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Halpern-type relaxed algorithms with alternated and
multi-step inertia for split feasibility problems with
applications in classification problems
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ABSTRACT. In this article, we construct two Halpern-type relaxed algorithms with alternated and multi-step in-
ertial extrapolation steps for split feasibility problems in infinite-dimensional Hilbert spaces. The first is the most
general inertial method that employs three inertial steps in a single algorithm, one of which is an alternated inertial
step, while the others are multi-step inertial steps, representing the recent improvements over the classical inertial step.
Besides the inertial steps, the second algorithm uses a three-term conjugate gradient-like direction, which accelerates
the sequence of iterates toward a solution of the problem. In proving the convergence of the second algorithm, we
dispense with some of the restrictive assumptions in some conjugate gradient-like methods. Both algorithms employ
a self-adaptive and monotonic step-length criterion, which does not require a knowledge of the norm of the under-
lying operator or the use of any line search procedure. Moreover, we formulate and prove some strong convergence
theorems for each of the algorithms based on the convergence theorem of an alternated inertial Halpern-type relaxed
algorithm with perturbations in real Hilbert spaces. Further, we analyse their applications to classification problems
for some real-world datasets based on the extreme learning machine (ELM) with the ℓ1-regularization approach (that
is, the Lasso model) and the ℓ1 − ℓ2 hybrid regularization approach. Furthermore, we investigate their performance in
solving a constrained minimization problem in infinite-dimensional Hilbert spaces. Finally, the numerical results of all
experiments show that our proposed methods are robust, computationally efficient and achieve better generalization
performance and stability than some existing algorithms in the literature.

Keywords: Relaxed CQ method; Alternated inertial method; Multi-step inertial method; Conjugate gradient method,
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1. INTRODUCTION

Throughout this work, let H1 and H2 be real Hilbert spaces, C and Q denote nonempty
closed and convex sets in H1 and H2 respectively, and B : H1 → H2 be a bounded linear oper-
ator. The split feasibility problem, first introduced by Censor and Elfving [10], is the problem
of finding a point x∗ ∈ C such that

(1.1) Bx∗ ∈ Q.

Most of the motivations for studying problem (1.1) stem from its usefulness is solving var-
ious inverse problems arising from many real-world applications, such as X-ray tomography
[41], machine learning [50, 13], image and signal reconstruction and jointly constrained Nash
equilibrium [20, 52], to mention but just a few. The primary task in studying problem (1.1) is
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to develop a robust and efficient numerical algorithm for its solution. Based on the following
fixed point problem:

(1.2) x = PC
(
I − τB∗(I − PQ)B

)
x

and the particular case of a Fréchet differentiable real-valued function g : H1 → R defined by

(1.3) g(x) =
1

2
||(I − PQ)Bx||2,

the iterative algorithm called the CQ algorithm for solving problem (1.1) was firstly developed
by Byrne [7], which is recursively generated for any initial point x0 ∈ H1 by

(1.4) xn+1 = PC
(
xn − τB∗(I − PQ)Bxn

)
, ∀n ≥ 0,

where PC : H1 → C and PQ : H2 → Q are the metric (orthogonal) projection operators, I
is the identity operator in H1, B∗ is the adjoint of B and τ ∈

(
0, 2

||B||2

)
is the step-length.

However, in many practical application, there are two major drawbacks in the implementations
of Algorithm (1.4): the first is that, it requires in each iteration to computes two projections PC
and PQ, which depends heavily on the geometry of the sets C and Q, these are extremely
expensive operations and sometimes not even possible for a wide range of practical problems
and the second is that, the step length depends on the information of the norm of B, which is
generally very hard to obtain in many practice.

By defining C and Q as the following sub level sets:

(1.5) C = {x ∈ H1 : c(x) ≤ 0}, Q = {t ∈ H2 : q(t) ≤ 0},
where c : H1 → R and q : H2 → R are weakly lower semi-continuous and convex functions
and the two half-spaces at points xn by

(1.6) Cn = {x ∈ H1 : c(xn) ≤ ⟨ϕn, xn − x⟩}, Qn = {t ∈ H2 : q(Bxn) ≤ ⟨φn,Bxn − t⟩},
with ϕn ∈ ∂c(xn), φn ∈ ∂q(Bxn), C ⊆ Cn and Q ⊆ Qn for each n ≥ 0, Yang [59] proposed the
relaxed version of the method (1.4), which suggests to replace the two arbitrary sets C and Q
with the half-spaces Cn and Qn, respectively, so that the projections PCn

and PQn
can easily be

computed using their known closed-form expressions (see [5], Example 29.20).
On the other hand, some researchers have suggested some methods, which do not require

the calculation of ||B||. One of such methods is that of Qu and Xiu [44], in which they adopted
an Armijo-like step length and presented a modified version of the algorithm in [59]. In this
light, the authors of the works in [18, 23, 49] subsequently proposed some algorithms with
Armijo-like step lengths to solve problem (1.1). It has been noted that finding the step length
that is appropriate in each iteration using Armijo-like step length involves multiple search
procedures, which may leads to an inefficiency in the performance and computations of the
algorithms. To mitigate this drawback, Dong et al. [21] proposed an adaptive relaxed algo-
rithm for the problem (1.1), in which the authors adopted the simple ways of computing a
monotonic step length in each iteration based on the information of the previous iterates. Sim-
ilarly, very recently, Tan et al. [53] introduced another adaptive relaxed algorithm based on the
non-monotonic step length technique.

However, various researchers attempt to construct some methods with fast convergence
properties, since they are mostly required in various applications [12, 32]. In recent years,
some authors developed various algorithms [50, 46, 4, 39, 45, 51, 42, 27, 58, 2] based on Polyak’s
inertial method [43], to improve their convergence rates. However, it has been noted in several
instances that the speed of some methods with Polyak’s one-step inertial term

xn + λ(xn − xn−1), ∀λ > 0,
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appear to be slower than their corresponding non-inertial ones (see [6, 38] and the references
therein). Thus some authors [37, 14, 19] suggested to employ the idea of the multi-step inertial
technique, which could help to maintained the expected improvements in the speed of these
schemes. Additionally, to improve the speed of the inertial algorithms, the idea of the general
inertial technique with two inertial steps was introduced by Dong et al. [17], which includes
the classical Polyak’s inertial method as a special case. Some researchers incorporated the idea
of the general inertial method to improve the performance of their methods with several real-
world applications (see e.g., [35, 57]). Similarly, motivated by the idea of the multi-step inertial
technique and that of the general inertial technique, Dong et al. [19] introduced the general
multi-step inertial Krasnosel’skíí -Mann algorithm, which is formulated as follows:

(1.7)


wn = xn +

∑
k∈Kn

γn,k(xn−k − xn−k−1),
vn = xn +

∑
k∈Kn

δn,k(xn−k − xn−k−1),
xn+1 = (1− αn)wn + αnTvn, ∀n ≥ 1,

where Kn ⊆ {0, 1, 2, · · · , n − 1}, γn,k, δn,k ∈ (−1, 2]. They proved its weak convergence to
a fixed point of a nonexpansive operator T based on the convergence of the Krasnosel’skíí-
Mann algorithm with perturbations in a real Hilbert space. They numerically show that the
scheme (1.7) is faster than some inertial methods in solving the problems considered in [19].
Additionally, for any two given points xn−1 and xn for each n ≥ 1, Mu and Peng [40] suggested
the following alternated inertial term:

(1.8) yn =

{
xn, if n is even,
xn + λn(xn − xn−1), if n is odd,

which is a modification of the Polyak’s inertial method. The advantage of the modified version
in (1.8) is its ability to recover Fejér monotonicity property of its even subsequence in relation
to the set of the solutions of a problem. This important property is usually lost in the case
of the non-modified version. Very recently, some methods based on (1.8) for solving problem
(1.1) were developed [21, 53, 48, 1]. Although the algorithms in [21, 53, 48] based on (1.8) were
shown to achieve better computational efficiencies when their numerical results are compared
with some existing methods on signal and image processing problems, but their weak conver-
gence property was only obtained.

Additionally, in view of (1.3) and the fact that ∇g(x) = B∗(I−PQ)Bx, it is not difficult to see
that all the aforementioned methods for solving problem (1.1), such as those in [50, 7, 59, 44,
18, 23, 49, 21, 53, 46, 39, 45, 48, 1] are hybrid steepest-types with the directions dn = −∇gn(xn)
at a point xn. However, as noted from [33], the accelerated versions of these methods may be
constructed when considered with the following conjugate gradient-like direction (1.9) or the
three-term conjugate gradient-like direction (1.10) (see [31, 30]):

(1.9) dn = −∇gn(xn) + ς(1)n dn−1

and

(1.10) dn = −∇gn(xn) + ς(1)n dn−1 − ς(2)n sn,∀n ≥ 1,

respectively, where, for each i = 1, 2, ς(i)n ∈ [0,∞) and sn ∈ H1 is an arbitrary point. As
numerically shown in [33, 31, 30], provided that, for each i = 1, 2, lim

n→∞
ς
(i)
n = 0 and {sn} is

bounded, the hybrid gradient method with the direction (1.10) is faster than its variant with
the direction (1.9). In the light of this, some authors improved their iterative methods by com-
bining them with either of the directions (1.9) or (1.10) for different problems (see [26, 16, 3, 36]
and the references therein). Recently, motivated by the self-adaptive relaxed algorithm [60],



Halpern-type relaxed algorithms with alternated and multi-step inertia for split feasibility problems 53

Polyak’s one-step inertial method [43] and the conjugate gradient-like direction (1.9), Che et
al. [11] proposed the accelerated relaxed algorithm for the problem (1.1) in finite-dimensional
real Hilbert spaces. Although the proposed algorithm in [11] with the conjugate gradient-like
direction (1.9) has achieved some good performance on signal and image restoration problems,
but it is noted that its convergence results heavely rely on the conditions that, for any sequence
{xn} generated by the their algorithm, the sequences {(I − PCn

)xn} and {(I − PQn
)Bxn} are

bounded. These are very restrictive assumptions and it would be of great interest to dispense
them.

Motivated and inspired by the results in [21, 53, 37, 17, 40, 33], we first develop an alternated
inertial Halpern-type relaxed CQ algorithm with perturbations (AiHRAP), which employs the
monotonic self-adaptive step length criterion that does not require any information about the
norm of the operator or the use of a line search procedure. Moreover, we establish its strong
convergence to a minimum-norm solution of problem (1.1) in infinite-dimensional real Hilbert
spaces. Further, we introduce two extensions of AiHRAP: the first is an alternated and multi-
step inertial Halpern-type relaxed CQ algorithm (AMiHRA), which to the best of our knowl-
edge is the most general inertial method in the literature that involves three steps of the recent
improvements of the classical inertial method, one of which is the alternated inertial step [40],
while the others are the multi-step inertial steps [37], and the second is an accelerated alternated
and multi-step inertial Halpern-type relaxed algorithm (AAMiHRA) that combines the three
term conjugate gradient-like direction [33] and two steps of the aforementioned improved ver-
sions of the inertial term with the monotonic self-adaptive step length criterion. Moreover, we
analyse their applications on classification problems for some real-world datasets based on the
extreme learning machine (ELM) with the ℓ1-regularization approach (that is, the Lasso model)
and the ℓ1− ℓ2 hybrid regularization approach. Furthermore, we investigate their performance
in solving constrained minimization problems in infinite-dimensional Hilbert spaces.

2. PRELIMINARIES

In this work, we use xn → x∗ (resp., xn ⇀ x∗) to represent the strong (resp., weak ) conver-
gence of a sequence {xn} to a point x∗. For any x, y ∈ H and λ ∈ [0, 1], we require the following
identities:

(2.11) ||x+ y||2 = ||x||2 + ||y||2 + 2 ⟨x, y⟩
and

(2.12) ||λx+ (1− λ)y||2 = λ||x||2 + (1− λ)||y||2 − λ(1− λ)||x− y||2.

Definition 2.1 ([5]). Let T : H → H be a mapping. Then T is called
(1) K-Lipschitz continuous with K > 0 if

(2.13) ||T x− T y|| ≤ K||x− y||, ∀x, y ∈ H;

(2) nonexpansive if (2.13) holds with K = 1;
(3) firmly nonexpansive if

(2.14) ||T x− T y|| ≤ ⟨x− y, T x− T y⟩ , ∀x, y ∈ H.

For any x ∈ H and y ∈ C, we have the following properties (see [25]):

(2.15) ⟨x− PCx, PCx− y⟩ ≥ 0,

equivalently,

(2.16) ||x− PCx||2 + ||y − PCx||2 ≤ ||x− y||2.
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Remark 2.1. It is commonly known that I − PC satisfies the inequality (2.14) (see [56]).

Definition 2.2 ([5]). Let f : H → (−∞,+∞] be a convex and proper function. Then:

(1) f is said to be (weakly) lower semi-continuous (w-lsc) if for any sequence xn ∈ H such that
(xn ⇀ x∗) xn → x∗ as n → ∞, we have

(2.17) lim inf
n→∞

f(xn) ≥ f(x∗).

(2) ∂f(x) is known as the subdifferential of f at a point x, which is defined by

∂f(x) := {v ∈ H : ⟨v, y − x⟩+ f(x) ≤ f(y),∀y ∈ H}.

An element v ∈ ∂f(x) is called a subgradient of f at x.

Lemma 2.1 ([56, 9]). Let τ > 0 and x∗ ∈ H1. The point x∗ solves problem (1.1) if and only if it solves
the fixed point problem:

x∗ = PC(I − τB∗(I − PQ)B)x∗.

Lemma 2.2 ([28]). Let {xn} be a sequence of nonnegative real numbers such that ∀n ≥ 1,

xn+1 ≤ (1− βn)xn + βnΓn,

xn+1 ≤ xn − χn +Φn,∀n ≥ 1,

where βn ∈ (0, 1), χn ∈ [0,+∞) and Γn, Φn ∈ (−∞,+∞) such that

(B1) lim
n→∞

βn = 0 and
∑∞

n=1 βn = ∞;
(B2) lim

n→∞
Φn = 0;

(B3) lim
j→∞

χnj
= 0 implies that lim sup

r→∞
Γnj

≤ 0 for any subsequence {nj} of {n},

Then lim
n→∞

xn = 0.

3. MAIN RESULTS

3.1. Alternated Inertial Halpern-type Relaxed Algorithm with Perturbations. In this part,
we introduce the alternated inertial Halpern-type relaxed algorithm with perturbations and
analyse its strong convergence to the minimum-norm solution of the problem (1.1) in real
Hilbert spaces. For its construction, we define gn, C, Q, Cn and Qn as in the equations (1.3),
(1.5) and (1.6), respectively. Moreover, to establish its convergence, we require the conditions
in the following assumption:

Assumption 1:

(A1) The solutions’ set of problem (1.1) is denoted by Ω ̸= ∅.
(A2) c : H1 → R and q : H2 → R are respectively convex, subdifferentiable and weakly

lower semicontinuous functions on H1 and H2.
(A3) For any x ∈ H1 and y ∈ H2, at least one subgradient ϕ ∈ ∂c(x) and φ ∈ ∂q(y) are

obtainable and the subdifferential operators ∂c and ∂q are bounded on bounded sets.
(A4) Let τ1 > 0, ε > 0, ρ ∈ (0, 1

ε ), δn ∈ (0, 1) such that lim
n→∞

δn = 0 and
∑∞

n=0 δn = +∞.
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Algorithm 1 Alternated inertial Halpern-type Relaxed CQ Algorithm with Perturbations
(AiHRAP)

Initialization: Take τ1, ε, ρ and {δn} such that the conditions (A4) of Assumption 1 holds. Select
λn ∈ [0,+∞), u ∈ C, x0, x1 ∈ H1 and set n = 1.

Step 1. Compute

(3.18) yn =


xn, if n is even,

xn + λn(xn − xn−1), if n is odd.

Step 2. Compute
hn = PCn(yn − ρτn∇gn(yn) + e1(yn)).

If hn = yn, then, stop the iteration and hn ∈ Ω, else, go to Step 3.
Step 3. Compute

mn = PCn(yn − ρτn∇gn(hn) + e2(yn)).

Step 4. Compute
xn+1 = δnu+ (1− δn)mn

and update the step-length τn+1 by

(3.19) τn+1 =


min

{
ε||yn−hn||

||∇gn(yn)−∇gn(hn)|| , τn
}
, if ∇gn(yn) ̸= ∇gn(hn),

τn, otherwise.

Set n := n+ 1 and go back to Step 1.

Remark 3.2. In Algorithm 1, for all n ≥ 1, we select the inertial parameter λn as follows;

(3.20) λn =


min

{
ξn

||xn−xn−1||2 , η1

}
, if xn ̸= xn−1,

η1, otherwise,

where ξn ∈ [0,+∞) such that lim
n→∞

ξn
δn

= 0 and η1 > 0. Moreover, for the analysis of the convergence
of Algorithm 1, we provide the following additional assumption:

Assumption 2: Assume that, for each i = 1, 2, the sequence of perturbations {ei(yn)} satis-
fies

(3.21) lim
n→∞

||ei(yn)||
δn

= 0.

Remark 3.3. It appears from Algorithm 1 that

(3.22) mn = PCn
(yn − ρτn∇gn(hn)) + ē2(yn),∀n ≥ 1

so that

||ē2(yn)|| = ||PCn
(yn − ρτn∇gn(hn) + e2(yn))− PCn

(yn − ρτn∇gn(hn))||
≤ ||e2(yn)||.(3.23)

Combining (3.21) and (3.23), we have

(3.24) lim
n→∞

||ē2(yn)||
δn

= 0.
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In the first, we validate the stopping criterion of Algorithm 1 in the following remark.

Remark 3.4. If we let hn = yn in Algorithm 1, then we see that

hn = PCn(hn − ρτn∇gn(hn) + e1(hn)),∀n ≥ 1,

which implies that hn ∈ Cn. Thus, by the means of Lemma 2.1, we have Bhn ∈ Qn. Together with (1.5)
and (1.6), we obtain that hn ∈ C and Bhn ∈ Q. Therefore, hn ∈ Ω.

Lemma 3.3. Suppose that {τn} is a sequence of step lengths generated by (3.19). Then it is well defined
and τn ≥ ε

||B||2 for all n ≥ 1.

Proof. By the lipschitz contuinity of ∇gn with constant ||B||2, we obtain

ε||yn − hn||
||∇gn(yn)−∇gn(hn)||

≥ ε||yn − hn||
||B||2||yn − hn||

=
ε

||B||2
.

In view of this and (3.19), one sees that τn+1 ≥ min{τn, ε
||B||2 }. By induction, we obtain that

τn ≥ min{τ1, ε
||B||2 }. It is also seen from (3.19) that τn+1 ≤ τn for all n ∈ N. In view of the

monotonicity and the existence of the lower bound of the sequence {τn}, we obtain that lim
n→∞

τn

exists. Since min{τ1, ε
||B||2 } is a lower bound of the sequence {τn}, we can find τ > 0 such that

lim
n→∞

τn = τ . This completes the proof. □

Next, we establish that an even subsequence {x2n} of {xn} by Algorithm 1 is bounded.

Lemma 3.4. Let {xn} be a sequence produced by Algorithm 1. Then, for any point z ∈ Ω, an even
subsequence {||x2n − z||} of {||xn − z||} is bounded.

Proof. Let z ∈ Ω. Then Bz ∈ Qn and, consequently, ∇gn(z) = B∗(I − PQn
)Bz = 0. Therefore,

together with the fact that I − PQn
satisfies (2.14), we have

⟨∇gn(hn), hn − z⟩ = ⟨B∗(I − PQn)Bhn −B∗(I − PQn)Bz, hn − z⟩
= ⟨(I − PQn

)Bhn − (I − PQn
)Bz,Bhn −Bz⟩

≥ ||(I − PQn
)Bhn||2

= 2gn(hn),∀n ≥ 1.(3.25)

Letting pn = PCn
(yn − ρτn∇gn(hn)), it follows from the inequalities (2.16) and (3.25) that

||pn − z||2 ≤ ||PCn(yn − ρτn∇gn(hn))− z||2

≤ ||yn − ρτn∇gn(hn)− z||2 − ||yn − ρτn∇gn(hn)− pn||2

= ||yn − z||2 − ||yn − pn||2 − 2ρτn ⟨∇gn(hn), yn − z⟩
+ 2ρτn ⟨∇gn(hn), yn − pn⟩
≤ ||yn − z||2 − ||yn − pn||2 − 4ρτngn(hn)

− 2ρτn ⟨∇gn(hn), pn − hn⟩ .(3.26)

Now, we estimate the rightmost term of (3.26) as follows:
We noticed from (2.11) that

(3.27) ||yn − hn||2 + ||hn − pn||2 − ||yn − pn||2 = 2 ⟨yn − hn, pn − hn⟩ .
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By the fact that pn ∈ Cn, we obtain from (3.19), the property (2.15) and the mean value inequal-
ity that

2 ⟨yn − hn, pn − hn⟩ = 2 ⟨yn − ρτn∇gn(yn) + e1(yn)− hn, pn − hn⟩
+ 2ρτn ⟨∇gn(yn)−∇gn(hn), pn − hn⟩
+ 2ρτn ⟨∇gn(hn), pn − hn⟩
− 2 ⟨e1(yn), pn − hn⟩
≤ 2ρτn||∇gn(yn)−∇gn(hn)||||pn − hn||
+ 2ρτn ⟨∇gn(hn), pn − hn⟩
+ 2||e1(yn)||||pn − hn||

≤
(ερτn
τn+1

+ ||e1(yn)||
)(

||yn − hn||2 + ||pn − hn||2
)

+ ||e1(yn)||+ 2ρτn ⟨∇gn(hn), pn − hn⟩ .(3.28)

Combining (3.27) and (3.28), we deduce that

2ρτn ⟨∇gn(hn), pn − hn⟩ ≥
(
1−

(ερτn
τn+1

+ ||e1(yn)||
))(

||yn − hn||2 + ||pn − hn||2
)

− ||e1(yn)|| − ||yn − pn||2.(3.29)

In view of the inequalities (3.26), (3.29) and Lemma 3.3, one sees that

||pn − z||2 ≤ ||yn − z||2 − 4ρε

||B||2
gn(hn) + ||e1(yn)||

− ρn
(
||yn − hn||2 + ||pn − hn||2

)
,(3.30)

where

(3.31) ρn =
(
1−

(ερτn
τn+1

+ ||e1(yn)||
))

.

Note that, for any ε > 0 and ρ ∈ (0, 1
ε ), we immediately see, from Lemma 3.3, Assumption 2

and equation (3.31), that there exists ρ∗ > 0 such that lim
n→∞

ρn = ρ∗, where

(3.32) ρ∗ = (1− ερ).

Thus we can find a positive number R such that ρn > 0 for all n ≥ R. Together with (3.30) and
the definition of mn in Algorithm 1, we see that

||mn − z||2 = ||pn + ē2(yn)− z||2

≤ (1 + ||ē2(yn)||)||pn − z||2 + ||ē2(yn)||+ ||ē2(yn)||2

≤
(
1 + ||ē2(yn)||

)
||yn − z||2 + ϑn −Θn

≤
(
1 + ||ē2(yn)||

)
||yn − z||2 + ϑn,∀n ≥ R,(3.33)

where

Θn =
(
1 + ||ē2(yn)||

)( 4ρε

||B||2
gn(hn) + ρn

(
||yn − hn||2 + ||pn − hn||2

))
and

ϑn =
(
1 + ||ē2(yn)||

)
||e1(yn)||+ ||ē2(yn)||+ ||ē2(yn)||2.



58 Abdulwahab Ahmad, Poom Kumam, Yeol Je Cho and Kanokwan Sitthithakerngkiet

Using the convexity of || · ||2, it follows from (3.33) that

||xn+1 − z||2 ≤ δn||u− z||2 + (1− δn)
(
1 + ||ē2(yn)||

)
||yn − z||2

+ (1− δn)(ϑn −Θn).(3.34)

In view of (3.18) and taking n+ 1 = 2n+ 1 in (3.34), we see that

||x2n+1 − z||2 ≤ δ2n||u− z||2 + (1− δ2n)
(
1 + ||ē2(y2n)||

)
||x2n − z||2

+ (1− δ2n)(ϑ2n −Θ2n)(3.35)

and

||y2n+1 − z||2 ≤ (1 + λ2n+1)||x2n+1 − z||2 − λ2n+1||x2n − z||2

+ λ2n+1(1 + λ2n+1)||x2n+1 − x2n||2.(3.36)

Combining (3.35) and (3.36) for n+ 1 = 2n+ 2 in (3.34), we deduce that

||x2n+2 − z||2 ≤ δ2n+1||u− z||2 + (1− δ2n+1)
(
1 + ||ē2(y2n+1)||

)
||y2n+1 − z||2

+ (1− δ2n+1)(ϑ2n+1 −Θ2n+1)

≤ δ2n+1||u− z||2 +
(
1 + ||ē2(y2n+1)||

)
(1 + λ2n+1)

(
δ2n||u− z||2

+ (1− δ2n)
(
1 + ||ē2(y2n)||

)
||x2n − z||2 + (1− δ2n)(ϑ2n −Θ2n)

)
− λ2n+1

(
1 + ||ē2(y2n+1)||

)
||x2n − z||2 + (1− δ2n+1)(ϑ2n+1 −Θ2n+1)

+ λ2n+1

(
1 + ||ē2(y2n+1)||

)
(1 + λ2n+1)||x2n+1 − x2n||2

≤ (1− δ2n)
(
1 + ||ē2(y2n)||

)(
1 + ||ē2(y2n+1)||

)
(1 + λ2n+1)||x2n − z||2

+
(
1 + ||ē2(y2n+1)||

)
(1 + λ2n+1)

(
2δ2n||u− z||2 + (1− δ2n)(ϑ2n −Θ2n)

+ (1− δ2n+1)(ϑ2n+1 −Θ2n+1) + λ2n+1||x2n+1 − x2n||2
)
.(3.37)

Using (3.31), (3.32) and the fact that for any ε > 0, ρ ∈ (0, 1
ε ), we find from (3.37) that

||x2n+2 − z||2 ≤ (1− δ2n)||x2n − z||2 + 1(
1 + ||ē2(y2n)||

)(2δ2n||u− z||2 + (1− δ2n)ϑ2n

+ (1− δ2n+1)ϑ2n+1 + λ2n+1||x2n+1 − x2n||2
)
, ∀ n ≥ R.(3.38)

Taking

M = sup
n≥1

1(
1 + ||ē2(y2n)||

)(2||u− z||2 + (1− δ2n)

δ2n
ϑ2n +

λ2n+1

δ2n
||x2n+1 − x2n||2

+
(1− δ2n+1)

δ2n
ϑ2n+1

)
,

then, by (3.38) and the condition (A4), we obtain that

||x2n+2 − z||2 ≤ (1− δ2n)||x2n − z||2 + δ2nM

≤ max
{
||x2n − z||2,M

}
...

≤ max
{
||x0 − z||2,M

}
,∀n ≥ R.(3.39)

By Remark 3.2, Assumption 2, the condition (A4) and the inequality (3.39), we obtain that,
for any z ∈ Ω, the even subsequence {||x2n − z||} of {||xn − z||} produced by Algorithm 1
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is bounded. Consequently, the even subsequence {x2n} of {xn} generated by Algorithm 1 is
bounded. This completes the proof. □

Next is to state and prove the following strong convergence theorem for Algorithm 1:

Theorem 3.1. Let the conditions of Assumptions 1, 2 and Remark 3.2 hold, and {xn} be a sequence
generated by Algorithm 1. Then, {xn} converges strongly to a point z∗ ∈ Ω, where z∗ = PΩ0.

Proof. Let z ∈ Ω. Then, by (2.11) and (3.33), we get

||xn+1 − z||2 = δ2n||u− z||2 + (1− δn)
2||mn − z||2 + 2δn(1− δn) ⟨mn − z, u− z⟩

≤ (1− δn)
(
1 + ||ē2(yn)||

)
||yn − z||2 + (1− δn)ϑn + δ2n||u− z||2

+ 2δn(1− δn) ⟨mn − z, u− z⟩ .(3.40)

Similar arguments used in deriving (3.35) lead to obtain from (3.40) that

||x2n+1 − z||2 ≤ (1− δ2n)
(
1 + ||ē2(y2n)||

)
||x2n − z||2 + (1− δ2n)ϑ2n

+ δ22n||u− z||2 + 2δ2n(1− δ2n) ⟨m2n − z, u− z⟩ .(3.41)

Connecting (3.36) and (3.41) for n + 1 = 2n + 2 in (3.40) and following same lines of the proof
of (3.38), one finds that

||x2n+2 − z||2 ≤
(
1 + ||ē2(y2n+1)||

)
||y2n+1 − z||2 + (1− δ2n+1)ϑ2n+1

+ δ22n+1||u− z||2 + 2δ2n+1(1− δ2n+1) ⟨m2n+1 − z, u− z⟩

≤ (1− δ2n)||xn − z||2 + 1(
1 + ||ē2(yn)||

)(2δ22n||u− z||2 + (1− δ2n)ϑ2n

+ λ2n+1||x2n+1 − x2n||2 + 2δ2n(1− δ2n) ⟨m2n − z, u− z⟩
)

+
2δ2n+1(1− δ2n+1)(

1 + ||ē2(y2n)||
)(
1 + ||ē2(y2n+1)||

)
(1 + λ2n+1)

⟨m2n+1 − z, u− z⟩

+ (1− δ2n+1)ϑ2n+1.(3.42)

Without loss of generality, using the condition (A4) and Assumption 2, we assume that r, s > 0
exist such that, for all n ≥ 1,

4(1− δn)ρε(
1 + ||ē2(yn−1)||

)
(1 + λn)||B||2

≥ r,
(1− δn)ρn(

1 + ||ē2(yn−1)||
)
(1 + λn)

≥ s.

In view of (3.37) and (3.42), one observes that

||x2n+2 − z||2 ≤ ||x2n − z||2 − χ2n +Φ2n

and

(3.43) ||x2n+2 − z||2 ≤ (1− δ2n)||x2n − z||2 + δ2nΓ2n,

where

χ2n = p
(
g2n(h2n) + g2n+1(h2n+1)

)
+ q

(
||y2n − h2n||2 + ||p2n − h2n||2

+ ||y2n+1 − h2n+1||2 + ||p2n+1 − h2n+1||2
)
,

Φ2n =
1(

1 + ||ē2(y2n)||
)(2δ2n||u− z||2 + (1− δ2n)ϑ2n + (1− δ2n+1)ϑ2n+1

+ λ2n+1||x2n+1 − x2n||2
)
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and

Γ2n =
1(

1 + ||ē2(yn)||
)(2δ2n||u− z||2 + (1− δ2n)

δ2n
ϑ2n +

λ2n+1

δ2n
||x2n+1 − x2n||2

+ 2(1− δ2n) ⟨m2n − z, u− z⟩
)

+
2δ2n+1(1− δ2n+1)

δ2n
(
1 + ||ē2(y2n)||

)(
1 + ||ē2(y2n+1)||

)(
1 + λ2n+1

) ⟨m2n+1 − z, u− z⟩

+
(1− δ2n+1)

δ2n
ϑ2n+1.

Using condition (A4), Assumptions 2 and Remark 3.2, we find that lim
n→∞

Φ2n = 0. Thus, to apply

Lemma 2.2, it remains only to show that, for any subsequence {χ2nj
} of {χ2n}, the following is

true:
lim
j→∞

χ2nj
= 0 =⇒ lim sup

j→∞
Γ2nj

≤ 0.

Now, suppose that {χ2nj} is a subsequence of {χ2n} such that lim
j→∞

χ2nj = 0. Then, in view of

(3.31), the condition (A4), Assumption 2 and the fact that lim
n→∞

ρn = ρ∗ > 0, we obtain that

lim
j→∞

||x2nj
− h2nj

|| = 0, lim
j→∞

||p2nj
− h2nj

|| = 0,

lim
j→∞

||y2nj+1 − h2nj+1|| = 0, lim
j→∞

||p2nj+1 − h2nj+1|| = 0,

lim
j→∞

g2nj
(h2nj

) = 0 ⇐⇒ lim
j→∞

||(I − PQ2nj
)Bh2nj

||2 = 0

and

(3.44) lim
j→∞

g2nj+1(h2nj+1) = 0 ⇐⇒ lim
j→∞

||(I − PQ2nj+1
)Bh2nj+1||2 = 0.

Since an even subsequence {x2n} of {xn} is bounded, it follows that there exists a subsequence
{x2nj

} of {x2n} converging weakly to a point say x∗. Then the condition (A3) of Assumption 1
guarantees the existence of a constant ϱ > 0 such that ||φ2nj

|| ≤ ϱ. Together with the definition
of Q2nj

, PQ2nj
Bh2nj

∈ Q2nj
and the results in (3.44), we have

q(Bh2nj
) ≤

〈
φ2nj

,Bh2nj
− PQ2nj

Bh2nj

〉
≤ ||φ2nj

||||Bh2nj
− PQ2nj

Bh2nj
||

≤ ϱ||(I − PQ2nj
)Bh2nj

||2 → 0 as j → ∞.(3.45)

So, It is not difficult to see from the weakly lower semicontuinity of q and (3.45) that

(3.46) q(Bx∗) ≤ lim inf
j→∞

q(Bh2nj ) ≤ 0,

which implies that Bx∗ ∈ Q.
Similarly, the boundedness of ∂c on bounded sets also implies the existence of σ > 0, such

that ||ϕ2nj
|| ≤ σ. From the definition of C2nj

, p2nj
∈ C2nj

and (3.44), we see that

c(h2nj
) ≤

〈
ϕ2nj

, h2nj
− p2nj

〉
≤ ||ϕ2nj ||||h2nj − p2nj ||
≤ σ||h2nj − p2nj || → 0 as j → ∞.(3.47)

Using similar arguments used in deriving (3.46), one obtains that c(x∗) ≤ 0, showing that
x∗ ∈ C. Then the conclusion that x∗ ∈ Ω is reached, which implies generally that ωw(xn) ⊂ Ω
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since the choice of x∗ was arbitrarily. From the definition of m2nj
in Algorithm 1, (3.24) and

(3.44), we, respectively, see that

(3.48) lim
j→∞

||m2nj − p2nj || = 0

and

(3.49) ||x2nj − p2nj || ≤ ||x2nj − h2nj ||+ ||h2nj − p2nj || → 0 as j → ∞.

Combining (3.48) and (3.49), one finds that

(3.50) lim
j→∞

||m2nj
− x2nj

|| = 0.

In view of the definition of x2nj+1 in Algorithm 1, (3.50) and the condition (A4), we deduce
that

(3.51) ||x2nj+1 − x2nj
|| ≤ δ2nj

||u− x2nj
||+ (1− δ2nj

)||m2nj
− x2nj

|| → 0 as j → ∞.

Similarly, by Remark 3.2, we get

(3.52) ||y2nj+1 − x2nj+1|| ≤ λ2nj+1||x2nj+1 − x2nj
|| → 0 as j → ∞.

It is also, respectively, seen from (3.44), (3.22) and (3.24) that

(3.53) ||y2nj+1 − p2nj+1|| ≤ ||y2nj+1 − h2nj+1||+ ||h2nj+1 − p2nj+1|| → 0 as j → ∞

and

(3.54) lim
j→∞

||m2nj+1 − p2nj+1|| = 0.

Therefore, by (3.50) - (3.54) and the metric projection property in (2.15), we find that

lim sup
j→∞

〈
m2nj − z, u− z

〉
= max

x∗∈ωw(x2n)
⟨x∗ − z, u− z⟩ ≤ 0

and

(3.55) lim sup
j→∞

〈
m2nj+1 − z, u− z

〉
= max

x∗∈ωw(x2n)
⟨x∗ − z, u− z⟩ ≤ 0.

Thus, by the condition (A4), Assumption 2, Remark 3.2 and (3.55), we see that lim sup
j→∞

Γ2nj ≤ 0.

Therefore, it follows from Lemma 2.2 that lim
n→∞

||x2n − z∗|| = 0 and hence x2n → z∗ = PΩ0 as
n → ∞.

Finally, combining the fact that lim
n→∞

||x2n − z∗|| = 0 and (3.51), we see that lim
n→∞

||x2n+1 −
z∗|| = 0. Thus we conclude that the odd subsequence {x2n+1} of {xn} produced by Algorithm
1 converges strongly to z∗ ∈ Ω. Hence the whole sequence {xn} produced by Algorithm 1
strongly converges to z∗ ∈ Ω. This completes the proof. □

To obtain some extensions of Algorithm 1, we make the following assumption.
Assumption 3: Let k ∈ Kn ⊆ {0, 1, 2, · · · , n− 1}, yn−k and yn−k−1 be arbitrary points in H1

for all n ≥ 1. Choose ςn,k, σn,k ∈ [0,+∞) such that lim
n→∞

∑
k∈Kn

ςn,k

δn
= 0 and lim

n→∞

∑
k∈Kn

σn,k

δn
=

0. Select βn,k ∈ [0, β̄n,k], δn,k ∈ [0, δ̄n,k] for all n ≥ 1, k ∈ Kn and any η2, η3 > 0 such that

(3.56) βn,k :=


min

{
ςn,k

||yn−k−yn−k−1|| , η2

}
, if yn−k ̸= yn−k−1,

η2, otherwise
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and

(3.57) δn,k :=


min

{
σn,k

||yn−k−yn−k−1|| , η3

}
, if yn−k ̸= yn−k−1,

η3, otherwise.

Remark 3.5. We can easily see from Assumption 3 that, for every n ≥ 1 and k ∈ Kn,

βn,k||yn−k − yn−k−1|| ≤ ςn,k, δn,k||yn−k − yn−k−1|| ≤ σn,k.

Then, in view of the fact that, for every k ∈ Kn,

lim
n→∞

∑
k∈Kn

ςn,k

δn
= 0, lim

n→∞

∑
k∈Kn

σn,k

δn
= 0,

we, respectively, obtain that

(3.58) lim
n→∞

∑
k∈Kn

βn,k||yn−k − yn−k−1||
δn

= 0, lim
n→∞

∑
k∈Kn

δn,k||yn−k − yn−k−1||
δn

= 0.

So, it is not difficult to observe that, for each n ≥ 1, taking

(3.59) e1(yn) =
∑
k∈Kn

βn,k(yn−k − yn−k−1)

and

(3.60) e2(yn) =
∑
k∈Kn

δn,k(yn−k − yn−k−1),

then Algorithm 1 becomes the following alternated and multi-step inertial Halpern-type relaxed algo-
rithm for the problem (1.1).

Algorithm 2 Alternated and Multi-step Inertial Halpern-type Relaxed Algorithm (AMiHRA)

Initialization: Take τ1, ε, ρ and {δn} such that the condition (A4) of Assumption 1 holds. Select
Kn, βn,k and δn,k for all k ∈ Kn as described in Assumption 3, λn as in Remark 3.2, u ∈ C, y0, x0, x1 ∈
H1 and set n = 1.

Step 1. Compute yn by (3.18).
Step 2. Compute

wn = yn +
∑

k∈Kn

βn,k(yn−k − yn−k−1)

and
hn = PCn(wn − ρτn∇gn(yn)).

If hn = wn = yn, then stop the iteration and hn ∈ Ω. Else, go to Step 3.
Step 3. Compute

un = yn +
∑

k∈Kn

δn,k(yn−k − yn−k−1)

and
xn+1 = δnu+ (1− δn)PCn(un − ρτn∇gn(hn)),

update the step-length τn+1 by (3.19), set n := n+ 1 and go back to Step 1.

Theorem 3.2. Let {xn} be a sequence produced by Algorithm 2 such that the conditions of Assumption
1, 3 and Remark 3.2 hold. Then the sequence {xn} strongly converges to a point z∗ ∈ Ω, where
z∗ = PΩ0.
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Proof. In view of the choice of ςn,k, σn,k, βn,k, δn,k for all n ≥ 1 and k ∈ Kn in Assumption 3
and the equations (3.56), (3.57), (3.59) and (3.60), it is clear that the conditions of Assumption 2
are satisfied when Assumption 3 holds. Therefore, the complete proof of Theorem 3.2 follows
from that of Theorem 3.1. This completes the proof. □

Remark 3.6. in the following remarks, we consider some new and existing algorithms for solving the
problem (1.1) related to Algorithm 2:

(1) If Kn = {0}, ςn,k = ςn, σn,k = σn, βn,k = βn and δn,k = δn for all n ≥ 1 in Assumption
3, then the AMiHRA becomes a relaxed CQ algorithm that combines an alternated inertial step
and two classical Polyak’s inertial steps.

(2) If Kn = {0} and βn,k = δn,k = 0 for all n ≥ 1, then the AMiHRA reduces to Halpern-type of
Algorithm 3.1 in [53] with monotonic step-length criterion.

(3) If λn = 0 for all n ≥ 1, then the AMiHRA becomes a general multi-step inertial Halpern-type
relaxed CQ algorithm that combines two multi-step inertial terms for the problem (1.1).

We also consider the following as another extension of Algorithm 1:

Algorithm 3 Accelerated Alternated and Multi-step Inertial Halpern-type Relaxed Algorithm
(AAMiHRA)

Initialization: Take τ1, ε, ρ and {δn} such that the condition (A4) holds. Select σ > 0, ωn, ς
(2)
n ∈

[0,+∞) such that lim
n→∞

ωn
δn

= 0, lim
n→∞

ς
(2)
n
δn

= 0, Kn, δn,k for all k ∈ Kn as described in Assumption 3, λn

as in Remark 3.2 and a bounded sequence {sn} ⊂ H1. Choose u ∈ C, y0, x0, x1 ∈ H1 and set n = 1.
Step 1. Compute yn by (3.18).
Step 2. Compute

(3.61) ς(1)n =
ωn

max{||dn||, σ}
,

(3.62) dn+1 =


−∇gn(yn), if n = 0,

− 1
ϑ
ρτn∇gn(yn) + ς

(1)
n dn − ς

(2)
n sn, otherwise

and
hn = PCn(yn + ϑdn+1).

If hn = yn, then stop the iteration and hn ∈ Ω. Else, go to Step 3.
Step 3. Compute

un = yn +
∑

k∈Kn

δn,k(yn−k − yn−k−1),

and
xn+1 = δnu+ (1− δn)PCn(un − ρτn∇gn(hn)),

update the step-length τn+1 by (3.19), set n := n+ 1 and go back to Step 1.

Remark 3.7. Observe that taking e2(yn) as in (3.60) and defining e1(yn) as follows:

(3.63) e1(yn) = ϑ
(
ς(1)n dn − ς(2)n sn

)
,

with ς
(1)
n for all n ≥ 1 to be obtained by (3.61), then, from the conditions on ωn, ς

(2)
n and the bounded-

ness of the sequence {sn}, Algorithm 1 becomes Algorithm 3. Thus we formulate and prove the following
theorem:
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Theorem 3.3. Suppose that the conditions of Assumption 1 and 3 hold, {e1(yn)} and {e2(yn)} are the
sequences generated by (3.63) and (3.60), respectively, {sn} ⊂ H1 is bounded and {xn} is a sequence
produced by Algorithm 3. Then {xn} strongly converges to a point z∗ ∈ Ω, where z∗ = PΩ0.

Proof. In view of the choice of ωn, ς(2)n in Algorithm 3, σn,k and δn,k for all n ≥ 1 and k ∈
Kn in Assumption 3, the boundedness of {sn} and the equations (3.57), (3.60) and (3.63), it is
obvious that the conditions of Assumption 2 are satisfied when Assumption 3 and Remark 3.7
hold. Therefore, the complete proof of the Theorem 3.3 follows from that of Theorem 3.1. This
completes the proof. □

Remark 3.8. We provide some new brand of self-adaptive relaxed CQ Algorithms for solving the prob-
lem (1.1) based on Algorithm 3.

(1) If Kn = {0} and δn,k = δn for all n ≥ 0 in Assumption 3, then the AAMiHRA becomes
a general accelerated inertial Halpern-type relaxed algorithm, which combines an alternated
inertial step, the classical Polyak’s inertial step and a three-term conjugate-like direction in a
single algorithm with monotonically decreasing step-length criterion.

(2) If Kn = {0} and δn,k = δn = 0 for all n ≥ 1, then the AAMiHRA reduces a Halpern-type
of the alternated inertial algorithm 3.1 in [53] with three-term conjugate gradient-like direction
and monotonic step-length criterion.

(3) If ς(i)n = 0 for all i = 1, 2 and n ≥ 1, then the AAMiHRA reduces an alternated and multi-step
inertial Halpern-type relaxed algorithm with monotonic step-length criterion.

(4) If Kn = {0}, δn,k = δn = 0 and ς
(i)
n = 0 for all i = 1, 2 and n ≥ 1, then the AAMiHRA

reduces a Halpern-type of the alternated inertial algorithm 3.1 in [53] with monotonic step-
length criterion.

4. NUMERICAL EXPERIMENTS

In this section, we investigate the performance and efficiency of the proposed algorithms
(i.e., AMiHRA and AAMiHRA) in solving classification problems and constrained minimiza-
tion problems. We conducted the experiments using R2023a Matlab in a PC with 12th Gen
Intel(R) Core(TM)i5-124P 1.70 GHz processor and 16.0GB RAM.

4.1. The Constrained Minimization Problem. In this part, we consider the following con-
strained minimization problem:

(4.64) min
x∈C

1

2
||Bx− PQBx||2,

where C = {x ∈ L2[0, 1] :
〈
x(t), 3t2

〉
= 0} and Q = {x ∈ L2[0, 1] :

〈
x(t), t

3

〉
≥ −1} are in L2[0, 1].

Setting g(x) = 1
2 ||Bx− PQBx||2, it is not difficult to see that ∇g(x) = B∗(I − PQ)Bx is ||B||2-

Lipschitch continuous. Thus, problem (4.64) can be transformed into problem (1.1) with H1 =

H2 = L2[0, 1], where ||x|| =
( ∫ 1

0
|x(t)|2dt

)1/2 and ⟨x, y⟩ =
∫ 1

0
x(t)y(t)dt are, respectively, the

norm and the inner product in L2[0, 1]. For all the experiments, we consider B = I , where I is
the identity mapping, i.e., Bx = x. Since Q and C are half-space and hyper-plane, respectively,
to apply our proposed algorithms (i.e., AMiHRA and AAMiHRA) to solve problem (4.64), we
take Qn = Q for all n ≥ 1, define c(x) =

〈
x(t), 3t2

〉
for all x ∈ L2[0, 1], so that C satisfies

(1.5) and we consider gn and Cn as described in (1.3) and (1.6), respectively, and set ∇gn =
B∗(I−PQn

)B . We use the defined explicit projection formula in [24] to compute the projection
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PQn
and the projection PCn

by the following:

(4.65) PCn
(xn(t)) =

xn(t), if
〈
3t2, t− xn(t)

〉
≥ c(xn(t)),

xn(t)−
c(xn(t))+⟨3t2,xn(t)−t⟩

||3t2||2L2

3t2, otherwise.

We compare the performance of our algorithms, the AMiHRA and the AAMiHRA with the
algorithms of Tan et al. [53] and Dong et al. [21], which we abbreviated in this work as TQW
Alg 3.1 and DLY Alg 4-II, respectively. For the experiments, we select the following parameters:

(1) We set τ1 = 0.058, η1 = η3 = 5, ε = 0.1, ρ = 1
ε − 1

3000ε , δn = 1
105n+1 , ξn = 1

(n+10)2 ,
and σn,k = 1

n5k5 for the AMiHRA and the AAMiHRA. In particular, we select η2 =

5 and ςn,k = 1
n3k3 for the AMiHRA and σ = 0.1, ϑ = 3, ωn = 1

(n+10)5 and ς
(2)
n =

1
(10n+1)3 for the AAMiHRA.

(2) In TQW Alg 3.1, we choose λ1 = 0.058, µ = 0.1, β = 1.3, α = 1, θn = 0.2, ρn =
10−1

(n+1)2 and ξn = 1 + 10−1

(n+1)2 .
(3) In DLY Alg 4-II, we set τ1 = 0.058, ε = 0.1, ρ = 0.2 and λn = 1

50n+1 − 1.

For the implementations of the algorithms, we consider four different cases of the initial
values of x0, x1, y0, u and sn:

Case I: x0(t) = sin(t), x1(t) = t2, y0(t) = 0.5t2, u(t) = t and sn(t) = 1.7t;
Case II: x0(t) = et, x1(t) = t3, y0(t) = 3 sin(t), u(t) = t and sn(t) = 10

√
t;

Case III: x0(t) = cos(t), x1(t) = tanh t, y0(t) = 0.5t2, u(t) = t
100 and sn(t) = 5t3;

Case IV: x0(t) = e3t
2

, x1(t) = t5, y0(t) = sin t2, u(t) =
3√t
10 and sn(t) =

4
√
t.

We used the stopping rule

En =
1

2

(
||xn(t)− PCn

xn(t)||2L2
+ ||xn(t)− PQn

xn(t)||2L2

)
< 10−10

and the maximum number of iterations of 200 to terminate the iterations for all the algorithms.
The performance results of all the algorithms, which include the execution times in second
represented by "Time", the number of iterations denoted by "Iter." and the error En are reported
in Table 1 and we plot the corresponding error results for the four cases in Figures 1, 2, 3 and 4.
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TABLE 1. Compare the performance of the algorithms for the four cases

Cases Algorithms Iter. Time(s) En

Case I

AMiHRA 30 0.0531 4.98E-14
AAMiHRA 30 0.0507 1.17E-13
TQW Alg 3.1 98 0.0827 7.94E-11
DLY Alg 4-II 115 0.0926 8.94E-11

Case II

AMiHRA 30 0.0482 2.64E-13
AAMiHRA 30 0.0415 2.70E-12
TQW Alg 3.1 98 0.0731 7.70E-11
DLY Alg 4-II 115 0.0925 8.67E-11

Case III

AMiHRA 30 0.0439 2.45E-13
AAMiHRA 30 0.0439 6.13E-14
TQW Alg 3.1 98 0.0789 8.10E-11
DLY Alg 4-II 115 0.0828 9.11E-11

Case IV

AMiHRA 30 0.0443 1.43E-13
AAMiHRA 30 0.0389 2.10E-13
TQW Alg 3.1 98 0.0733 7.43E-11
DLY Alg 4-II 115 0.0903 8.36E-11
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FIGURE 1. Error plotting of En of all the algorithms for Case I.
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FIGURE 2. Error plotting of En of all the algorithms for Case II.
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FIGURE 3. Error plotting of En of all the algorithms for Case III.
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FIGURE 4. Error plotting of En of all the algorithms for Case IV.

Remark 4.9. We observed from Table 1 and Figures 1, 2, 3 and 4 that the proposed algorithms outper-
form the compared algorithms in all the experiments. In particular, the AMiHRA achieves the fewest
errors in most of the experiments, while AAMiHRA has the shortest execution times in all the experi-
ments.

4.2. Classification Problems. In this part, we conduct a series of experiments on some real-
world benchmark datasets to investigate the performance of the suggested algorithms (i.e.,
AMiHRA and AAMiHRA). In all the experiments, we consider an efficient learning algorithm
called extreme learning machine ELM for single-hidden layer feedforward neural networks
SLFNs [29] and take K = {(xj , tj) ∈ Rk × Rm, j = 1, 2, · · · ,N} as an N distinct training data
points set, where for each input point xj =

[
xj1, xj2, · · · , xjk

]T , tj =
[
tj1, tj2, · · · , tjm

]T is its
corresponding target. The SLFNs output function with L number of nodes in the hidden layer
has the following formulation.

(4.66) gj =

L∑
i=1

βifi(xj), ∀j = 1, 2, · · · ,N ,

where fi(xj) = F
(
⟨ωi, xj⟩ + bi

)
, F is an activation function, ωi = (ωi1, ωi2 · · · , ωik)

T is an

input weight vector linking the ith hidden node and the input nodes, βi = (βi1, βi2, · · · , βim)T

is an output weight vector linking the ith hidden node and the output nodes and bi is a bias.
To train a SLFNs is to solve the linear system:

(4.67) Gβ = T,

where the hidden layer output matrix G of order N ×L is given by

G =
[
f1(x), f2(x), · · · , fL(x)

]
,

β = (β1, β2, · · · , βL)
T and T = (t1, t2, · · · , tN )T are the output weights and the target data ma-

trices, respectively and the ith column of G is the ith hidden node output based on x1, x2 · · · , xN ,



Halpern-type relaxed algorithms with alternated and multi-step inertia for split feasibility problems 69

which is defined by fi(x) =
[
fi(x1), fi(x2), · · · , fi(xN )

]T
. To solve (4.67) by ELM is simply to

find an optimal output weight β̂ = G†T, where G† represents the Moore-Penrose generalized
inverse of the matrix G [47].

From the perspective of the sparsity of the output weight parameter β for some high-dimensional
data, Cao et al. [8] proposed an ℓ1-regularization approach to solve problem (4.67) based on
the following Lasso model [54]:

(4.68) min
β∈RL×m

{1

2
||T − Gβ||22 : ||β||1 ≤ c

}
,

where c > 0 is the regularization parameter. However, for better prediction accuracy, sparsity
and stability, Ye et al. [61] unified both the ℓ1 and the ℓ2 penalties into a single model called the
ℓ1 − ℓ2 hybrid regularization approach. Their model is described as follows.

(4.69) min
β∈RL×m

{1

2
||T − Gβ||22 : λ||s||1 + γ||s||22 ≤ c

}
,

where λ, γ ≥ 0 and c > 0 are the regularization parameters. Suantai et al. [50] transformed the
problem (4.68) into problem (1.1) by taking C = {β ∈ RL×m : ||β||1 ≤ c}, Q = {T} ⊆ RK×m,
c(β) = ||β||1 − c, q(x) = 1

2 ||x− T||2 and defined gn, Cn and Qn as in (1.3) and (1.6), respectively.
They also used their proposed inertial relaxed CQ algorithm to solve the problem (4.67) based
on the model (4.68).

Inspired by the sparsity, the stability and the generalization performance of (4.69), we ob-
serve that transforming problem (4.69) into problem (1.1) is of paramount important, which is
possible by taking

C = {β ∈ RL×m : λ||β||1 + γ||β||22 ≤ c},

Q = {T} ⊆ RK×m, q(x) =
1

2
||x− T||2.

Moreover, it is easily seen that the function c(β) = λ||β||1+γ||β||22−c is strongly convex, so it
is convex. We consider gn, Cn and Qn as defined in (1.3) and (1.6), respectively. Therefore, our
proposed algorithms (i.e., AMiHRA and AAMiHRA) can be used to solve the problem (4.67)
based on the both models (4.68) and (4.69).

To investigate the performance of the proposed algorithms, we employed them to solve
problem (4.67) based on the models (4.68) and (4.69), for which we used the abbreviations
AMiHRA - ℓ1, AMiHRA - ℓ1 − ℓ2, AAMiHRA - ℓ1 and AAMiHRA - ℓ1 − ℓ2 to denote them
respectively. We compare their results with the algorithms of Tan et al. [53], Dong et al. [21] and
Abubakar et al. [1] based on the model (4.68), which we respectively abbreviated in this work
as TQW Alg 3.1 − ℓ1, DLY Alg 4-II - ℓ1 and AKTIS Alg 1 − ℓ1. We carried out the experiments
on three real-world classification datasets, including Breast Cancer Wisconsin (Breast Cancer
W.) dataset [55], Heart disease dataset [34] and Glass identification dataset [22]. The detailed
information on each of the datasets is provided in Table 2.

TABLE 2. Details of each dataset

Datasets Instances Classes Features Tasks

Breast Cancer W. 569 2 30 Classification
Heart disease 303 2 13 Classification
Glass Identification 214 6 9 Classification



70 Abdulwahab Ahmad, Poom Kumam, Yeol Je Cho and Kanokwan Sitthithakerngkiet

In all the experiments, we fixedly choose 70% of each of the datasets for training and 30%
for testing. We also set the following for the parameters:

(1) We set τ1 = 3.03 × 10−5, η1 = η2 = η3 = 3, ε = 0.012, ρ = 0.13, δn = 1
105n+1 , ξn =

1
(n+10)3.4 , ςn,k = 1

n3k3 and σn,k = 1
n5k5 for AMiHRA - ℓ1, AMiHRA - ℓ1 − ℓ2, AAMiHRA

- ℓ1 and AAMiHRA - ℓ1 − ℓ2. In particular, we select σ = 0.1, ϑ = 3, ωn = 1
(n+10)5 and

ς
(2)
n = 1

(10n+1)3 for AAMiHRA - ℓ1 and AAMiHRA - ℓ1 − ℓ2.
(2) In TQW Alg 3.1−ℓ1, we choose λ1 = 3.03×10−5, µ = 0.012, β = 0.13, α = 0.997, θn =

0.002, ρn = 10−1

(n+1)2 and ξn = 1 + 10−1

(n+1)2 .
(3) In DLY Alg 4-II - ℓ1, we set τ1 = 3.03× 10−5, ε = 0.012, ρ = 0.13 and λn = 1

50n+1 − 1.
(4) In AKTIS Alg 1− ℓ1, we select ϱ = 0.5, εn = 1

n2 , ζn = 1
7500(n+5) and ϑn = 0.8− ζn.

We respectively calculate the accuracies and precisions by the following relations.

(4.70) Accuracy =
TP + TN

TP + FP + TN + FN
× 100%,

(4.71) Precision =
TP

FP + FN
× 100%,

where TP := True positive, TN := True negative, FP = False positive and FN = False negative,
and estimate their averages as well as their standard deviations (SDs). We use these metrics
and the number of iterations denoted by "Iter." to investigate the effectiveness and the stability
of the suggested algorithms.

In the first part of the experiments, we set eC := ones(L,m), x0 = −1eC, x1 = eC, u =
y0 = 2eC, sn = 1.7eC, F(x) = tanh(x) as the activation function, c = 0.061, λ = 0.9999, γ =
0.00505 and used ||xn+1−xn|| < 10−3 and 500 as the Maximum iteration count to terminate the
iterations for all the algorithms. We then analyzed the sensitivity of all the algorithms on the
Breast Cancer W. dataset over different number of hidden nodes. The performance of all the
algorithms are shown in Table 3 and we plot the corresponding results on training and testing
accuracies, and training and testing precisions in Figures 5, 6, 7 and 8, respectively.
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FIGURE 5. Compare the training accuracies of all the algorithms over different
number of hidden nodes on the Breast Cancer W. dataset using the activation
function F(x) = tanh(x).
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Remark 4.10. Comparing the performance results of all the algorithms shown in Table 3 and Figures
5, 6, 7 and 8, we make the following remarks.

(1) It is easily seen that our proposed algorithms, the AMiHRA - ℓ1 and the AAMiHRA - ℓ1 com-
paratively achieve higher training and testing accuracies and precisions than TQW Alg 3.1−ℓ1,
DLY Alg 4-II - ℓ1 and AKTIS Alg 1− ℓ1. Meanwhile, the SDs of both the training and testing
accuracies and precisions of the AMiHRA - ℓ1 and the AAMiHRA - ℓ1 are extremely smaller
than those of TQW Alg 3.1 − ℓ1, DLY Alg 4-II - ℓ1 and AKTIS Alg 1 − ℓ1. These illustrate
that the AMiHRA - ℓ1 and the AAMiHRA - ℓ1 achieve better stability and generalization per-
formance in the experiments.

(2) It is also noted that due to the presence of the ℓ2 penalty, the AMiHRA - ℓ1 − ℓ2 and the
AAMiHRA - ℓ1 − ℓ2 have higher training and testing accuracies and precisions in most of the
results than their corresponding AMiHRA - ℓ1 and AAMiHRA - ℓ1, which demonstrate their
ability to achieve better generalization performance. Additionally, the SDs of both the training
and testing accuracies and precisions of the AMiHRA - ℓ1 − ℓ2 and the AAMiHRA - ℓ1 − ℓ2
are extremely smaller than those of the AMiHRA - ℓ1 and the AAMiHRA - ℓ1, which show that
they are more stable.

Though the effectiveness and stability of our proposed algorithms have been demonstrated
in the aforementioned experiments, to further investigate their comparative performance in
this practical applications, we still need to conduct more statistical analysis. In this regard, we
used the three UCI datasets mentioned in our earlier discussion and four different activation
functions to measure and compare the statistical performance of all the algorithms. In the sec-
ond series of experiments, we set eC := ones(L,m), eQ := randn(L,m), x0 = −1eQ, x1 =
eQ, y0 = 2eQ, u = 10−5eC, sn = 1.7eC. We choose L = 100, and used ||xn+1 − xn|| < 10−5

and 100 as the Maximum number of iterations to terminate the the process for all the algo-
rithms. As depicted in Table 4, we set the parameters c, λ and γ according to the dataset and
the activation function. The training and testing accuracies as well as the number of iterations
of all the algorithms are reported in Table 4. We further display the performance comparison
results among the algorithms based on the number of wins, ties and looses in Tables 5.
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Activation functions Sigmoid Radbas

Accuracy (%) Accuracy (%)

Datasets Algorithms c, λ, γ Iter. Training Testing c, λ, γ Iter. Training Testing

Breast Cancer W.

AMiHRA - ℓ1 0.95 9 97.7011 98.4615 1.1 8 93.1034 90.7692
AMiHRA - ℓ1 − ℓ2 0.95, 0.9999, 0.00505 9 98.2759 98.4615 1.1, 0.9999, 0.00505 9 94.8276 95.3846
AAMiHRA - ℓ1 0.95 9 97.7011 98.4615 1.1 8 93.1034 90.7692
AAMiHRA - ℓ1 − ℓ2 0.95, 0.9999, 0.00505 9 98.2759 98.4615 1.1, 0.9999, 0.00505 9 94.8276 95.3846
TQW Alg 3.1 - ℓ1 0.95 9 94.2529 95.3846 1.1 8 88.5057 80.00
DLY Alg 4-II - ℓ1 0.95 11 51.7241 58.4615 1.1 11 78.7356 78.4615
AKTIS Alg 1 - ℓ1 0.95 17 54.5977 63.0769 1.1 16 29.8851 26.1538

Heart Disease

AMiHRA - ℓ1 2.7 7 96.4912 93.4783 2.7 7 95.614 86.9565
AMiHRA - ℓ1 − ℓ2 2.7, 0.999, 0.001 7 95.614 93.4783 2.7, 0.999, 0.001 7 95.614 86.9565
AAMiHRA - ℓ1 2.7 7 96.4912 93.4783 2.7 7 95.614 86.9565
AAMiHRA - ℓ1 − ℓ2 2.7, 0.999, 0.001 7 96.4912 93.4783 2.7, 0.999, 0.001 7 95.614 86.9565
TQW Alg 3.1 - ℓ1 2.7 7 33.3333 21.7391 2.7 7 42.9825 45.6522
DLY Alg 4-II - ℓ1 2.7 7 92.1053 91.3043 2.7 7 91.2281 86.9565
AKTIS Alg 1 - ℓ1 2.7 16 33.3333 30.4348 2.7 16 25.4386 26.087

Glass Identification

AMiHRA - ℓ1 0.91 9 90.00 90.00 0.701 10 96.00 100.00
AMiHRA - ℓ1 − ℓ2 0.91, 0.999, 0.002 9 98.00 95.00 0.701, 0.99, 0.0107 9 98.00 100.00
AAMiHRA - ℓ1 0.91 9 90.00 90.00 0.701 10 96.00 100.00
AAMiHRA - ℓ1 − ℓ2 0.91, 0.999, 0.002 9 98.00 95.00 0.701, 0.99, 0.0107 9 98.00 100.00
TQW Alg 3.1 - ℓ1 0.91 9 42.00 35.00 0.701 10 68.00 90.00
DLY Alg 4-II - ℓ1 0.91 9 24.00 20.00 0.701 7 0.00 0.00
AKTIS Alg 1 - ℓ1 0.91 13 30.00 45.00 0.701 13 30.00 15.00

Activation functions Tribas Hardlim

Accuracy (%) Accuracy (%)

Datasets Algorithms c, λ, γ Iter. Training Testing c, λ, γ Iter. Training Testing

Breast Cancer W.

AMiHRA - ℓ1 0.94 9 96.5517 95.3846 1.05 9 96.5517 96.9231
AMiHRA - ℓ1 − ℓ2 0.94, 0.9999, 0.00505 9 98.2759 96.9231 1.05, 0.999, 0.0009 9 95.977 98.4615
AAMiHRA - ℓ1 0.94 9 96.5517 95.3846 1.05 9 96.5517 96.9231
AAMiHRA - ℓ1 − ℓ2 0.94, 0.9999, 0.00505 9 98.2759 96.9231 1.05, 0.999, 0.0009 9 95.977 100.00
TQW Alg 3.1 - ℓ1 0.94 9 63.2184 61.5385 1.05 9 92.5287 84.6154
DLY Alg 4-II - ℓ1 0.94 11 60.9195 53.8462 1.05 11 95.4023 98.4615
AKTIS Alg 1 - ℓ1 0.94 40 47.7011 40 1.05 16 58.046 61.5385

Heart Disease

AMiHRA - ℓ1 2.7 7 85.9649 80.4348 2.7 7 85.9649 80.4348
AMiHRA - ℓ1 − ℓ2 2.7, 0.999, 0.001 7 85.9649 80.4348 2.7, 0.999, 0.001 7 85.9649 80.4348
AAMiHRA - ℓ1 2.7 7 85.9649 80.4348 2.7 7 85.9649 80.4348
AAMiHRA - ℓ1 − ℓ2 2.7, 0.999, 0.001 7 85.9649 80.4348 2.7, 0.999, 0.001 7 85.9649 80.4348
TQW Alg 3.1 - ℓ1 2.7 7 45.614 45.6522 2.7 7 30.7018 15.2174
DLY Alg 4-II - ℓ1 2.7 7 84.2105 76.087 2.7 7 77.193 67.3913
AKTIS Alg 1 - ℓ1 2.7 16 29.8246 28.2609 2.7 16 25.4386 21.7391

Glass Identification

AMiHRA - ℓ1 0.65 12 80.00 95.00 0.885 10 94.00 90.00
AMiHRA - ℓ1 − ℓ2 0.65, 0.91, 0.25 12 98.00 95.00 0.885, 0.999, 0.0017 10 94.00 95.00
AAMiHRA - ℓ1 0.65 12 80.00 95.00 0.885 10 94.00 90.00
AAMiHRA - ℓ1 − ℓ2 0.65, 0.91, 0.25 12 98.00 95.00 0.885, 0.999, 0.0017 10 94.00 95.00
TQW Alg 3.1 - ℓ1 0.65 10 68.00 85.00 0.885 9 36.00 40.00
DLY Alg 4-II - ℓ1 0.65 9 0.00 0.00 0.885 9 32.00 25.00
AKTIS Alg 1 - ℓ1 0.65 13 16.00 5.00 0.885 13 18.00 15.00

TABLE 4. Performance results of all the algorithms on all the dataset and four
activation functions. The best and suboptimal results are highlighted in bold
and underlined, respectively
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wins / ties / looses

AMiHRA - ℓ1 vs. TQW Alg 3.1− ℓ1 AMiHRA - ℓ1 vs. DLY Alg 4-II - ℓ1 AMiHRA - ℓ1 vs. AKTIS Alg 1 - ℓ1

Training 12/0/0 12/0/0 12/0/0
Testing 12/0/0 10/1/1 12/0/0

AAMiHRA - ℓ1 vs. TQW Alg 3.1− ℓ1 AAMiHRA - ℓ1 vs. DLY Alg 4-II - ℓ1 AAMiHRA - ℓ1 vs. AKTIS Alg 1− ℓ1

Training 12/0/0 12/0/0 12/0/0
Testing 12/0/0 10/1/1 12/0/0

AMiHRA - ℓ1 − ℓ2 vs. AMiHRA - ℓ1 AAMiHRA - ℓ1 − ℓ2 vs. AAMiHRA - ℓ1

Training 6/4/2 6/5/1
Testing 5/7/0 5/7/0

TABLE 5. Number of wins, ties and looses of all the algorithms.

Remark 4.11. (1) We adopted the Wilconxon signed-ranks and Sign test [15] as the statistical
methods to compare the reported results of all the algorithms in Table 4. In accordance with the
statistical analysis on these results with Wilconxon signed-ranks, it is noted from Table 5 that
our proposed algorithms (i.e., AMiHRA - ℓ1 and AAMiHRA - ℓ1) considerably achieve better
training and testing accuracies than TQW Alg 3.1 − ℓ1, DLY Alg 4-II - ℓ1 and AKTIS Alg
1 − ℓ1. It is also found from the same table that the presence of the ℓ2 penalty in AMiHRA -
ℓ1−ℓ2 and AAMiHRA - ℓ1−ℓ2 improves their ability to achieve better and robust generalization
performance than their correspondings AMiHRA - ℓ1 and AAMiHRA - ℓ1 in these experiments.

(2) On the hand, based on the null-hypothesis in the sign test [15], it is discovered that the normal
distribution h

(
h
2 ,

√
h
2

)
is obeyed by the number of wins for an algorithm and h = (b datasets ×

d activation functions). For this test, we assert that an algorithm is significantly better than
the other, when its number of wins, compared to other is at least h

2 + Zm/2 ×
√
h
2 , where m is

the assigned significant level. In all the experiments, we assigned h = 12 and m = 0.1, then
8 < 12

2 +1.645×
√
12
2 < 9. This implies that an algorithm will be said to significantly achieves

better performance, if its number of wins reaches at least 9. So, based on these facts, it is noticed
from Table 5 that AMiHRA-ℓ1 and AAMiHRA - ℓ1 significantly achieve better performance
than TQW Alg 3.1− ℓ1, DLY Alg 4-II - ℓ1 and AKTIS Alg 1− ℓ1.

(3) Meanwhile, the number of wins of AMiHRA - ℓ1−ℓ2 and AAMiHRA - ℓ1−ℓ2 with ℓ2 penalty
when compared with their corresponding AMiHRA - ℓ1 and AAMiHRA - ℓ1 as shown in Table
5 are less than the least number, however, we noticed that they considerably achieve the highest
number of wins in the experiments.

5. CONCLUSION

This paper introduces two efficient Halpern-type inertial methods. The first is the alter-
nated and multi-step inertial Halpern-type relaxed algorithm (AMiHRA) that involves three
improved versions of the inertial steps, one of which is the alternated inertial step (1.8), while
the others are the multi-step inertial steps (1.7), and the second is the accelerated alternated and
multi-step inertial Halpern-type relaxed algorithm (AAMiHRA) that combines the three term
conjugate gradient-like direction (1.10), the alternated inertial step (1.8) and the multi-step iner-
tial step (1.7). In each of the two proposed algorithms, the monotonic self-adaptive step length
criteria is used, which do not require any information about the norm of the underlying oper-
ator or the use of any line search procedure. The strong convergence theorem for each of the
algorithms to a solution of problem (1.1) is formulated and proved based on the convergence
theorem of the alternated inertial Halpern-type relaxed algorithm with perturbations in real
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Hilbert spaces. The applications of the proposed methods in solving constrained minimization
problems and classification problems based on the extreme learning machine ELM are anal-
ysed and their numerical results have been compared with the algorithms in [21, 53, 1]. In all
the experiments based on ℓ1-regularization approach, that is model (4.68), the numerical results
show that the proposed algorithms (i.e., AMiHRA and AAMiHRA) are robust, computation-
ally efficients and achieve better generalisation performance and stability than the algorithms
in [21, 53, 1]. It is also noted from the results of the experiments that the proposed algorithms
achieve better accuracy and stability based on the ℓ1 − ℓ2 hybrid regularization model, (i.e., the
model (4.69)) than with ℓ1-regularization model, (i.e., the model (4.69)).
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