each line on the graph represents 
a unique IP address, with the number of packets on the y-axis 

and time in minutes on the x-axis. 

Key Observations from the figure: 

• Low-volume baseline: Most IP addresses exhibit 
minimal video injection packet activity throughout the 

observed period. 

• Sudden spike: One IP address, labeled as "malicious," 
experiences a dramatic increase in video injection 
packet volume around the 30-minute mark. This rapid 
escalation is indicative of a potential video injection 

attack. 

TABLE VIII.  SSL RENEGOTIATION ATTACK STATISTICS 
Metric Value 

Total Packets Analyzed 2,207,571 

Start Time of Malicious Activity 20 minutes  

End Time of Malicious Activity 58 minutes  

Duration of Attack 38 minutes  

Target Ports  53195, 55150 

Packets to Unspecified Ports  - 

The plot in figure 10 illustrates the number of video 
injection packets sent by various source IP addresses over 35 
minutes. The anomalous spike in packet volume from the IP 
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address labeled "malicious" suggests a potential video 

injection attack. 

Studying Table VIII, SSL Renegotiation attacks start 
around 20 minutes and last for 38 minutes. The attack targets 
specific ports such as 53195, suggesting attempts to exploit 

SSL/TLS vulnerabilities. 

 

Fig. 11.  SSL Renegotiation Attack Summary: Packet Distribution, 
Timestamp, and Source IP Details. 

SSL Renegotiation attacks show a substantial amount of 

traffic on port -1 and a significant concentration on port 
53195. The attack spanned over 38 minutes, affecting several 

IP addresses (Figure 11). 

The Figure 12 presents a time series analysis of the number 
of SSL renegotiation packets sent by different source IP 
addresses over approximately 35 minutes. Each line 

represents a unique IP address, with the number of packets on 

the y-axis and time in minutes on the x-axis. 

The Key Observations based on Figure 12 are: 

• Fluctuating packet counts: Most IP addresses exhibit 
varying levels of SSL renegotiation activity 

throughout the observed period. 

• Malicious activity: Two IP addresses, labeled as 
"malicious," experience significantly higher packet 

counts compared to others. 

• Potential attack: The sustained high volume of SSL 
renegotiation packets from the malicious IP addresses 
suggests potential malicious activity, such as a brute-

force attack or session hijacking attempt. 

 
Fig. 12.  SSL Renegotiation: Time Series of Malicious Source IP 
Addresses and Packet Counts 

The plot of Figure 12 illustrates the number of SSL 
renegotiation packets sent by various source IP addresses over 
35 minutes. The anomalous activity from the IP addresses 

labeled "malicious" suggests potential malicious behavior. 

TABLE IX.   MIRAI BOTNET ATTACK STATISTICS 
Metric Value 

Total Packets Analyzed 764,137 

Start Time of Malicious Activity 74 minutes  

End Time of Malicious Activity 146 minutes  

Duration of Attack 72 minutes  

Target Ports  80, 8280 

Packets to Unspecified Ports  146,549 

Table IX, present the Mirai Botnet attack, it starts at 74 
minutes and lasts for about 72 minutes. It targets ports 80 and 
8280, which are commonly used for HTTP traffic, 

highlighting the botnet's focus on high-traffic services. 

 
Fig. 13.  Mirai Botnet Attack Summary: Packet Distribution, 
Timestamp, and Source IP Details. 

The plot of figure 13 illustrates that, the Mirai Botnet 
attack involves numerous IP addresses and a high volume of 
packets across various ports. The attack lasted for over 2 

hours, indicating a sustained and large-scale attack.

 
Fig. 14.  Time Series of Malicious Source IP Addresses and Packet 
Counts 
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The figure 14 presents a time series analysis of the number 
of packets sent by different source IP addresses over 
approximately 120 minutes. Each line on the graph represents 
a unique IP address, with the number of packets on the y-axis 

and time in minutes on the x-axis. 

Key Observations: 

• Multiple malicious sources: Numerous IP addresses 
are labeled as "malicious," indicating potential 
involvement in a Mirai botnet attack. 

• Varying packet volumes: The malicious IP addresses 
exhibit different levels of packet activity, with some 
sending significantly more packets than others. 

• Spikes in activity: Several IP addresses experience 
sudden increases in packet volume, suggesting 

coordinated attack phases or bot recruitment. 

The plot of figure 14 illustrates the number of packets sent 
by various source IP addresses over 120 minutes. Multiple IP 
addresses identified as malicious exhibit varying levels of 

activity, indicative of a Mirai botnet attack. 

TABLE X.  FUZZING ATTACK STATISTICS 
Metric Value 

Total Packets Analyzed 2,244,139 

Start Time of Malicious Activity 16 minutes  

End Time of Malicious Activity 48 minutes  

Duration of Attack 32 minutes  

Target Ports  61904, 443 

Packets to Unspecified Ports  - 

Fuzzing attacks start around 16 minutes and last for 32 
minutes. The attacks target ports 61904 and 443, indicating an 
attempt to exploit vulnerabilities in specific services (Table 

X). 

 
Fig. 15.  Fuzzing attacks Summary: Packet Distribution, 
Timestamp, and Source IP Details. 

Fuzzing attacks show significant packet counts on port -1 
and other specific ports. The attack lasted just under 30 

minutes with activity observed from two primary IP addresses 

(figure 15). 

Figure 16 presents a time series plot illustrating the 
number of packets sent by four different source IP addresses 
over a period of approximately 25 minutes. Each line 
represents a unique IP address, with the number of packets on 

the y-axis and time in minutes on the x-axis. 

Key Observations: 

• Stable packet counts: Three IP addresses 
(192.168.2.15, 192.168.100.5, and 192.168.100.222) 

exhibit relatively constant and low packet counts 
throughout the observed period. 

• Anomalous activity: One IP address, 192.168.2.13, 
stands out with significantly higher packet counts 
compared to the others. 

• Potential malicious behavior: The sustained high 
volume of packets from IP address 192.168.2.13 
suggests potential malicious activity, such as a denial-

of-service (DoS) attack. 

 
Fig. 16.  Fuzzing attacks: Time Series of Malicious Source IP 
Addresses and Packet Counts 

Time series plot in figure 16 depicting the number of 
packets sent by four source IP addresses over 25 minutes. IP 
address 192.168.2.13 exhibits significantly higher packet 
counts compared to others, suggesting potential malicious 

activity. 

This caption effectively summarizes the figure's content 

and highlights the key findings, including the anomalous 
behavior of IP address 192.168.2.13 and the potential 

indication of a DoS attack. 

TABLE XI.  OS SCAN ATTACK STATISTICS 
Metric Value 

Total Packets Analyzed 1,697,851 

Start Time of Malicious Activity 43 minutes  

End Time of Malicious Activity 96 minutes  

Duration of Attack 53 minutes  

Target Ports  50390, 443 

Packets to Unspecified Ports  - 

Finally, OS Scan attacks commence at 43 minutes and 

continue for 53 minutes. The attack primarily targets port 
50390, reflecting a targeted scan for operating system 

information (Table XI). 

 
Fig. 17.  OS Scan Attack Summary: Packet Distribution, 
Timestamp, and Source IP Details. 
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In Figure 17, OS Scan attacks show a high concentration 
of traffic on port -1 and other specific ports. The attack 
spanned over 52 minutes, with a small number of IP addresses 

involved. 

 
Fig. 18.  OS Scan: Time Series of Malicious Source IP Addresses 
and Packet Counts 

Figure 18 titled OS Scan Time Series of Source IP 
Addresses. The figure presents a time series analysis of the 

number of OS scan packets sent by different source IP 
addresses over approximately 50 minutes. Each line on the 
graph represents a unique IP address, with the number of 

packets on the y-axis and time in minutes on the x-axis. 

Key Observations: 

• Low-volume baseline: Most IP addresses exhibit 
minimal OS scan packet activity throughout the 

observed period. 

• Malicious activity: Two IP addresses, labeled as 
"malicious," experience significantly higher packet 

counts compared to others. 

• Potential attack: The sustained high volume of OS 
scan packets from the malicious IP addresses suggests 
potential malicious behavior, such as port scanning or 

vulnerability probing. 

The plot in Figure 18 illustrates the number of OS scan 
packets sent by various source IP addresses over 50 minutes. 
The anomalous activity from the IP addresses labeled 

"malicious" suggests potential malicious behavior. 

B. Summary of Figures and Main Conclusion 

The provided figures depict time series analyses of 
network traffic, focusing on the behavior of various source IP 

addresses over specific time periods. Key findings include: 

• Anomalous packet volumes: Several figures show 
significant spikes in packet counts from specific IP 

addresses, indicating potential malicious activity. 

• Targeted attacks: Some figures highlight attacks 
targeting specific protocols or services, such as SYN 
DoS, SSDP flood, video injection, and SSL 

renegotiation. 

• Botnet activity: One figure illustrates the behavior of 
multiple malicious IP addresses, characteristic of a 

botnet attack. 

• Scanning activity: Another figure depicts OS scan 
behavior, suggesting potential reconnaissance or 

vulnerability exploitation. 

C. Main Conclusion: 

The analysis of these figures consistently reveals 

anomalous network traffic patterns originating from multiple 
IP addresses. These patterns strongly suggest the presence of 
malicious actors engaged in various types of attacks, including 
DoS, DDoS, scanning, and exploitation attempts. The findings 
emphasize the importance of continuous network monitoring 
and intrusion detection systems to identify and mitigate such 

threats effectively. 

Overall, the figures provide compelling evidence of 

malicious activity within the network environment. 

TABLE XII.  SUMMARY COMPARISON OF ATTACK TYPES 
Attack Type Total 

Packets  

Start 

Time 

(min) 

Duration 

(min) 

Key 

Target 

Ports  

ARP MitM 2,504,267 10 20 443, 554 

SYN DoS 2,771,276 50 60 63453 

Active Wiretap 2,278,689 10 22 Various  

SSDP Flood 4,077,266 39 40 443, 554 

Video Injection 2,472,401 30 35 54866, 

54867 

SSL 

Renegotiation 

2,207,571 20 38 53195, 

55150 

Mirai Botnet 764,137 74 72 80, 8280 

Fuzzing 2,244,139 16 32 61904, 

443 

OS Scan 1,697,851 43 53 50390, 

443 

Table XII, is a summary table that provides an overview 
of each attack type in terms of total packets, start times, 
duration, and key target ports. It highlights the diversity in 
attack behaviors, durations, and targeted ports, suggesting 
varying strategies and impacts. For example, SSDP Flood and 

SYN DoS attacks show high packet counts and long durations, 
indicating their potential for significant disruption. In contrast, 
Mirai Botnet and OS Scan have shorter durations but target 
critical ports, suggesting a focus on exploiting specific 

vulnerabilities. 

Table XIII rearranged with Attack Types as rows and 

Destination Port Packet Counts as columns, along with the 

number of Source IP Addresses included for each attack type. 

Examining the table XIII, we can draw the following 

conclusions for each attack type: 

1. ARP MitM (ARP Man-in-the-Middle) 

• High Volume on Port -1: The attack primarily uses 
port -1, indicating a large number of packets are being 
sent. This aligns with ARP MitM attacks, which often 
generate substantial traffic on a broad range of ports 

or through non-standard ports. 

• Other Ports: The traffic on ports 58961 and 443 is 
significant but much lower compared to -1. This 
suggests that while port -1 is the main vector, other 

ports are also targeted but with less intensity. 
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TABLE XIII.  COMPARISON OF HOW DIFFERENT TYPES OF 

ATTACKS USE VARIOUS DESTINATION PORTS AND THE VOLUME OF 

TRAFFIC ASSOCIATED WITH EACH PORT 
Destination 

Port 

ARP 

MitM 

SYN 

DoS 

Active 

Wiretap 

SSDP 

Flood 

Video 

Injection 

SSL 

Renegotiation 

Mirai 

Botnet 

Fuzzing OS 

Scan 

Source IP 

Addresses 

5 8 8 9 9 8 22 4 6 

-1 2125241 1949512 1888227 3423652 2469611 1752430 146549 1702439 609789 

443 117578 - - 206759 - - - 168412 293615 

58961 259008 - - - - - - - - 

58974 21 - - - - - - - - 

58977 21 - 13 - - - - - - 

58978 23 - 13 - - - - - - 

554 168 - 168 167 144 - - 240 2 

63449 - 55 - - - - - - - 

63453 - 574458 - - - - - - - 

2946 - 4 - - - - - - - 

3039 - 5 - - - - - - - 

3040 - 5 - - - - - - - 

3041 - 5 - - - - - - - 

3042 - 5 - - - - - - - 

3043 - 5 - - - - - - - 

3044 - 5 - - - - - - - 

53471 - - 1 - - - - - 2 

61021 - - 3 - - - - - - 

61412 - - 8 - - - - - - 

61418 - - 19 - - - - - - 

61420 - - 19 - - - - - - 

57017 - - 1 - - - - - - 

56985 - - 1 - - - - - - 

54866 - - - - 36 - - - - 

54867 - - - - 36 - - - - 

61904 - - - - - - - 370900 - 

62253 - - - - - - - 30 - 

62255 - - - - - - - 30 - 

52777 - - - - - - 96 - - 

46734 - - - - - - 146 - - 

50364 - - - - - - 371 - - 

21897 - - - - - - 7158 - - 

9000 - - - - - - 41 - - 

49215 - - - - - - 3 - - 

49216 - - - - - - 3 - - 

995 - - - - - - - - 1 

53 - - - - - - - - 1 

25 - - - - - - - - 1 

139 - - - - - - - - 1 

1720 - - - - - - - - 1 

2. SYN DoS (TCP SYN Duplicate Connection Request Attack) 

• Dominance of Port -1: A very high count of packets 
on port -1 indicates that this attack focuses on 
overwhelming the network with SYN requests, which 

is characteristic of a SYN DoS attack. 

• Other Ports: The presence of packets on ports 63453 
and 63449 shows additional targets, though the traffic 

is minimal compared to port -1. 

3. Active Wiretap 

• Focus on Port -1: Similar to other attacks, port -1 is 
the primary target, suggesting extensive traffic or 

scanning activity. 

• Other Ports: Ports such as 58977, 58978, and others 
show much lower traffic, indicating that while port -1 
is the major focus, there is also some targeted scanning 

or monitoring activity on other ports. 

4. SSDP Flood 

• Very High Volume on Port -1: This attack has an 
exceptionally high count on port -1, which is 
consistent with SSDP Flood attacks that utilize 
multicast traffic and can overwhelm network 

resources. 

• Other Ports: Ports 443, 64855, and 63447 show 
significant traffic, but the volume is substantially 
lower compared to port -1. This indicates that while 

the main attack vector is port -1, other ports are also 

affected. 

5. Video Injection 

• High Count on Port -1: This attack also shows a large 
volume of packets on port -1, suggesting significant 

data injection activity. 

• Other Ports: Ports 54866 and 54867 are also targeted 
but with much fewer packets compared to -1, 
indicating a concentration of the attack’s resources on 

the primary port. 

6. SSL Renegotiation 

• Significant Traffic on Ports -1 and 53195: The attack 
features substantial traffic on both port -1 and 53195. 
SSL Renegotiation attacks often involve frequent 

renegotiation requests which are well represented 

here. 

• Other Ports: Other ports, including 55150 and 55209, 
show much lower traffic, suggesting that while port -
1 and 53195 are the main targets, some renegotiation 

activity occurs on additional ports. 

7. Mirai Botnet 

• Broad Distribution Across Ports: The Mirai Botnet 
attack displays a diverse set of destination ports with 
varying traffic counts. Port -1 has a considerable 

count, but other ports like 80, 8280, and 21897 also 

show substantial traffic. 

• Significant Range: This variety in ports and high 
overall traffic indicates a large-scale attack involving 
numerous compromised devices targeting multiple 

services. 

8. Fuzzing 

• High Packet Count on Port -1: Fuzzing attacks 
generate a high volume of traffic on port -1, 
suggesting a large number of malformed packets or 

attempts to exploit vulnerabilities. 

• Other Ports: Ports like 61904, 62253, and 62255 have 
notable traffic, indicating specific ports are also being 

targeted but with less intensity than -1. 

9. OS Scan 

• High Counts on Ports -1 and 50390: The OS Scan 
attack shows significant traffic on both port -1 and 

50390, which is typical of OS fingerprinting scans. 

• Other Ports: Ports 443, 554, and others show less 
traffic, indicating these are additional targets of the 

scan. 

In general, we can summarize the following points: 

• Port -1: Frequently appears with high traffic across 
many attack types, indicating it's often used for large-

scale, high-volume attacks or scanning activities. 



Journal of Emerging Computer Technologies 
Abu Khalil and Abuzir 

21 

• Specific Ports: Different attack types show varying 
degrees of focus on specific ports, reflecting their 

unique attack strategies and targets. 

• Traffic Distribution: Attacks like Mirai Botnet and OS 
Scan involve a broader distribution of traffic across 
multiple ports, indicating a more varied or 

comprehensive attack approach. 

This analysis helps understand the nature and focus of each 
attack type based on where the traffic is directed and the 

volume of activity on specific ports. 

Based on the detailed table, we can draw clear 
comparisons of attack characteristics, highlighting differences 

in volume, duration, focus, and distribution: 

1. High Packet Volumes: 

o The SSDP Flood and Mirai Botnet attacks exhibit the 
highest packet volumes, with substantial traffic 

directed at port -1. The Mirai Botnet attack, involving 
numerous IP addresses and lasting over 2 hours, 

indicates a large-scale, sustained attack. 

2. Port Focus: 

o Most attacks show a significant amount of traffic on 
port -1, often associated with miscellaneous or 

unspecified traffic. However, specific attacks such as 
SYN DoS, SSL Renegotiation, and Video Injection 
also show high traffic on particular ports, reflecting 

targeted attack strategies. 

3. Duration and Prolonged Activity: 

o SYN DoS and Mirai Botnet attacks have the longest 

durations, with SYN DoS lasting 60 minutes and 
Mirai Botnet extending beyond 2 hours. These 
prolonged attacks suggest extended and potentially 

more disruptive operations. 

4. Number of Source IPs: 

o The Mirai Botnet attack involved the highest number 

of source IP addresses (22), indicating a widely 
distributed attack. In contrast, Fuzzing and OS Scan 
attacks had fewer source IPs, suggesting more focused 

or contained attacks. 

5. Port-Specific Details: 

o The SSL Renegotiation attack showed a significant 

concentration of traffic on port 53195, whereas ARP 
MitM and Active Wiretap attacks had high traffic 
volumes on port -1, with less emphasis on specific 

ports. 

The analysis provides a comprehensive view of the 
temporal and behavioral characteristics of various network 

attacks. By understanding these patterns, network 
administrators can better design monitoring and mitigation 
strategies to enhance overall network security. Future research 
could focus on improving detection algorithms and 
developing more resilient defense mechanisms based on these 

insights. 

Table XIV provides a comparative analysis of how this 
study builds upon or differs from existing literature on 

machine learning-based IoT attack detection. It summarizes 
key prior works, comparing their algorithms, datasets, 
evaluation metrics, and outcomes with this research, 
highlighting its contributions and advancements within the 

IoT security field. 

TABLE XIV.  COMPARISON OF THIS STUDY WITH EXISTING 

LITERATURE ON MACHINE LEARNING AND IOT ATTACK DETECTION 
Aspect Existing Literature Our Work 

Refinement of 

Techniques  

Explores advanced ML 

techniques but lacks IoT 

specificity (e.g., El Hajj 

Hassan & Duong-Trung 

[7]). 

Incorporates and refines 

recent algorithms tailored for 

IoT traffic patterns, improving 

detection accuracy. 

Focus on IoT 

Vulnerabilities  

Generalizes findings 

across broader networks 

(e.g., Hewa et al. [3];  

Sendjaja et al. [5]). 

Specifically addresses unique 

vulnerabilities of IoT devices, 

filling critical gaps in 

understanding IoT attack 

vectors. 

Dynamic 

Mitigation 

Framework 

Proposes static 

frameworks for threat 

mitigation (e.g., Hewa et 

al. [4]). 

Introduces a dynamic 

framework that adapts to 

emerging threats, enhancing 

proactive response 

capabilities. 

Empirical 

Validation 

Some studies lack real-

world validation (e.g., 

Khalaf et al. [14]; Liu & 

Wang [25]). 

Employs real-world datasets 

for empirical validation and 

conducts comparative 

analysis of ML algorithms. 

Holistic 

Approach 

Focuses on single attack 

vectors or methodologies 

(e.g., Bharati [2]; Zhang 

& Lazaro [12]). 

Adopts a holistic approach, 

integrating various attack 

types and detection methods 

to provide a comprehensive 

perspective. 

Addressing 

Limitations  

Emphasizes deep learning  

models without exploring  

practical limitations (e.g., 

Liu & Wang [25]; Aziz 

[21]). 

Acknowledges and proposes 

solutions for challenges like 

computational constraints and 

data scarcity in IoT contexts. 

D. Potential Contributions for Future Applications 

The methodologies developed in this study have 
significant implications for future applications in 

cybersecurity: 

1. Advanced Intrusion Detection Systems: The tailored 
machine learning algorithms can be integrated into next-

generation intrusion detection systems (IDS) 
specifically designed for IoT networks. By leveraging 
our findings, organizations can enhance their ability to 
detect and respond to attacks more efficiently, 

improving overall network security. 

2. Adaptive Security Protocols: The dynamic mitigation 

framework proposed can serve as a foundation for 
adaptive security protocols that adjust to the threat 
landscape in real-time. Future applications could 
involve implementing this framework within enterprise 
networks to provide proactive defense mechanisms 
against emerging threats, thereby reducing the risk of 

successful attacks. 

3. Comprehensive Security Assessments: Our findings can 
inform comprehensive security assessments for IoT 
deployments, guiding organizations in identifying 
critical vulnerabilities and prioritizing protective 
measures. This application is particularly relevant as the 

number of IoT devices continues to grow, necessitating 

a more strategic approach to security. 
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4. Collaboration and Information Sharing: By 
establishing a framework for collaboration among 
organizations, our research could facilitate the sharing 
of attack patterns and defense strategies. This collective 
intelligence approach would enhance the community’s 
ability to respond to evolving threats and improve the 

effectiveness of security measures across different 

sectors. 

In summary, this detailed comparison with existing 
literature not only highlights the contributions of our findings 
but also emphasizes their relevance and potential for practical 
applications in enhancing IoT network security. Table XV 

presents the potential contributions of our research to various 

application areas. 

TABLE XV.  POTENTIAL CONTRIBUTIONS OF OUR RESEARCH 

FOR FUTURE APPLICATIONS IN IOT SECURITY 
Application Area Potential Contributions  

Advanced IDS Integration of tailored ML 

algorithms for improved detection  

Adaptive Security Protocols  Implementation of dynamic 

frameworks for proactive defenses  

Comprehensive Security 

Assessments  

Guidance for identifying  

vulnerabilities in IoT deployments  

Collaboration and Information 

Sharing 

Facilitation of collective intelligence 

for enhanced security 

Table XV succinctly highlights the comparisons between 

existing literature and our research, showcasing the 

contributions made by our work in various application areas. 

V. CONCLUSION AND FUTURE WORK 

The analysis of network traffic from various attack types 
reveals distinct patterns in volume, duration, focus, and 

distribution of attacks. Key findings include: 

1. High Packet Volumes: Attacks such as SSDP Flood and 
Mirai Botnet display exceptionally high packet 
volumes, particularly on port -1. The Mirai Botnet 
attack stands out with its extensive use of multiple IP 
addresses and a prolonged duration exceeding 2 hours, 

indicating a large-scale and sustained attack. 

2. Port Focus: Most attacks generate substantial traffic on 
port -1, which often represents miscellaneous or 
unspecified traffic. However, certain attacks, including 
SYN DoS, SSL Renegotiation, and Video Injection, 
demonstrate a targeted focus on specific ports, 

reflecting more deliberate and strategic attack methods. 

3. Duration and Prolonged Activity: SYN DoS and Mirai 
Botnet attacks are notable for their extended durations, 
with the SYN DoS attack lasting 60 minutes and the 
Mirai Botnet attack extending over 2 hours. This 
suggests these attacks are designed for prolonged 
disruption, with significant impact on network 

resources. 

4. Number of Source IPs: The Mirai Botnet attack involves 
the highest number of source IP addresses (22), 
indicating a widespread and distributed attack. In 
contrast, attacks like Fuzzing and OS Scan involve 
fewer source IPs, pointing to more focused or contained 

attack strategies. 

5. Port-Specific Details: The SSL Renegotiation attack is 
characterized by significant traffic on port 53195, while 
ARP MitM and Active Wiretap attacks show high traffic 
volumes on port -1, with less emphasis on other specific 

ports. 

Overall, the study highlights the diverse nature of attack 

strategies and their impact on network traffic, emphasizing the 
importance of understanding specific attack characteristics to 

improve detection and response mechanisms. 

The following areas of future work are proposed to address 
current limitations and improve the overall effectiveness of 

network security measures: 

1. Enhanced Detection Mechanisms: Implement advanced 
network monitoring and intrusion detection systems that 
can better identify and differentiate between high-
volume attacks and targeted attacks. Leveraging 
machine learning algorithms to analyze traffic patterns 

could improve detection accuracy. 

2. Detailed Analysis of Specific Ports: Further research 
into attacks that target specific ports could provide 
deeper insights into attack vectors and vulnerabilities. 
This includes analyzing the effects of specific attacks on 

critical ports used for essential services. 

3. Longitudinal Studies: Conduct longitudinal studies to 

understand the evolution of attack patterns over time. 
This would involve tracking changes in attack 

techniques and adapting defenses accordingly. 

4. Source IP Address Profiling: Investigate the behavior of 
source IP addresses in greater detail to identify patterns 
of malicious activity and potential botnet behavior. This 

could help in developing more effective 

countermeasures against distributed attacks. 

5. Comprehensive Attack Simulations: Perform 
simulations of various attack types in a controlled 
environment to evaluate the effectiveness of different 
defensive strategies. This would help in refining 

response protocols and improving overall network 

security. 

6. Collaboration and Information Sharing: Foster 
collaboration between organizations and share 
information about attack patterns and tactics. This 
collective intelligence can aid in developing better 

defensive tools and strategies. 

By addressing these areas, future research can enhance our 
understanding of network attacks and improve the 

effectiveness of defense mechanisms against evolving threats. 
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