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Abstract − Scattering number measures the stability of a graph by determining how well
vertices are spread throughout the graph. However, it may not always be distinctive for
different graphs, especially when comparing the same scattering numbers. In this study, we
aim to provide a more nuanced and sensitive measure of stability for graphs by introducing
domination scattering numbers, a new measure of graph stability. This parameter likely
captures additional structural characteristics or dynamics within the graph that contribute
to its stability or resilience. Moreover, we investigate the domination scattering numbers of
the graphs Pn, Cn, K1,n, Km,n, and Pn × C3.
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1. Introduction

Network stability depends on nodes (processing) and links (communications or transport). Whenever
a link or node is lost, the effectiveness of the network decreases. Communication networks should be
stable during initial disruptions and future reconstructions. A network’s stability can be measured
by its cost of disruption. Analyzing the stability of a network against disruption is crucial in various
fields like telecommunications, transportation, and ecology. Here are some fundamental concepts to
consider [1–3]:

i. The number of non-functioning nodes in a network depends on several factors, such as the nature
of the disruption. It is important to determine the number of these nodes.

ii. By analyzing how many groups still have mutual communication after a network outage, the
network’s topology needs to be evaluated.

iii. In terms of difficulty, connecting a network that has been disrupted varies widely based on factors
such as the scale of the disruption, the nature of the network, available resources, and expertise.

Modeling a communication network as a graph is a common and effective approach to analyzing its
stability and behavior. In this graph model, the following concepts are involved:

i. Vertices (Nodes): Each node in the graph represents a distinct entity within the communication
network. These entities could be devices, e.g., computers, routers, or smartphones, communication
endpoints, such as users or servers, or any other relevant network component.
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ii. Edges (Links): Each edge in the graph represents a communication link or connection between two
nodes. These links could be physical connections, e.g., cables or wireless, or logical connections, such
as virtual circuits or network paths.

By representing the considered network as a graph, various graph theory concepts and algorithms
can be applied to analyze its properties, connectivity, and stability. We have some graph theoretical
parameters to obtain the stability of communication networks, e.g., connectivity, integrity, toughness,
and scattering number [1, 4–7, 11]. Edge versions of these graph parameters are also defined. The
scattering number is handy for measuring the stability of a graph. However, it does not provide good
results for some families of graphs, and the edge scattering number does not yield satisfactory results
for certain graphs. In other words, these parameters are not distinctive between some families of
graphs. This paper investigates a new parameter for stability, considering this situation.

If scattering numbers and dominance are thought together, then when a small group of decision-makers
has effective communication links with each other, dominance in graphs can provide a valuable model
for deciding what to do [12]. In essence, removing a minimum dominating set like X can trigger a
cascade of adverse effects, culminating in chaos within the network. It highlights the critical role played
by centralized decision-makers and effective communication channels in maintaining organizational
stability and functionality [12]. The motivation of this paper is to choose the dominating set of
a graph instead of the set X when calculating the scattering number. By this choice, this paper
introduces a new graph parameter.

2. Preliminaries

Throughout this paper, we use the notation w(G) to denote the order of the most significant compo-
nent. We provide some basic definitions to be needed in the following sections.

Definition 2.1. [7] The scattering number of a noncomplete connected graph G is defined by

sc(G) = max {w(G − X) − |X| : X ⊂ V (G) and w(G − X) ≥ 2}

where the notation |X| represents the cardinality of X. Moreover, a set X ⊂ V (G) is called a scatter-
set of G if sc(G) = w(G − X) − |X|.

Some results for this parameter are provided as follows:

Theorem 2.2. [3] If G is a noncomplete connected graph of order n, then

2η(G) − n ≤ sc(G) ≤ η(G) − κ(G)

where η(G) and κ(G) are independence number and connectivity number of the graph G, respectively.

We then present the cartesian product of two graphs.

Definition 2.3. [6, 13] Let G and H be two graphs, VG and VH be the sets of vertices of G and
H, respectively, V = VG × VH , and m, n ∈ V such that m = (m1, m2) and n = (n1, n2). Then, the
cartesian product of G and H, denoted by G×H, is defined by vertices in V that m and n are adjacent
in G × H if and only if m1 = n1 and the vertices m2 and n2 in VH are adjacent in H or m2 = n2 and
the vertices m1 and n1 in VG are adjacent in G.

Theorem 2.4. [14] Let m ≥ 2 and n ≥ 2. Then,

sc (K1,m × Pn) =

 m − 1, n is even

m − 2, n is odd
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For more information about scattering numbers, refer to [3, 7, 11, 14–17]. The edge version of the
scattering number has been defined by Aslan [18].

Definition 2.5. [18,19] The edge scattering number of a noncomplete connected graph G is defined
by

es(G) = max {w(G − X) − |X| : X ⊆ E(G) and w(G − X) ≥ 2}

where the notation |X| represents the cardinality of X. Moreover, a set X ⊆ E(G) is called an edge
scatter set (es-set) of G if es(G) = w(G − X) − |X|.

Some results for the edge scattering number are provided as follows:

Theorem 2.6. [18] The edge-scattering number of the cycle graph Cn is 0. Moreover, the edge-
scattering number of the complete bipartite graph Km,n is 2 − m where 2 ≤ m ≤ n.

Theorem 2.7. [18] If n ≥ 3 is a positive integer, then es (K2 × Pn) = 0. If n ≥ 4 is a positive integer,
then es (K2 × Cn) = −1.

We mention another important concept of stability.

Definition 2.8. [12] A nonempty subset X ⊂ V (G) is called a dominating set of G if every vertex
not in X is adjacent to at least one vertex in X. A dominating set is called minimal if none of its
proper subsets is a dominating set. The minimum cardinality of all the dominating graph sets G is
called the domination number of the graph and is denoted by γ(G).

Any subset of vertices of a graph G is a dominating set. In other words, the subset that gives the
scattering number can be a dominating set. The motivation of this paper is to use the dominating set
when investigating the stability measurement.

3. Domination Scattering Number of a Graph

In this section, we first define a new parameter as stability measurement.

Definition 3.1. The domination scattering number of a noncomplete graph G is

ds(G) = max{w(G − X) − |X| : w(G − X) ≥ 2 and X is a dominating set}

where the notation |X| represents the cardinality of X. Moreover, a set X ⊂ V (G) is called a
domination scatter set (ds-set) of G if ds(G) = w(G − X) − |X|.

We provide an example showing that this parameter is more distinctive than the scattering and edge
scattering numbers. In other words, the stability parameter we define offers better results than other
parameters for some graph families.

Consider the graphs G1, G2, and G3, each having the same number of vertices. A pertinent question
arises: “Can the relevance of the domination scattering number as a measure of stability in graphs
be evaluated by analyzing its properties and effectiveness in distinguishing graphs based on their
structural flexibility and variations in dominance?” In other words, are G1, G2, and G3 distinguished
by the domination scattering number?

We can find many examples of graphs that suggest that ds(G) is a suitable measure of stability in
that it can distinguish between graphs. Consider Figure 1 as an example.
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Figure 1. Graphs G1, G2, and G3, each having the same number of vertices

The scattering number, edge scattering number, and domination scattering number of graphs in Figure
1 are calculated and listed in Table 1.

Table 1. Scattering, edge scattering, and domination scattering numbers of graphs in Figure 1
sc(G) es(G) ds(G)

G1 2 1 1
G2 0 0 0
G3 2 0 2

It can be observed from Table 1 that sc(G1) = sc(G3) = 2. Therefore, scattering numbers do not
distinguish between graphs G1 and G3. Since ds(G1) ̸= ds(G3), the domination scattering number
distinguishes between graphs G1 and G3. We can also say the same for the graphs G2 and G3. Table 1
shows es(G2) = es(G3) = 0. Therefore, edge-scattering numbers do not distinguish between graphs G2

and G3. However, since ds(G2) ̸= ds(G3), we say that the domination scattering number distinguishes
between graphs G2 and G3.

Consequently, the new parameter defined in this study is more distinctive for these graphs than others.
In other words, the graph parameter we defined is a suitable indicator of its stability. Therefore, we
investigate which graphs the parameter we defined is better for. We provide the domination scattering
number of several graphs.

3.1. Domination Scattering Number of Some Graphs

In this subsection, we provide the results obtained by the new parameter. Firstly, we start with the
path graph Pn.

Theorem 3.2. Let n ∈ Z+ and n ≥ 5. Then, ds(Pn) = 1.

Figure 2. Path graph Pn

Proof. Let X be a dominating set of Pn and V (Pn) = {v1, v2, v3, · · · , vn} (see Figure 2). From [20],
since γ(Pn)=⌈n

3 ⌉, we have there different cases:

Case 1: Let n ≡ 0 (mod 3). If we remove |X| ≥ n
3 vertices, then w(Pn − X) ≤ n

3 + 1. Therefore,

ds(Pn) = max{w(Pn − X) − |X|} ≤ max
{

n

3 + 1 − n

3

}
≤ 1
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If we choose X∗ = {v2, v5, v8, · · · , vn−1} such that |X∗| = n
3 and w(Pn − X) = n

3 + 1, then

ds(Pn) = 1 (3.1)

Case 2: Let n ≡ 1 (mod 3). By removing |X| ≥ ⌈n
3 ⌉ vertices, we have w(Pn − X) ≤ ⌈n

3 ⌉ + 1.
Therefore,

ds(Pn) ≤ max
{⌈

n

3

⌉
+ 1 −

⌈
n

3

⌉}
≤ 1

If we choose X∗ = {v2, v5, v8, · · · , vn−5}∪{vn−3, vn−1} such that |X∗| = ⌈n
3 ⌉ and w(Pn −X) = ⌈n

3 ⌉+1,
then

ds(Pn) = 1 (3.2)

Case 3: Let n ≡ 2 (mod 3). If |X| ≥ ⌈n
3 ⌉ vertices are removed, then w(Pn −X) ≤ ⌈n

3 ⌉+1. Therefore,

ds(Pn) ≤ max
{⌈

n

3

⌉
+ 1 −

⌈
n

3

⌉}
≤ 1

Let X∗ = {v2, v5, v8, · · · , vn−3} ∪ {vn−1} be a vertex cut. Then, |X∗| = ⌈n
3 ⌉ and w(Pn − X) = ⌈n

3 ⌉ + 1.
Hence,

ds(Pn) = 1 (3.3)

From (3.1)-(3.3), ds(Pn) = 1.

Theorem 3.3. Let n ∈ Z+ and n ≥ 4. Then, ds(Cn) = 0.

Figure 3. Cycle graph Cn

Proof. Let X be a dominating set of Cn and V (Cn) = {v1, v2, v3, · · · , vn} (see Figure 3). From [20],
since γ(Cn)=⌊n+2

3 ⌋, we have three different cases:

Case 1: Let n ≡ 0 (mod 3). If |X| ≥ ⌊n+2
3 ⌋ vertices are removed, then w(Cn − X) = ⌊n+2

3 ⌋ and

ds(Cn) ≤ max
{⌊

n + 2
3

⌋
−

⌊
n + 2

3

⌋}
≤ 0

Hence, if we choose X∗ = {v2, v5, v8, ..., vn−1}, then |X∗| = ⌊n+2
3 ⌋ and w(Cn − X) = ⌊n+2

3 ⌋. Hence,

ds(Cn) = 0 (3.4)

Case 2: Let n ≡ 1 (mod 3). If |X| ≥ n+2
3 vertices are removed, then w(Cn − X) ≤ n+2

3 . Therefore,

ds(Cn) ≤ max
{

n + 2
3 − n + 2

3

}
≤ 0

Let X∗ = {v2, v5, v8, ..., vn−2} ∪ {vn} be a vertex cut. By the choice of |X∗|, we obtain |X∗| = n+2
3

and w(Cn − X) = n+2
3 . Then,

ds(Cn) = 0 (3.5)
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Case 3: Let n ≡ 2 (mod 3). By removing |X| ≥ ⌊n+2
3 ⌋ vertices, we have w(Cn − X) ≤ ⌊n+2

3 ⌋. Then,

ds(Cn) ≤ max
{⌊

n + 2
3

⌋
−

⌊
n + 2

3

⌋}
≤ 0

If we choose X∗ = {v2, v5, v8, ..., vn−3} ∪ {vn−1} or X∗ = {v2, v5, v8, ..., vn−3} ∪ {vn} as a vertex cut,
then |X∗| = ⌊n+2

3 ⌋ and w(Cn − X∗)=⌊n+2
3 ⌋. Then,

ds(Cn) = 0 (3.6)

From (3.4)-(3.6), ds(Cn) = 0.

Theorem 3.4. If n∈ Z+ and n ≥ 2, then ds(K1,n) = n − 1.

Proof. Let X be a dominating set of K1,n and v be a vertex with maximum degree. If we remove
|X| ≥1 vertices, then w(K1,n − X) ≤ n. Then,

ds(K1,n) ≤ max{n − 1} ≤ n − 1

If we choose X∗ = {v} such that |X∗| = 1 and w(K1,n − X∗) = n, then ds(K1,n) = n − 1.

Theorem 3.5. If n, m ∈ Z+ and n ≥ m, then ds(Km,n) = n − m.

Figure 4. Complete bipartite graph Km,n

Proof. Let X be a dominating set of Km,n and V (Km,n) = {v1, v2, v3, · · · , vm+n−1, vm+n} (see Figure
4). From [16], since γ(Km,n) = 2 and w(Km,n − X) > 1, then |X| must be at least m. If we remove
|X| ≥ m vertices, then w(Km,n − X) ≤ n. Therefore,

ds(Km,n) ≤ max{n − m} ≤ n − m

If we take X∗ = {v1, v2, v3, ..., vm}, then w(Km,n − X∗) = n. Hence, ds(Km,n) = n − m.

3.2. Cartesian Product and Domination Scattering Number

In this subsection, we provide the ds(Pn × C3) value.

Theorem 3.6. If n ∈ Z+ and n ≥ 4, then

ds(Pn × C3) =

 1 − 2n
3 , n ≡ 0 (mod 3)

⌈n
3 ⌉ − n, otherwise

Figure 5. Graph Pn × C3
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Proof. Let X be a dominating set and V (Pn × C3) = {v1, v2, v3, ..., v3n−1, v3n} (see Figure 5). From
[21], since

γ(Pn × C3) =

 ⌈3n
4 ⌉ + 1, n ≡ 0 (mod 4)

⌈3n
4 ⌉, otherwise

then |X| must be at least ⌈3n
4 ⌉. Then, we consider two different cases:

Case 1: Let n ≡ 0 (mod 3). If we remove |X| = ⌈3n
4 ⌉ vertices, then w((Pn × C3) − X) = 1. If we

remove |X| = ⌈3n
4 ⌉ + k vertices such that k ∈ Z+ and |X| < n, then w((Pn × C3) − X) ≤ 1 + k. Thus,

ds(Pn × C3) ≤ max
{

1 + k −
(⌈3n

4

⌉
+ k

)}
≤ 1 −

⌈3n

4

⌉
(3.7)

If we remove |X| ≥ n vertices, then w((Pn × C3) − X) ≤ n
3 + 1. Thus,

ds(Pn × C3) ≤ max
{

n

3 + 1 − n

}
≤ 1 − 2n

3 (3.8)

Since 1 −
⌈

3n
4

⌉
≤ 1 − 2n

3 , for all n ≥ 4, then ds(Pn × C3) ≤ 1 − 2n
3 from (3.7) and (3.8).

Hence, if we choose

X∗ = {v2, v5, v8, ..., vn−1} ∪ {vn+2, vn+5, vn+8, ..., v2n−1} ∪ {v2n+2, v2n+5, v2n+8, ..., v3n−1}

then |X∗| = n and w((Pn × C3) − X∗) = n
3 + 1. Then,

ds(Pn × C3) = 1 − 2n

3 (3.9)

Case 2: Let n ≡ 1 (mod 3) or n ≡ 2 (mod 3). If we remove |X| = ⌈3n
4 ⌉ vertices, then w((Pn × C3) −

X) = 1. If we remove |X| = ⌈3n
4 ⌉+k vertices such that k ∈ Z+ and |X| < n, then w((Pn ×C3)−X) ≤

1 + k. Thus,
ds(Pn × C3) ≤ max

{
1 + k −

(⌈3n

4

⌉
+ k

)}
≤ 1 −

⌈3n

4

⌉
(3.10)

If we remove |X| ≥ n vertices, then w((Pn × C3) − X) ≤ ⌈n
3 ⌉. Therefore,

ds(Pn × C3) ≤ max
{⌈

n

3

⌉
− n

}
≤

⌈
n

3

⌉
− n (3.11)

Since 1 − ⌈3n
4 ⌉ ≤ ⌈n

3 ⌉ − n, for all n ≥ 4, then ds(Pn × C3) ≤ ⌈n
3 ⌉ − n from (3.10) and (3.11).

If we choose

X∗ = {v2, v5, v8, ..., vn−2} ∪ {vn+2, vn+5, vn+8, ..., v2n−2} ∪ {v2n+2, v2n+5, v2n+8, ..., v3n−2} ∪ {v2n}

while n ≡ 1 (mod 3) and then |X∗| = n and w((Pn × C3) − X∗) = ⌈n
3 ⌉. Therefore,

ds(Pn × C3) =
⌈

n

3

⌉
− n (3.12)

If we choose

X∗∗ = {v2, v5, v8, ..., vn−3}∪{vn+2, vn+5, vn+8, ..., v2n−3}∪{v2n+2, v2n+5, v2n+8, ..., v3n−3}∪{vn−1, v2n}

while n ≡ 2 (mod 3), then |X∗∗| = n and w((Pn × C3) − X∗∗) = ⌈n
3 ⌉. Hence,

ds(Pn × C3) =
⌈

n

3

⌉
− n (3.13)

By (3.9), (3.12), and (3.13), the results are obtained.
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4. Conclusion

The vulnerability of a communication network measures the network’s resistance to the disruption of
its operation after the failure of specific processors or communication links. Network designers aim to
design networks with less vulnerability or more reliability. In other words, network designers care about
network stability. For this reason, the vulnerability values of graphs (networks) are investigated by
modeling networks with graphs. In this study, first of all, it was observed that the scattering and edge
scattering numbers among the vulnerability measurements in graphs were insufficient to distinguish
some graph families. Afterward, a new parameter was defined to distinguish these graph families,
called the domination scattering number. The vertices removed from the graph in this parameter
are also components of any dominant cluster in the graph. In this article, the domination scattering
number for basic graphs is calculated. The domination scattering number of the graph Pn × C3 is
also provided. In future research, the primary objective can be to obtain graphs corresponding to
real-life networks using graph operations, such as the graph Pn × C3. Subsequently, the aim can be to
calculate the domination scattering numbers of these graphs. However, an essential question warrants
investigation: Can the domination scattering number of a graph be calculated in polynomial time?
Moreover, the following questions are anticipated that obtaining answers to these questions will benefit
network designers:

i. Which graph family has the smallest or largest domination scattering number?

ii. What are the relationships between the domination scattering number and other graph parameters?

iii. What are the values of the domination scattering numbers for a graph’s total, line, and middle
graphs?
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