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ABSTRACT: In this study, it is aimed to determine the urban growth in the Selçuklu district of Konya, 

which is the study area with the SLEUTH model based on cellular automata, which is widely used in the 

modeling of urban growth and land use, and to examine the effect of urbanization on agricultural areas 

in the near future. In addition to the simulations carried out for the years 2030 and 2050 starting from 2015, 

which was determined as the last control year in the model, the simulation results of the year 2022 were 

compared with the terrain classes obtained from the Google Earth Engine (GEE) controlled classification 

of the 2022 Landsat satellite image. As a result of the creation of simulation models for the years 2030 and 

2050, it was concluded that 10428.75-23747.49 hectares of agricultural land will be destroyed, respectively. 

The SLEUTH model has modeled a total of 56468.26 hectares of agricultural land for 2022. This 

corresponds to 95% of the classification result for 2022, which is an important factor in examining the 

accuracy of the model. This study, which aims to guide decision makers and planners, shows that the use 

of the SLEUTH model has strong implications for the planned examination of future land use. 

 

Keywords: Agricultural Land, GEE, Remote Sensing, SLEUTH, Urban Growth 

1. INTRODUCTION 

Urbanization is generally defined as the process of population flow from rural areas to urban areas 

[1]. The increasing population around the world day by day leads to urbanization problems and some 

changes in urban areas. According to [2], while the world's urban population was close to 4.2 billion in 

2018, this number is expected to reach 6.7 billion in 2050. According to the report, while 30% of the world's 

population lived in cities in 1950, this rate was 55% in 2018. In the forecasts for 2050, the urban population 

is expected to be around 68%. As a result of the urbanization process in the world, urban areas are growing 

and accordingly, the pressure on the administrative units is increasing. Population migration from rural 

areas to urban areas has been one of the most important urban problems arising from regional imbalance 

and causing uncontrolled urban growth [3]. Irregular and unplanned growth in cities leads to the 

destruction of fertile agricultural and forest areas [4]. Since land is a limited resource, the pressure on it 

increases with population growth. For this reason, there is a need for studies and planning to increase 

productivity in land use [5]. The insecurity of access to food, which is felt strongly in the twenty-first 

century, is mainly due to the decreasing grain productivity and shrinking agricultural areas encountered 

worldwide [6]. Considering that negative fluctuations in the agricultural sector will also affect vital 

activities, planning and protection activities in agricultural areas gain importance. In the face of 

population growth, increasing urbanization rate and rapidly depleting resources, creating urban solutions 

with the help of developing technologies and creating sustainable cities in all dimensions have made it 

necessary to develop smart approaches and revealed the idea of 'smartening cities'. The approach that 

includes these dynamics is called 'Smart City'[7]. This systematic contemporary planning packages such 

as “sustainable growth”, “smart growth” and “compact city” are opposed to the dispersed and overly 

focused flexible [3]. New solutions such as sustainable growth and smart growth require comprehensive 

analysis, fragmentation and modelling of fragmented systems, from which additional pieces of 

mailto:lkarasaka@ktun.edu.tr
mailto:lkarasaka@ktun.edu.tr
mailto:e208223001012@ktun.edu.tr
https://orcid.org/0000-0002-2804-3219
https://orcid.org/0000-0001-9066-8749


The Impact of Urban Growth on Agricultural Land 1007 

   

 

information can be generated in response to the causes, effects and chronology of urbanization rates. In 

addition, in the decision-making process, land managers need to examine the consequences of the urban 

growth process. Urban growth models meet this demand, and there is a growing number of studies in the 

literature in the field of modeling urban growth [8], [9], [10], [11]. Despite the disruptions in urban 

processes, there has been a renaissance in spatial application over the last two decades due to increasing 

computing power, improved spatial data availability, and the need for planning tools to assist decision 

services [12]. The main reason for this is; With the technological developments in recent years, traditional 

methods are insufficient in modeling the complex city structure.  When the zoning regulation in our 

country is analysed, the socio-economic and physical planning process is carried out in the form of 

regional plans, environmental layout plans, master development plans and implementation growth plans. 

The application zoning plans included in the local physical plans should be prepared in accordance with 

the principles of the master zoning plan. Urban simulation results obtained by utilising new technologies 

such as geographical information systems and remote sensing methods can be taken into consideration at 

the planning stage, and more realistic and accurate plans can be put forward [13]. In the management of 

land use, many studies have been carried out using remote sensing method (RMS) with satellite images 

to analyse large area as well as geographic information system (GIS) technology [14], [15], [16], [17], [18]. 

With remote sensing, up-to-date data requirements can be met by obtaining data at various resolution 

levels and at the desired time. GIS, on the other hand, offers important tools in terms of both the assesment 

of the current situation and planning studies with its powerful analysis capabilities [19]. Models such as 

Von Thünen Model, Co-centred Zoning Theory Model, Centre Area Theory Model, Sector Area Theory 

Model are accepted as the first urban growth models. Today, many simulation models such as Cellular 

Automata (HO), Artificial Neural Networks (ANN), Markov Chains, SLEUTH Model, etc. have been 

developed in the modeling of urban growth and land use/cover changes [19]. Among the models used to 

investigate urban growth, cellular automaton (HO) modeling has proven its ability to capture complex 

land-use dynamics of urban growth [20]. This success of the model has allowed the growth of methods 

based on HO logic. SLEUTH is an HO-based simulation technique in which model parameters are 

determined according to the Monte Carlo (M-C) method. It is widely used to simulate the urban growth 

of many cities around the world [21], [22], [23], [24]. In Turkey, it has been used in urban growth 

simulations, especially in the provinces of Antalya, Izmir, Tokat, Çorum and Afyon [4], [25], [26], [27], 

[13]. The aim of this study is to analyze the effects of urbanization dynamics, population growth and 

uncontrolled urban growth on agricultural areas and environmental sustainability and to investigate the 

possible effects of this growth on agricultural areas in order to contribute to the implementation of 

sustainable urban planning in the future. In this context, simulations were created for the years 2030 and 

2050 in order to determine urban growth with the SLEUTH model in Selçuklu district of Konya province 

and to examine the effect of urbanization on agricultural areas in the region in the near future. While 

creating these simulations, the data required for the SLEUTH model were mainly obtained from Landsat 

satellite images. The classification of satellite images was performed using Google Earth Engine. GEE is a 

highly efficient platform that utilises large remote sensing datasets in an online cloud-based method, 

performing extensive dataset processing and analysis [17], [28]. In order to increase modeling accuracy, 

high spatial resolution orthophoto and Sentinel satellite imagery were used for city and road data, 

respectively, as well as Landsat satellite images. According to the results obtained, the agricultural 

destruction in the study area was evaluated.  

2. MATERIAL AND METHODS 

SLEUTH is a cellular automata-based simulation model that determines future land use situations and 

change with probabilistic simulations with gridded data [29]. Modeling of urban growth with the SLEUTH 

model can be done on the desired date for the near or distant future. SLEUTH, an open source software, 

has been tested and implemented with a number of changes since its growth. Simulation methods using 

statistical interpretation techniques are generally based on random sampling. Monte Carlo (MC) 

simulation basis is one of the most preferred simulation methods. It has also affected the models in which 
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urban growth and sprawl are determined, and simulation and prediction models have been used in many 

studies  [3]. The MC method was also adopted in the SLEUTH model based on HO. The SLEUTH model 

consists of the initials of the names of the input data of slope, Landuse, Exclusion zone, Urban, 

Transportation, Hillshade input data [26]. In order for the system to function smoothly, at least four urban 

data, at least two each of transport and land use data, and one each of slope data, excluded layer and 

hillshade data are required. Land use data are required if land use changes are to be modelled in addition 

to urban growth. The model is based on three main stage: "Test", "Calibration" and "Forecasting". The test 

phase is the stage where the suitability of the input data for simulation is tested (Figure 1). The calibration 

phase is the most time-consuming part of the model and is completed in four steps. These are coarse 

calibration, fine calibration, final calibration and prediction phase. At each step, the resolution of the input 

data in the data sets is increased, and "the relationships between the modeled and the current state are 

determined with thirteen different metric values using Pearson (r2) statistics [13]. These metrics are 

Product, Compare, Population, Edges, Clusters, Cluster Size, Lee-Sallee, Slope, %Urban, X-Mean, Y-Mean, 

Rad and F-Match [30]. The OSM (Optimum SLEUTH Metric) method multiplies seven of the thirteen 

metrics calculated at each step of the calibration to obtain a value in each iteration. With the help of the 

values obtained, growth coefficients are determined. In the study of [30], it is stated that if land use is to 

be modeled as well as urban growth, the F-match metric should be included in the method, and that the 

OSM method will provide strong results for SLEUTH calibration. Lee-Sallee is the ratio of the intersection 

and confluence of simulated and real urban areas. The highest values of this value, which is one of the 

thirteen calculated metrics, have an important place in determining the growth coefficients. In terms of 

modeling success, the value is expected to be as close to one as possible. 

 

 
Figure 1. Basic workflow of the model 

 

OSM= Compare *Pop*Edges*Cluster*Slope* X-mean*Y-mean     (1) 

 

The final growth coefficients obtained as a result of the calibration phase are important for modeling 
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urban growth. At this stage, the model tries to determine the parameters that are critical to be able to 

predict growth with the help of input data. After the parameters are determined, the estimation phase is 

started for urban growth simulation. The final growth coefficients obtained as a result of the calibration 

phase are important for modeling urban growth. Urban growth maps for the desired year are created at 

the estimation stage of SLEUTH with the help of growth coefficients based on the city data of the last 

control year. At this stage, SLEUTH establishes growth cycles for each developed year with growth 

coefficients. After analyzing the desired year of modeling of urban growth, the growth cycles will stop 

and provide statistical and visual outputs to the user. 

2.2 Study Area and Data  

Selçuklu district of Konya province is located between 36̊ 52' north latitude and 32̊ 29' east longitude. 

The average height of the district above sea level is 1016 meters (Figure 2). The area of the district is 1836.3 

km2 (Mevka, 2019). There are partially mountainous areas on the west side of the district, which is 

generally established in a plain area. In 1990, the population of the district covered about twelve percent 

of the provincial population, but by 2022, this rate has reached thirty percent.  

 

 
Figure 2. Study area 

 

The nomenclature standards of the input data produced for the SLEUTH model and the sources from 

which they were obtained are shown in Table 1.  is also shown. In addition, it is aimed to increase the 

accuracy to be obtained as a result of the simulation by using orthophoto and Sentinel satellite images in 

high spatial resolution. While creating the urban growth and land use simulation, all data were prepared 

in the same datum and projection, at the same spatial resolution and in the same nomenclature standard, 

taking into account the SLEUTH rules. The Google Earth Engine (GEE) platform, which is available for 

free access, was used to obtain Landsat satellite images. The data were exported in "GeoTIFF" format and 

evaluated as SLEUTH model input data in ArcGIS software. While preparing all the input data, a 

rectangular frame was drawn that enclosed the working area, so that the data contained an equal number 

of pixels on the basis of row*column. Blank fields that are outside the study area but included in the frame 

content are not included in the simulations. The frame size is 2848*1800 pixels at 30 meters, which is the 
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best spatial resolution in the study, and the spatial resolution is 1424*900 pixels when reduced to 60 meters, 

and 712*450 pixels when reduced to 120 meters. All standards have been prepared with ArcGIS software 

in 8-bit radiometric resolution and '.gif' format.  

 

Table 1. Input Data 

Land Class Source 

Urban 

GEE -Landsat 5 TM  

Landsat 7 ETM+  

Ortofoto  

GEE - Landsat 8OLI/TIRS 

Transportation 
Landsat 5 TM  

Sentinel 2 MSI  

Land-use 
GEE - Landsat 5 TM 

GEE -Landsat 8 OLI/TIRS 

Slope Alos Palsar DEM 

Hillshade Alos Palsar DEM 

Excluded Municipality – (Areas to Protest) 

 

2.3 Input Data Processing 

2.3.1. Landuse data 

The SLEUTH model requires two different types of land use data. 1991 was chosen for the core year 

and 2015 for the last control year. The main reason why 2015 was chosen as the last control year is that the 

forecast simulations, which will start from 2015, are intended to be compared with the 2022 data and 

today's real data and used in accuracy analysis. Therefore, it was ensured that the modeled data and the 

actual data were compared over a 7-year time period. The choice of the year 1991 is basically the desire 

for the time period between the input data to be as minimal as possible. This will affect the accuracy of the 

products as a result of the simulations. In order to obtain land use data, controlled classification of Landsat 

satellite images for the relevant years was performed on the GEE platform. In this classification, the 

"Random Forest" algorithm was used. In the classification, five different classes are considered: forest, 

water, agriculture, empty and urban area. While collecting training data during the classification phase, 

the relevant line of code was added on the GEE platform and a total of 5000 points were marked in the 

class. Similarly, 20% of the training data, i.e. 1000 points, were marked automatically to test the 

classification accuracy. 

2.3.2. Urban data 

In order to create urban growth simulations with the SLEUTH model, urban data for four different 

years are needed. In addition to the core year 1991 and the last control year 2015, urban data for the years 

2000 and 2010 were also included in the model. The reason for choosing these data is to divide the 24-year 

time period between the core year and the last control year into as equal intervals as possible and to 

consider urban growth in similar time intervals for the simulations to be created. Urban data for the years 

1991 and 2015 were obtained by subtracting urban classes from land use data containing five different 

land classes on the GEE platform. For the city data for the year 2000, the Landsat satellite image was 
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digitized with the help of ArcGIS software. Similarly, for the year 2010, urban areas were digitized from 

orthophoto at 40 cm spatial resolution. While evaluating the images of 2000 and 2010, all details that could 

be considered within the scope of urban areas such as buildings were subjected to digitization. For the city 

data for the year 2000, the Landsat satellite image was digitized with the help of ArcGIS software. 

Similarly, for the year 2010, urban areas were digitized from orthophoto at 40 cm spatial resolution. While 

evaluating the images of 2000 and 2010, all details that could be considered within the scope of urban areas 

such as buildings were subjected to digitization. The urban areas obtained as vector data were converted 

into raster data and the input data were resampled to spatial resolution standards and three different 

urban data were obtained.   

2.3.3. Transportation Data  

While preparing the road data, two separate digitisations were performed in ArcGIS software for the 

core and final control year. The digitisation process was ensured to cover only the main roads in the region. 

While obtaining this data, the main roads that can be distinguished in satellite images were obtained as 

vector data and then converted to raster format. If more than one road network is to be used, each of them 

should have a different pixel brightness value. Thus, when creating simulations with the SLEUTH model, 

it is possible to consider more than one scenario using the road network variable. Landsat 5 TM satellite 

image was used for 1991 data, and Sentinel-2 MSI satellite image at 10 meter spatial resolution was used 

for 2015 data to increase accuracy. After digitization, the data were included in the model in ".gif" format 

with spatial resolutions of 30, 60 and 120 meters. The Road Gravity coefficient, which is one of the five 

growth coefficients that the model tries to determine during the calibration phase, controls the realisation 

of urban sprawl with the effect of the road network. For the 2015 input data, Sentinel satellite image, which 

provides higher spatial resolution than Landsat, has been preferred.  In this data with a frame size of 

2848*1800 pixels, the pixels belonging to the road network were adjusted to have a brightness value of 255 

and the pixels not belonging to the road network were adjusted to have a brightness value of 0 pixels and 

included in the model.   

2.3.4. Slope, Exclusion Zone, and Shading Data 

A digital elevation model is needed to produce slope and hillshade data. In this context, the data 

obtained from Alos Palsar DEM data were produced as 30, 60 and 120 metres resolution. The pixel 

brightness values of the generated slope data are in the range of 0-100. In addition, it is aimed to prevent 

the destruction that may occur in the archaeological sites in the study area. While obtaining external region 

data, it is aimed that the military zone in the district in addition to these protected areas is not included in 

the urban growth simulation. External region input data in GIF format and 2848*1800 pixels in size was 

obtained. External region data were weighted in the range of 0-100 and included in the modeling.  

3. RESULTS AND DISCUSSION 

After six different input data were obtained in three different data sets as 30, 60 and 120 meters 

resolution, the test phase of the SLEUTH model was started. At this stage, the suitability of the inputs 

obtained for model calibration is tested.  

3.1. Calibration Process 

Since the aim here is to determine the growth coefficients, in addition to the increase in spatial 

resolution, the coefficient ranges are narrowed at each stage and the optimum coefficient values for urban 

growth simulation are obtained. Another factor that is important here is the MC iterations. Even if 

gradually increasing the number of MC iterations at each stage of the calibration provides a disadvantage 

in terms of temporal factors, it will affect the simulation probabilistically in terms of bringing the 
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coefficients closer to the most appropriate value. In the coarse calibration process, it is necessary to use the 

input data set with a lower spatial resolution at a ratio of 1/4 of the full resolution. Therefore, since lower 

resolution and larger pixel sizes are processed in the coarse calibration phase, the coefficients are 

determined in a shorter time than in other calibration stages. At this stage, each growth coefficient; It is 

tried to be determined in a total of five steps with 25-unit increments (0-25-50-75-100) in the range of 0-

100. The system will perform a total of 3125 (5^5.) operations to determine the five growth coefficients. 

Under normal conditions, since 3125 operations are performed at this stage, the result values consist of 

the same number of rows. However, since land use is also modeled in this study, it is aimed to determine 

the growth coefficients according to the top five values of OSM values, which are the product of eight 

metrics. There are also studies in the literature based on the first three or top ten values of OSM values. In 

the study, thirteen metrics and five growth coefficients were determined in 5 hours and 14 minutes. After 

the coefficients were obtained, the coefficient ranges to be processed in the scenario file were determined 

for good calibration and the fine calibration phase was started. According to the fine calibration stage, it 

is aimed to bring the coefficients closer to the most appropriate value by processing at higher spatial 

resolution and shorter coefficient intervals. For example, the "Spread" coefficient, which is expected to 

take a value in the range of 0-100 units, is seen to take values in the range of 75-100 units as a result of 

coarse calibration. According to these results, the start and end values of the relevant coefficient should 

be set to 75-100 in the fine calibration phase and appropriate "Step" values should be determined to ensure 

that this interval is completed in five or six steps. After the coefficient ranges determined according to the 

coarse calibration results were processed into the scenario file, good calibration was started with 60 meter 

of data. Table 2 shows fine calibration result values. In the study, thirteen metrics and five growth 

coefficients were determined in 20 hours and 45 minutes.  According to the fine calibration results, after 

the coefficient ranges shown in Table 3 were processed into the scenario file, the final calibration was 

started with 30 meters of data. In the study, metrics and growth coefficients were determined in 3 days, 6 

hours and 47 minutes. It should be taken into account that if satellite images are used at high spatial 

resolution, hardware needs will increase linearly, otherwise it may take weeks for the final calibration 

phase to be concluded.  

3.2 Forecast and ve Prediction  

The coefficient ranges obtained in the last calibration and the input data set with full spatial resolution 

are used in the estimation phase (Table 4). This is where SLEUTH's self-modification comes into play and 

leads to changes in the coefficient values obtained from the last calibration. Table 5 shows the forecast 

phase result values. Accordingly, for example, although the "Breed" coefficient received the value of "9" 

as a result of the last calibration, it was determined as the final "11" with the self-modification feature. On 

the other hand, there was no change in the "Road Gravity" coefficient. 
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*Table 2. The highest r2 values according to factor 1 class 

 Product Compare Pop Edges Clusters Clusters 

Size 

Lee-

Scale 

Slope %Urban X-mean Y-mean Rad F-

match 

C
o

ar
se

 

0.01240 0.85846 0.67216 0.84197 0.81858 0.54851 0.15418 0.95013 0.74539 0.90896 0.94688 0.65977 0.91705 

0.01372 0.92967 0.67640 0.89620 0.81805 0.58852 0.15749 0.79674 0.75222 0.92180 0.95578 0.66164 0.91875 

0.01372 0.92967 0.67640 0.89620 0.81805 0.58852 0.15749 0.79674 0.75222 0.92180 0.95578 0.66164 0.91875 

0.01230 0.85410 0.67389 0.83256 0.87684 0.55475 0.15280 0.88551 0.74634 0.91774 0.93796 0.66114 0.91797 

0.01122 0.95589 0.66587 0.92030 0.85003 0.52682 0.15787 0.68744 0.74611 0.92164 0.95514 0.65286 0.91884 

F
in

e 

0.01606 0.87579 0.68885 0.82983 0.99043 0.58852 0.14295 0.96742 0.75392 0.92103 0.92954 0.67260 0.91688 

0.01552 0.82264 0.70682 0.81444 0.97791 0.58741 0.14101 0.98364 0.76441 0.91447 0.93514 0.68661 0.91620 

0.01495 0.86806 0.68954 0.76031 0.96352 0.58795 0.14273 0.99962 0.75335 0.93376 0.93638 0.67217 0.91792 

0.01487 0.84829 0.69308 0.79540 0.96892 0.59939 0.14172 0.97724 0.75476 0.91229 0.92771 0.67481 0.91694 

0.01359 0.87200 0.66575 0.79512 0.99832 0.57925 0.14361 0.97155 0.73482 0.90397 0.91674 0.65255 0.91863 

F
in

al
 

0.01031 0.7329 0.71839 0.74135 0.99264 0.56752 0.12875 0.99995 0.7648 0.84751 0.87863 0.69884 0.91527 

0.00964 0.73173 0.71633 0.73282 0.99537 0.55149 0.12911 0.97322 0.76287 0.84969 0.88086 0.69677 0.91480 

0.00992 0.72540 0.71737 0.73565 0.99643 0.56752 0.12884 0.98275 0.76341 0.84535 0.87940 0.69771 0.91396 

0.00991 0.73892 0.71668 0.73544 0.99513 0.56752 0.12905 0.97448 0.76372 0.83838 0.87716 0.69747 0.91484 

0.00914 0.71476 0.71673 0.73682 0.99648 0.53813 0.12839 0.99044 0.76212 0.83503 0.87574 0.69675 0.91465 

 
*Description of Metric Name 

Product; All other scores multiplied together , Compare; It is the ratio of the number of all modeled urban cells of the last year and the current number of urban 

cells of the last year, Population; Least squares regression score for modeled urbanization compared to actual urbanization for the control years, Edges; Least 

squares regression score for modeled urban edge count compared to actual urban edge count for the control years, Clusters; Least squares regression score for 

modeled urban clustering compared to known urban clustering for the control years, Cluster Size ; Least squares regression score for modeled average urban 

cluster size compared to known average urban cluster size for the control years, Lee-Scalle; A shape index, a measurement of spatial fit between the model’s 

growth and the known urban extent for the control years, Slope; Least squares regression of average slope for modeled urbanized cells compared to average slope 

of known urban cells for the control years, % Urban; Least squares regression of percent of available pixels urbanized compared to the urbanized pixels for the 

control years, X-Mean; Least squares regression of average x_values for modeled urbanized cells compared to average x_values of known urban cells for the 

control years, Y-Mean; Least squares regression of average y_values for modeled urbanized cells compared to average y_values of known urban cells for the 

control years, Rad; Least squares regression of standard radius of the urban distribution, i.e. normalized standard deviation in x and y, F-Match; A proportion of 

goodness of fit across landuse classes [30].
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Table 3. Calibration result values 

 Calibration  interval values Cofficient name  

 Start Step Stop Diffusion Breed Spread Slope Road 

Gravity 

OSM 

C
o

ar
se

 

0 25 100 1 1 100 25 75 0.298240 

0 25 100 1 1 75 1 50 0.297321 

0 25 100 1 1 75 1 75 0.297321 

0 25 100 1 1 100 25 1 0.294008 

0 25 100 1 1 75 1 1 0.276863 

F
in

e 

0 5 20 1 10 75 1 80 0.376536 

0 5 20 1 15 75 5 20 0.356902 

75 5 100 1 10 75 5 60 0.351793 

0 5 25 1 15 75 10 20 0.343628 

0 20 100 1 5 85 20 20 0.340829 

F
in

al
 

0 5 20 5 9 75 20 35 0.2640575 

5 2 15 5 9 75 20 50 0.2547713 

75 2 85 5 9 75 15 35 0.2547018 

0 5 20 5 9 75 20 20 0.2540900 

20 15 80 5 9 77 20 20 0.2491760 

 

Table 4. Forecast result values 

Coefficients 
Interval 

START STEP STOP 

Diffusion 5 1 5 

Breed 9 1 9 

Spread 75 1 75 

Slope 20 1 20 

Road Gravity 35 1 35 

Monte Carlo Iteration   100   

Resolution 30 meter (2848*1800 Pixel) 

 

Table 5. Forecast result values 

Year 
X-

mean 
Y-mean Diffus. Breed Spread Slp RG Grw_rate 

2000 1382.86 1345.05 5.41 9.75 81.21 19.60 35.04 9.74 

2010 1422.77 1210.59 5.98 10.77 89.71 18.50 35.15 6.83 

2015 1437.41 1155.15 6.29 11.31 94.29 17.61 35.24 6.20 

 
The final growth coefficients obtained as a result of the forecasting phase, which was completed in a 

short time, were Diffusion:6; Breed:11; Spread: 94; Slope:18; Road Gravity: 35. These coefficients were used 

in the analysis of urban growth and modeling of land classes. With the estimation phase, it is aimed to 

create simulation models for the years 2030 and 2050. Thus, starting from 2015, the last control year, 

simulation models were created for each year with the growth coefficients determined and the desired 

forecast year was modeled. 

As a result of the SLEUTH estimation phase, two different visual outputs were obtained: urbanization 

and land use. Figure 3 and Figure 4 show the result of urbanization simulation. The result of the spread 
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and road gravity coefficients, which are the growth coefficients determined as a result of the calibration, 

was higher than the other coefficients, and the output was reflected in the products. Accordingly, the 

pixels of urban areas have developed around the road network and urban growth has been realized. 

 

 
Figure 3. 2030 Urbanization Simulation 

 

These output products, which are obtained as a result of simulations carried out for each year using 

growth coefficients starting from 2015, the last control year, until 2050, deal with urban sprawl 

probabilistically. Figure 4. shows the urbanization situation that will occur with a probability of 10-50%, 

50-90% and 90-100%. These probabilistic distributions are organized in the scenario file of the SLEUTH 

model. If desired, these intervals can be arranged with a 10% increase. However, it has been evaluated in 

three different possible ranges, both because of the confusion that may occur in the visual output and 

because it is desired to deal with the urban sprawl situation in a more general way. Even if urbanization 

occurs with a 90-100% probability in the boundaries of the military zone, which is one of the areas 

excluded from growth during the preparation of input data, the fact that no urbanization was seen within 

the area increased the confidence in the external region layer.  
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Figure 4. 2050 Urbanization Simulation 

 

 
Figure 5. 2030 Land Use Map 

 

The land use maps obtained as a result of the estimation phase are shown in Figure 5 and Figure 6.  

SLEUTH modeled the land class transitions based on pixel neighborhoods with the help of determined 

growth coefficients on land classification input data as a result of simulations. 
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Figure 6. 2050 Land Use Map 

 

Land use maps were evaluated on a pixel basis in ArcGIS software and change analysis of land classes 

was made for two different years, modeled as shown in Table 6 and Table 7. Based on the fact that each 

pixel is 30*30 meters in the output products, the change in the areas corresponding to all land classes is 

handled in hectares (ha). As in the land use input data, five different classes were evaluated. Accordingly, 

a class can be assigned to the class it belongs to, or it can be converted into different classes. Thus, it can 

be interpreted as the areas that turn into different classes are destroyed. In this context, while there were 

62042.94 hectares of agricultural land in 2015, according to the modeling results of 2030 and 2050, these 

areas have mostly turned into urban areas. In 2030, a change of 15.22% can be mentioned with 9445.95 

hectares in agricultural lands that have turned into urban areas. By 2050, the change of 21862.44 hectares 

corresponds to 35.24% of the existing agricultural areas. Similarly, while it is predicted that the existing 

vacant lands will be transferred to agricultural activities in 2030, it has been determined by the model that 

the areas to be transferred to agricultural activities in the twenty-year period between 2030 and 2050 will 

lag behind those that will be converted into urban areas. This will be one of the factors affecting the 

production of agricultural products in Selçuklu district. 
 

Table 6. Destruction analysis for 2030 
  2030  

 Land 

classes(ha) 
Empty Urban Forest Water Agriculture Other Total 

20
15

 

Empty 112772.70 4756.32 59.67 10.08 4811.22   122409.99 

Urban   6858.63         6858.63 

Forest 163.17 7.11 1139.04 2.34 12.87   1324.53 

Water 6.21 1.98 0.18 348.57 0.18   357.12 

Agriculture 5795.55 9445.95 10.44 1.08 46789.92   62042.94 

Other           268382.79 268382.79 
 Total 118737.63 21069.99 1209.33 362.07 51614.19 268382.79 461376 
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Table 7. Destruction analysis for 2050 
  2050  

 Land 

classes(ha) 
Empty Urban Forest Water Agriculture Other Total 

20
15

 

Empty 103641.93 12217.14 117.18 21.33 6412.41   122409.99 

Urban   6858.63         6858.63 

Forest 342.00 59.94 892.53 7.56 22.50   1324.53 

Water 9.45 9.45 0.09 337.77 0.36   357.12 

Agriculture 8293.50 21862.44 25.83 0.99 31860.18   62042.94 

Other           268382.79 268382.79 
 Total 112286.88 41007.60 1035.63 367.65 38295.45 268382.79 461376 

 

3.3. Testing model accuracy 

There are two different evaluations for accuracy analysis. The first of these is the analysis of the 

accuracy of the controlled classifications obtained with the "Random Forest" algorithm on the Google 

Earth Engine platform while obtaining input data. Producer and user accuracies were calculated from the 

error matrices. At the same time, the Kappa Statistical values of each classification are shown in Table 8. 

 

Table 8. Accuracy analysis 

Classification 1991/1 1991/2 2015 2022 
Kappa 0.93 0.96 0.94 0.96 

 

The year 2022 was considered appropriate for the investigation of model accuracy. Thus, the accuracy 

analysis was carried out for a 7-year time period starting from 2015, the last control year. Table 9 shows 

the comparison of the land classification performed on the GEE platform for the year 2022 and the 

SLEUTH model predictions for the same year on the basis of area. When the table is examined, it is seen 

that there are 59594.88 hectares of agricultural land according to the classification result and 74% of these 

lands and 43978.32 hectares are modeled by SLEUTH. In addition, SLEUTH modeled that there will be a 

total of 56468.26 hectares of agricultural land for 2022, including those that have converted from other 

land classes to agricultural land classes. This corresponds to approximately 95% of the classification result 

for 2022. It should not be forgotten that factors such as the realism of the classification made on the GEE 

platform and the temporal and spatial resolutions of the input data may affect this accuracy analysis. 

 

Table 9. Model accuracy forecast for 2022 
   2022 SLEUTH Model Prediction   

  
Land 

classes(ha) 
Empty Urban Forest Water Agriculture Total 

20
22

 G
E

E
 

C
la

ss
if

ic
at

io
n

 

Empty 107357.16 2030.28 652.63 6.49 10919.32 120965.88 

Urban 1414.02 8410.84   0.72 1561.52 11387.10 

Forest 67.32 0.54 590.93 0.27 7.03 666.09 

Water 12.80 11.52 9.99 342.88 2.07 379.26 

Agriculture 11919.26 3668.31 18.09 10.90 43978.32 59594.88 

 Total 120770.56 14121.49 1271.64 361.26 56468.26 192993.21 

 

5. CONCLUSIONS 

In the early 19th century, the process of analysing and planning urban growths, which started with 

agricultural factors, continued towards the end of the 20th century with the modelling of the growth of 

compact cities. Today, urban growth models are widely used by decision makers and urban planners as 
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future planning is based on more solid foundations in the light of technological developments. In this 

study, using the SLEUTH urban growth model, simulations were created for the years 2030 and 2050 in 

the Selçuklu region and the destruction of agricultural areas was analysed. According to the 2015-2030 

simulation result, 15253.02 ha of agricultural land will be destroyed by turning into different classes. On 

the other hand, 4824.27 ha of land will be transformed into agricultural land of different classes. Therefore, 

it is concluded that there will be a total of 51614.19 ha of agricultural land in 2030 and 10428.75 ha of 

agricultural land will be destroyed with a rate 16.81% compared to 2015. According to the 2015-2050 

simulation result, 30182.76 ha of agricultural land will be destroyed by transforming into different classes. 

On the other hand, 6435.27 ha of land will be turning into agricultural land of different classes. Therefore, 

it is concluded that there will be 38295.45 ha of agricultural land in total in 2050 and 23747.49 ha of 

agricultural land will be destroyed with a ratio of  38.28 % compared to 2015. 

DECLARATION OF ETHICAL STANDARDS 

The authors declare that study complies with all applicable laws and regulations and meets ethical 

standards. 

CREDIT AUTHORSHIP CONTRIBUTION STATEMENT 

Author 1: Investigation, Software, Validation, Visualization, Writing- review and editing,  

Author 2: Resources, Investigation, Software, Formal analysis, Writing –original draft 

DECLARATION OF COMPETING INTEREST 

The authors declare that have no known competing financial interests or personal relationships that 

could have appeared to influence the work reported in this paper. 

FUNDING / ACKNOWLEDGEMENTS 

The authors declare that no funding was used in the study. 

DATA AVAILABILITY 

Data available on request from the authors. 

REFERENCES 

[1] Y. Ren, H. Li, L. Shen, Y. Zhang, Y. Chen, and J. Wang, “What Is the Efficiency of Fast 

Urbanization? A China Study,” Sustainability, vol. 10, no. 9, 2018, doi: 10.3390/su10093180. 

[2] UN, “World Urbanization Prospects 2018,” 2018. 

[3] D. Öztürk and İ. E. Ayazlı, “Tokat İlinde Kentsel Büyümenin SLEUTH Modeli İle Simülasyonu,” 

in SETSCI-Conference Proceedings, SETSCI-Conference Proceedings, 2018, p. 8. 

[4] C. Uysal, M. Uysal, and M. Uysal, “CBS Temelli Hücresel Özişleme Yaklaşımı ile Kentsel Büyüme 

Simülasyonu: Afyonkarahisar Örneği,” Türkiye Coğrafi Bilgi Sistemleri Dergisi, vol. 2, no. 1, pp. 26–

36, 2020, [Online]. Available: https://dergipark.org.tr/en/pub/tucbis/issue/52936/655063 

[5] F. A. CANPOLAT and D. DAĞLI, “ELAZIĞ İLİ’NDE ARAZİ KULLANIMI DEĞİŞİMİ (2006-2018) 

VE SİMÜLASYONU (2030),” lnternational Journal of Geography and Geography Education, no. 42, 

2020, doi: 10.32003/igge.746668. 

[6] M. Deniz and Ö. Hiç, “İklim değişikliği ve tarımın değişen yüzü: artan riskler, tarımdaki 

daralmalar ve orman yangınları sonrası politika önerileri,” Biga İktisadi ve İdari Bilimler Fakültesi 

Dergisi, vol. 3, no. 1, pp. 12–22, 2022. 



1020                                                                                                                                                                          L. KARASAKA, M. GÜNEŞ 

[7] M. Ateş and D. Erinsel Önder, “‘Akıllı Şehir’kavramı ve dönüşen anlamı bağlamında eleştiriler,” 

Megaron, 2019. 

[8] B. Dey and P. Sharma, “A comprehensive review of urban growth studies and predictions using 

the Sleuth model,” The Scientific Temper, vol. 15, no. 02, pp. 2333–2341, 2024. 

[9] K. Dhanaraj and G. V Jain, “Urban growth simulations in a medium-sized city of Mangaluru, 

India, through CA-based SLEUTH urban growth model,” Journal of the Indian Society of Remote 

Sensing, vol. 51, no. 3, pp. 497–517, 2023. 

[10] R. N. Jawarneh, “Modeling Past, Present, and Future Urban Growth Impacts on Primary 

Agricultural Land in Greater Irbid Municipality, Jordan Using SLEUTH (1972–2050),” ISPRS Int J 

Geoinf, vol. 10, no. 4, 2021, doi: 10.3390/ijgi10040212. 

[11] Y. Sakieh, B. J. Amiri, A. Danekar, J. Feghhi, and S. Dezhkam, “Simulating urban expansion and 

scenario prediction using a cellular automata urban growth model, SLEUTH, through a case study 

of Karaj City, Iran,” Journal of Housing and the Built Environment, vol. 30, no. 4, pp. 591–611, 2015, 

doi: 10.1007/s10901-014-9432-3. 

[12] C. Dietzel and K. Clarke, “The effect of disaggregating land use categories in cellular automata 

during model calibration and forecasting,” Comput Environ Urban Syst, vol. 30, no. 1, pp. 78–101, 

2006. 

[13] F. E. Tombuş, “Çorum ili ve yakın çevresinin Uzaktan Algılama yöntemleri ile arazi kullanımının 

değerlendirilmesi,” 2019. 

[14] A. A. Jamali, A. Behnam, S. A. Almodaresi, S. He, and A. Jaafari, “Exploring factors influencing 

urban sprawl and land-use changes analysis using systematic points and random forest 

classification,” Environ Dev Sustain, vol. 26, no. 5, pp. 13557–13576, 2024. 

[15] S. Saha, D. Sarkar, and P. Mondal, “Urban Expansion Monitoring Using Machine Learning 

Algorithms on Google Earth Engine Platform and Cellular Automata Model: A Case Study of 

Raiganj Municipality, West Bengal, India,” in Advancements in Urban Environmental Studies: 

Application of Geospatial Technology and Artificial Intelligence in Urban Studies, Springer, 2023, pp. 43–

55. 

[16] R. W. Aslam, H. Shu, and A. Yaseen, “Monitoring the population change and urban growth of 

four major Pakistan cities through spatial analysis of open source data,” Ann GIS, vol. 29, no. 3, 

pp. 355–367, 2023. 

[17] M. N. Khalid, M. N. Ahmad, M. A. Javed, and S. R. Ahmad, “Modeling future urban network 

capacity and land use/land cover simulation using GEE and remote sensing data,” Arabian Journal 

of Geosciences, vol. 16, no. 11, p. 628, 2023. 

[18] R. T. Handayanto, S. Samsiana, and H. Herlawati, “Driving Factors Selection and Change 

Direction of a Land Use/Cover,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 1.5, pp. 243–248, 

2019. 

[19] D. Öztürk, \.Ismail Ercüment Ayazl\i, and others, “Kentsel Büyümenin Modellenmesi ve 

Simülasyon Modelleri,” International Journal of Multidisciplinary Studies and Innovative Technologies, 

vol. 3, no. 1, pp. 44–47, 2019. 

[20] A. Ilyassova, L. N. Kantakumar, and D. Boyd, “Urban growth analysis and simulations using 

cellular automata and geo-informatics: comparison between Almaty and Astana in Kazakhstan,” 

Geocarto Int, vol. 36, no. 5, pp. 520–539, 2021. 

[21] X. Yang and C. P. Lo, “Modelling urban growth and landscape changes in the Atlanta 

metropolitan area,” International Journal of Geographical Information Science, vol. 17, no. 5, pp. 463–

488, Jun. 2003, doi: 10.1080/1365881031000086965. 

[22] G. Manca and K. C. Clarke, “Waiting to know the future: A SLEUTH model forecast of urban 

growth with real data,” Cartographica: The International Journal for Geographic Information and 

Geovisualization, vol. 47, no. 4, pp. 250–258, 2012. 



The Impact of Urban Growth on Agricultural Land 1021 

   

 

[23] I. S. Serasinghe Pathiranage, L. N. Kantakumar, and S. Sundaramoorthy, “Remote Sensing Data 

and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning,” Chin Geogr 

Sci, vol. 28, no. 2, pp. 274–286, 2018, doi: 10.1007/s11769-018-0946-6. 

[24] G. Chaudhuri and S. Foley, “DSLEUTH: A distributed version of SLEUTH urban growth model,” 

in 2019 Spring Simulation Conference (SpringSim), 2019, pp. 1–11. 

[25] Ö. \cSevik, “Application of SLEUTH model in Antalya,” Middle East Technical University, 2006. 

[26] H. Oguz, B. K. Atak, H. Doygun, and E. ve Nurlu, “Modeling urban growth and land use/land 

cover change in Bornova district of Izmir metropolitan area from 2009 to 2040,” in Int. Symp. on 

Environmental Protection and Planning: Geographic Information Systems (GIS) and Remote Sensing (RS) 

Applications (ISEPP), 2011. 

[27] D. Öztürk and İ. E. Ayazlı, “Tokat İlinde Kentsel Büyümenin SLEUTH Modeli İle Simülasyonu,” 

in SETSCI-Conference Proceedings, SETSCI-Conference Proceedings, 2018, p. 8. 

[28] A. Shelestov, M. Lavreniuk, N. Kussul, A. Novikov, and S. Skakun, “Exploring Google Earth 

Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop 

mapping,” Front Earth Sci (Lausanne), vol. 5, p. 232994, 2017. 

[29] K. C. Clarke and J. M. Johnson, “Calibrating SLEUTH with big data: Projecting California’s land 

use to 2100,” Comput Environ Urban Syst, vol. 83, p. 101525, 2020. 

[30] C. Dietzel and K. C. Clarke, “Toward optimal calibration of the SLEUTH land use change model,” 

Transactions in GIS, vol. 11, no. 1, pp. 29–45, 2007. 

 


	C:\Users\lenovo\Desktop\YAYIN AŞAMASINDA-20241129T181921Z-001\YAYIN AŞAMASINDA\Sayı\KONJES_12_4_11_1563738.docx
	C:\Users\lenovo\Desktop\YAYIN AŞAMASINDA-20241129T181921Z-001\YAYIN AŞAMASINDA\Sayı\KONJES_12_4_11_1563738_Kapak_Sayfasi.docx

