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I. INTRODUCTION 

In recent years, there has been a growing interest in utilizing biofibers as reinforcement or filler materials in 

polymer matrix composites. This shift towards the incorporation of biofibers is largely driven by the increasing 

prevalence of environmental regulations and the growing consumer demand for eco-friendly materials. This has 

prompted manufacturers to seek sustainable alternatives to conventional materials [1]. The utilization of 

biocomposites, which harness local and renewable resources, offers considerable advantages in terms of 

sustainability. The development of such materials is informed by the principles of industrial ecology, eco-

efficiency, and green chemistry, which shape future material innovations, products, and processes [2]. 

Furthermore, biocomposites have attracted attention due to their cost-effectiveness and biocompatibility in 

comparison to synthetic fiber-based composites [3]. However, the manufacturing processes for biocomposites 

frequently encounter difficulties associated with the natural fiber content, resulting in inconsistency and inadequate 

control. This highlights the necessity for comprehensive scientific investigation to enhance comprehension of the 

behavior, characteristics, and performance of these materials [4]. 

Drilling represents a fundamental machining process within the manufacturing industry. However, it is often 

subject to a number of issues, with delamination representing a particularly significant concern. Reducing 

delamination is crucial to improve the overall quality of the manufacturing process, as it significantly affects the 
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structural integrity, surface finish, working life and aesthetic quality of composite materials. Delamination 

compromises mechanical properties such as tensile strength and impact resistance, leading to potential failure 

under stress, which is critical in industries such as aerospace and automotive. It also affects the precision of 

machined surfaces, causing problems in assembly and alignment. In addition, delaminated components have a 

shorter lifetime due to crack propagation, increasing maintenance and replacement costs. Addressing delamination 

through rework can increase production costs, so optimizing drilling parameters such as spindle speed, feed rate 

and tool geometry, and using special techniques help prevent damage and improve production efficiency [5]. 

The optimization of delamination necessitates the careful selection of drilling parameters, including feed rate (f), 

drill diameter (d), and spindle speed (N) [6]. Figure 1 provides a schematic representation of the delamination 

process in composite materials. 

 

 

Figure 1. Schematic representations of delamination in a drilled hole 

 

The delamination factor is defined as the ratio of the maximum diameter of the delaminated region surrounding 

the hole to the diameter of the hole itself. This is expressed by the following equation [7]: 

 

𝐹𝐹𝑑𝑑 =
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝐷𝐷𝑛𝑛𝑛𝑛𝑚𝑚
 (1) 

 

In a study conducted by Adda et al. [8], the optimization of delamination factors in the drilling of jute fiber-

reinforced polymer biocomposites were investigated. In this study, experimental data was obtained by using 

Taguchi Method, and response surface methodology (RSM) and artificial neural networks (ANN) were applied to 

predict experimental results. The authors concluded that the optimal drilling conditions (feed rate = 50 mm/min, 

spindle speed = 1085.89 rev/min, and drill diameter = 5.00 mm) resulted in minimal delamination. In a recent 

study by AL-Oqla [7], the manufacturing process and delamination factor of cellulosic paper/epoxy composites, 

composed of 12, 25, and 50 paper layers, were examined. The results indicated that the optimal delamination factor 
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was achieved in the composite with 25 paper layers, using both 6 mm and 10 mm drill diameters at a spindle speed 

of 1500 rpm. This finding underscores the importance of selecting appropriate drilling parameters to enhance the 

structural performance of paper/epoxy composites. Belaadi et al. [4] employed an evaluation of the mechanical 

properties and the influence of drilling parameters on the delamination factor in jute fabric-reinforced epoxy matrix 

biocomposites. The study systematically varied spindle speed (355, 710, and 1400 rev/min), feed rate (50, 108, 

and 190 mm/min), and tool diameter (5, 7, and 10 mm) to assess their effects on the cutting process. Their findings 

revealed a significant relationship between these drilling parameters and the delamination factor, highlighting the 

critical role of precise parameter control in optimizing the structural integrity of drilled biocomposites. Design of 

experiments was developed by the application analysis of variance (ANOVA), and RSM and ANN methods were 

applied to predict the experimental results. The authors concluded that the ANN model showed better results as 

compared to RSM model. The Fd factor reached its optimal conditions with a feed rate of 51 mm/min, a spindle 

speed of 1160 rev/min, and a drilling diameter of 5 mm. In another work developed by Belaadi et al. [9], the 

drilling performance of HDPE/Washingtonia fiber biocomposites investigated. Full factorial method was used for 

design of experiments. Optimum drilling parameters were determined to be 50.13 mm/s feed rate, 806.00 rev/min 

spindle speed, and a drilling diameter of 5 mm. Tsao & Hocheng [10] examined the prediction and evaluation of 

the delamination factor when utilizing twist drills, candlestick drills, and saw drills. The aim of the research was 

to establish correlations between feed rate, spindle speed, and drill diameter, employing Taguchi's method and 

ANOVA. Ameur et al. [11] made an experimental investigation on the performances of thrust force, torque, exit 

delamination, and cylindricity error. They varied spindle speeds and feed rates, employing drills made of diverse 

materials. The study utilized RSM to establish correlations between cutting parameters and output responses across 

various drills. Optimal values for cutting parameters and the preferred tool material were determined through the 

desirability function approach. 

The summary of the essential studies, their methodologies, and findings, providing a comprehensive overview of 

the current state of research on drilling performance and delamination in composite materials is given in Table 1. 

Approaches such as RSM, ANN, and regression are easy to implement; however, they do not consider multiple 

objective criteria, and the ultimate optimal solution is highly responsive to the chosen dimensionality reduction 

techniques [12].  

The present study proposes a new approach to address deficiencies in the design, modeling, and optimization of 

the drilling process. Multiple nonlinear neuro regression analysis includes the collaboration of ANN, regression 

analysis, and stochastic optimization methods to obtain suitable designs that satisfy the desired requirements. This 

method can offer a wide range of alternative mathematical models without limiting to specific polynomial forms 

or sigmoid, unit step, hyperbolic tangent activation functions. Additionally, model evaluation can incorporate both 

the R² value and the boundedness check criterion, offering a more comprehensive assessment. The boundedness 

check is essential for reliable mathematical model development. Since all engineering parameters are finite, 

realistic modeling in engineering systems requires boundedness. Thus, before optimization, verifying whether the 

models are bounded within the specified engineering parameter intervals is crucial. Unlike modeling approaches 

based on artificial neural networks (ANN), this method eliminates the need to fine-tune parameters such as the 

number of neurons and hidden layers, which are typically adjusted to optimize ANN-based models. With these 



 
 J. Innovative Eng. Nat. Sci. vol. 5, no.1, pp. 225-242, 2025.            Modeling and optimization of drilling parameters 

228 
 

 

aspects, the proposed method substantially contributes to the modeling efforts related to the drilling process within 

literature. 

 

 

Table 1. Summary of the studies on drilling performance and delamination in composites – methodologies and findings 

Reference Design 
Parameters Research Focus Modeling Methods Key Findings 

Adda et al. [8] Spindle speed, feed 
rate, drill diameter 

Optimization of delamination 
in jute fiber-reinforced 
polymer biocomposites 

Taguchi Method, 
RSM, ANN 

Optimal conditions: f = 50 mm/min, 
N = 1085.89 rev/min, d = 5.00 mm 

minimized delamination. 

AL-Oqla [7] 
Number of papers, 
spindle speed, drill 

diameter 

Delamination in cellulosic 
paper/epoxy composites Not specified 

Optimal delamination factor 
achieved with 25 paper layers, using 
6 mm and 10 mm drill diameters at 

1500 rpm spindle speed. 

Belaadi et al. 
[4] 

Spindle speed, feed 
rate, drill diameter 

Mechanical properties and 
delamination in jute fabric-

reinforced epoxy 
biocomposites 

RSM, ANN, 
ANOVA 

Optimal conditions: f = 51 mm/min, 
N = 1160 rev/min, d = 5 mm. ANN 

model outperformed RSM. 

Belaadi et al. 
[9] 

Spindle speed, feed 
rate, drill diameter 

Drilling performance in 
HDPE/Washingtonia fiber 

biocomposites 

Full Factorial 
Method 

Optimal parameters: f = 50.13 
mm/s, N = 806.00 rev/min, d= 5 

mm. 

Tsao & 
Hocheng [10] 

Spindle speed, feed 
rate, drill diameter 

Prediction and evaluation of 
delamination factors with 

different drills 

Taguchi's Method, 
ANOVA 

Established correlations between f, 
N, and d for different drill types. 

Ameur et al. 
[11] 

Spindle speed, feed 
rate, tool material 

Thrust force, torque, exit 
delamination, and cylindricity 

error 
RSM 

Optimal cutting parameters and tool 
material identified; correlations 

established using RSM. 

Wang & Jia 
[12] 

Spindle speed, feed 
rate 

Comparison of modelling 
methods for delamination 

RSM, ANN, 
Regression 

Highlighted limitations of RSM, 
ANN, and regression in multi-

objective optimization. 

Başar et al. [13] 

Multi-wall carbon 
nanotube content, 
cutting speed, feed 

rate 

Modeling and optimization of 
thrust force in drilling glass 

fiber-reinforced polymer 
composites 

Box-Behnken 
design, Desirability 
Function Analysis 

Feed rate identified as the most 
influential factor affecting thrust 

force 

Fedai et al. [14] 

Multi-wall carbon 
nanotube weight 

percentage, cutting 
speed, feed rate 

Optimization of thrust force 
and delamination factor in 

GFRP drilling 

Grey Relational 
Analysis, ANOVA 

Feed rate was confirmed as the most 
significant parameter affecting both 
thrust force and delamination factor 

Der et al. [15] Cutting power, 
cutting speed 

Multi-criteria analysis for 
precise cutting of 

thermoplastics for thermal 
management systems 

SWARA method, 
various multi-

criteria decision-
making methods 

Optimal parameters for cutting 
polypropylene were found to be 90 

W power and 15 mm/s cutting 
speed 

Kaushik&  
Singh [16] 

Drill point 
geometry, spindle 
speed, feed rate  

Modeling and optimization of 
thrust force and delamination 
factor in drilling flax fiber-

reinforced polymer 
composites 

Teaching learning-
based optimization, 
Genetic algorithm, 

Particle swarm 

Drill point geometry was the most 
significant parameter affecting the 
thrust force, whereas spindle speed 

had the most negligible impact. 
Furthermore, the lowest and 
maximum thrust force and 

delamination factor were recorded 
for the U-shape drill bit. 

 

 

The modeling and optimization methodology in paper is organized as follows: First, 14 candidate functional 

structures were proposed for modeling the drilling process using experimental data from the research by Belaadi 

et al. [9], and their accuracy is assessed based on R² training, R² testing, and R² validation values. Secondly, the 

boundedness of the candidate models has been checked. Lastly, the selected models utilized as objective function 

and delamination factor were optimized through four distinct methods: Nelder-Mead, Simulated Annealing, 

Random Search, and Differential Evaluation. 
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II. MATERIALS AND METHODS 

2.1 Experimental Process 

In the reference study [9], the researchers used Washingtonia filifera (WF) fibers obtained from desert palms 

grown locally in the Guelma region of Algeria. As matrix material, they used high-density polyethylene (HDPE) 

of 95% purity supplied by SABIC Petrochemicals. They produced the biocomposite material using two 

Thermotron-C.W. Brabender rollers to ensure complete blending and processing. 

The researchers carried out the drilling tests using a high-performance MOMAC universal milling machine that 

supports feed rates from 4.6 to 1040 mm/rev and spindle speeds up to 1400 rpm. The dimensions of the 

biocomposite samples were 250 × 90 × 4 mm. They used high-speed steel drills with titanium nitride (HSS-TiN) 

coating and diameters of 5 mm, 7 mm and 10 mm. The feed rates of 50, 108 and 190 mm/min and spindle speeds 

of 355, 710 and 1400 rpm were adjusted for the delamination process. Damage assessment was carried out using 

the delamination factor (Fd) defined by the formula Fd = Dmax/D, where Dmax is the maximum diameter of the 

damaged area and D is the nominal diameter of the hole. 

The present study carried out the mathematical modeling and optimization process using the experimental data set 

in the reference study [9]. 

 

2.2 Modeling 

In the modelling phase, a hybrid method called Neuro-Regression which the synergy between regression analysis 

and ANN methodologies to enhance prediction accuracy. In this approach, the experimental data is first divided 

randomly into three datasets as 80%, 15%, and 5% of the given data; named as training dataset, testing dataset and 

validation dataset respectively. 

First, 14 different mathematical models given in Table 2 alongside the training dataset were used for model fitting. 

Secondly, the R2
training values of these models were investigated to evaluate how good the models are at explaining 

the large portion of the variability in the training data. After the training step, these models were used to predict 

the results of the testing dataset to assess the performance of the models. R2
testing values were used in this part to 

see how good these models were at predicting a new, unseen dataset. Then, the R2
validation values, derived from the 

original and predicted values of the validation dataset, were investigated to see if there were any overfitting during 

the training phase, and for making fine tuning and adjustments on the candidate models [17, 18]. 

 

Table 2. Multiple regression model types include linear, quadratic, trigonometric, logarithmic, and their rational forms 
Model Name Nomenclature Model 

Multiple Linear L 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3  

Multiple Linear 
Rational LR (𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3)/(𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + 𝑏𝑏3𝑥𝑥3) 

Second Order 
Multiple Nonlinear SON 𝑎𝑎0 + 2𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥12 + 2𝑎𝑎3𝑥𝑥2 + 2𝑎𝑎4𝑥𝑥1𝑥𝑥2 + 𝑎𝑎5𝑥𝑥22 + 2𝑎𝑎6𝑥𝑥3 + 2𝑎𝑎7𝑥𝑥1𝑥𝑥3 + 2𝑎𝑎8𝑥𝑥2𝑥𝑥3 + 𝑎𝑎9𝑥𝑥32 

Second Order 
Multiple Nonlinear 

Rational 
SONR (𝑎𝑎0 + 2𝑥𝑥1𝑎𝑎1 + 𝑥𝑥12𝑎𝑎2 + 2𝑥𝑥2𝑎𝑎3 + 𝑥𝑥22𝑎𝑎5 + 2𝑥𝑥3𝑎𝑎6 + 2𝑥𝑥1𝑥𝑥3𝑎𝑎7 + 2𝑥𝑥2𝑥𝑥3𝑎𝑎8 + 𝑥𝑥32𝑎𝑎9)/(𝑏𝑏0 +

2𝑥𝑥1𝑏𝑏1 + 𝑥𝑥12𝑏𝑏2 + 2𝑥𝑥2𝑏𝑏3 + 𝑥𝑥22𝑏𝑏5 + 2𝑥𝑥3𝑏𝑏6 + 2𝑥𝑥1𝑥𝑥3𝑏𝑏7 + 2𝑥𝑥2𝑥𝑥3𝑏𝑏8 + 𝑥𝑥32𝑏𝑏9)  
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Table 2 (Continued). Multiple regression model types include linear, quadratic, trigonometric, logarithmic, and their rational form 

Third Order 
Multiple Nonlinear TON 

𝑎𝑎0 + 3𝑥𝑥1𝑎𝑎1 + 3𝑥𝑥12𝑎𝑎2 + 𝑥𝑥13𝑎𝑎3 + 3𝑥𝑥2𝑎𝑎4 + 6𝑥𝑥1𝑥𝑥2𝑎𝑎5 + 3𝑥𝑥12𝑥𝑥2𝑎𝑎6 + 3𝑥𝑥22𝑎𝑎7 + 3𝑥𝑥1𝑥𝑥22𝑎𝑎8 +
𝑥𝑥23𝑎𝑎9 + 3𝑥𝑥3𝑎𝑎10 + 6𝑥𝑥1𝑥𝑥3𝑎𝑎11 + 3𝑥𝑥12𝑥𝑥3𝑎𝑎12 + 6𝑥𝑥2𝑥𝑥3𝑎𝑎13 + 6𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑎𝑎14 + 3𝑥𝑥22𝑥𝑥3𝑎𝑎15 +

3𝑥𝑥32𝑎𝑎16 + 3𝑥𝑥1𝑥𝑥32𝑎𝑎17 + 3𝑥𝑥2𝑥𝑥32𝑎𝑎18 + 𝑥𝑥33𝑎𝑎19  

Fourth Order 
Multiple Nonlinear FON 

𝑎𝑎0 + 4𝑥𝑥1𝑎𝑎1 + 6𝑥𝑥12𝑎𝑎2 + 4𝑥𝑥13𝑎𝑎3 + 𝑥𝑥14𝑎𝑎4 + 4𝑥𝑥2𝑎𝑎5 + 12𝑥𝑥1𝑥𝑥2𝑎𝑎6 + 12𝑥𝑥12𝑥𝑥2𝑎𝑎7 + 4𝑥𝑥13𝑥𝑥2𝑎𝑎8 +
6𝑥𝑥22𝑎𝑎9 + 12𝑥𝑥1𝑥𝑥22𝑎𝑎10 + 6𝑥𝑥12𝑥𝑥22𝑎𝑎11 + 4𝑥𝑥23𝑎𝑎12 + 4𝑥𝑥1𝑥𝑥23𝑎𝑎13 + 𝑥𝑥24𝑎𝑎14 + 4𝑥𝑥3𝑎𝑎15 +

12𝑥𝑥1𝑥𝑥3𝑎𝑎16 + 12𝑥𝑥12𝑥𝑥3𝑎𝑎17 + 4𝑥𝑥13𝑥𝑥3𝑎𝑎18 + 12𝑥𝑥2𝑥𝑥3𝑎𝑎19 + 24𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑎𝑎20 + 12𝑥𝑥12𝑥𝑥2𝑥𝑥3𝑎𝑎21 +
12𝑥𝑥22𝑥𝑥3𝑎𝑎22 + 12𝑥𝑥1𝑥𝑥22𝑥𝑥3𝑎𝑎23 + 4𝑥𝑥23𝑥𝑥3𝑎𝑎24 + 6𝑥𝑥32𝑎𝑎25 + 12𝑥𝑥1𝑥𝑥32𝑎𝑎26 + 6𝑥𝑥12𝑥𝑥32𝑎𝑎27 +

12𝑥𝑥2𝑥𝑥32𝑎𝑎28 + 12𝑥𝑥1𝑥𝑥2𝑥𝑥32𝑎𝑎29 + 6𝑥𝑥22𝑥𝑥32𝑎𝑎30 + 4𝑥𝑥33𝑎𝑎31 + 4𝑥𝑥1𝑥𝑥33𝑎𝑎32 + 4𝑥𝑥2𝑥𝑥33𝑎𝑎33 + 𝑥𝑥34𝑎𝑎34  

Hybrid Model HM 

𝑎𝑎0 + 2𝑥𝑥1𝑎𝑎1 + 𝑥𝑥12𝑎𝑎2 + 2𝑥𝑥2𝑎𝑎3 + 2𝑥𝑥1𝑥𝑥2𝑎𝑎4 + 𝑥𝑥22𝑎𝑎5 + 2𝑥𝑥3𝑎𝑎6 + 2𝑥𝑥1𝑥𝑥3𝑎𝑎7 + 2𝑥𝑥2𝑥𝑥3𝑎𝑎8 +
𝑥𝑥32𝑎𝑎9 + 2𝑎𝑎10 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) + 𝑎𝑎11 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)2 + 2𝑎𝑎12 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) + 2𝑎𝑎13 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) +
𝑎𝑎14 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)2 + 2𝑎𝑎15 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 2𝑎𝑎16 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 2𝑎𝑎17 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) +

𝑎𝑎18 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)2  

Second Order 
Trigonometric 

Nonlinear 
SOTN 

𝑎𝑎0 + 2𝑎𝑎1 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) + 𝑎𝑎2 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)2 + 2𝑎𝑎3 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) + 2𝑎𝑎4 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) +
𝑎𝑎5 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)2 + 2𝑎𝑎6 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) + 2𝑎𝑎7 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) + 2𝑎𝑎8 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) +
𝑎𝑎9 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3)2 + 2𝑎𝑎10 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 2𝑎𝑎11 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 2𝑎𝑎12 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) +
2𝑎𝑎13 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 𝑎𝑎14 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)2 + 2𝑎𝑎15 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 2𝑎𝑎16 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) +

2𝑎𝑎17 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 2𝑎𝑎18 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 2𝑎𝑎19 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 𝑎𝑎20 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2)2 +
2𝑎𝑎21 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑎𝑎22 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑎𝑎23 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑎𝑎24 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +

2𝑎𝑎25 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑎𝑎26 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 𝑎𝑎27 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3)2  

Second Order 
Trigonometric 

Nonlinear Rational 
SOTNR 

�𝑎𝑎0 + 2𝑎𝑎1 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) + 𝑎𝑎2 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)2 + 2𝑎𝑎3 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) + 2𝑎𝑎4 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) +
𝑎𝑎5 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)2 + 2𝑎𝑎6 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) + 2𝑎𝑎7 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) + 2𝑎𝑎8 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) +
𝑎𝑎9 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3)2 + 2𝑎𝑎10 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 2𝑎𝑎11 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 2𝑎𝑎12 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) +
2𝑎𝑎13 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 𝑎𝑎14 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)2 + 2𝑎𝑎15 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 2𝑎𝑎16 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) +

2𝑎𝑎17 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 2𝑎𝑎18 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 2𝑎𝑎19 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) +
𝑎𝑎20 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2)2 + 2𝑎𝑎21 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑎𝑎22 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑎𝑎23 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +

2𝑎𝑎24 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑎𝑎25 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑎𝑎26 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +
𝑎𝑎27 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3)2�/�𝑏𝑏0 + 2𝑏𝑏1 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) + 𝑏𝑏2 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)2 + 2𝑏𝑏3 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) +

2𝑏𝑏4 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) + 𝑏𝑏5 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)2 + 2𝑏𝑏6 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) + 2𝑏𝑏7 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) +
2𝑏𝑏8 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) + 𝑏𝑏9 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3)2 + 2𝑏𝑏10 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 2𝑏𝑏11 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) +

2𝑏𝑏12 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 2𝑏𝑏13 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 𝑏𝑏14 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)2 + 2𝑏𝑏15 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) +
2𝑏𝑏16 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 2𝑏𝑏17 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 2𝑏𝑏18 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) +

2𝑏𝑏19 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 𝑏𝑏20 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2)2 + 2𝑏𝑏21 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑏𝑏22 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +
2𝑏𝑏23 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑏𝑏24 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2𝑏𝑏25 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +

2𝑏𝑏26 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 𝑏𝑏27 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3)2�  

Third Order 
Multiple Nonlinear 

Rational 
TONR 

(𝑎𝑎0 + 3𝑥𝑥1𝑎𝑎1 + 3𝑥𝑥12𝑎𝑎2 + 𝑥𝑥13𝑎𝑎3 + 3𝑥𝑥2𝑎𝑎4 + 6𝑥𝑥1𝑥𝑥2𝑎𝑎5 + 3𝑥𝑥12𝑥𝑥2𝑎𝑎6 + 3𝑥𝑥22𝑎𝑎7 + 3𝑥𝑥1𝑥𝑥22𝑎𝑎8 +
𝑥𝑥23𝑎𝑎9 + 3𝑥𝑥3𝑎𝑎10 + 6𝑥𝑥1𝑥𝑥3𝑎𝑎11 + 3𝑥𝑥12𝑥𝑥3𝑎𝑎12 + 6𝑥𝑥2𝑥𝑥3𝑎𝑎13 + 6𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑎𝑎14 + 3𝑥𝑥22𝑥𝑥3𝑎𝑎15 +

3𝑥𝑥32𝑎𝑎16 + 3𝑥𝑥1𝑥𝑥32𝑎𝑎17 + 3𝑥𝑥2𝑥𝑥32𝑎𝑎18 + 𝑥𝑥33𝑎𝑎19)/(𝑏𝑏0 + 3𝑥𝑥1𝑏𝑏1 + 3𝑥𝑥12𝑏𝑏2 + 𝑥𝑥13𝑏𝑏3 + 3𝑥𝑥2𝑏𝑏4 +
6𝑥𝑥1𝑥𝑥2𝑏𝑏5 + 3𝑥𝑥12𝑥𝑥2𝑏𝑏6 + 3𝑥𝑥22𝑏𝑏7 + 3𝑥𝑥1𝑥𝑥22𝑏𝑏8 + 𝑥𝑥23𝑏𝑏9 + 3𝑥𝑥3𝑏𝑏10 + 6𝑥𝑥1𝑥𝑥3𝑏𝑏11 + 3𝑥𝑥12𝑥𝑥3𝑏𝑏12 +

6𝑥𝑥2𝑥𝑥3𝑏𝑏13 + 6𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑏𝑏14 + 3𝑥𝑥22𝑥𝑥3𝑏𝑏15 + 3𝑥𝑥32𝑏𝑏16 + 3𝑥𝑥1𝑥𝑥32𝑏𝑏17 + 3𝑥𝑥2𝑥𝑥32𝑏𝑏18 + 𝑥𝑥33𝑏𝑏19)  

First Order 
Logarithmic 

Multiple Nonlinear 
FOLN 𝑎𝑎0 + 𝑎𝑎1 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) + 𝑎𝑎2 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) + 𝑎𝑎3 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)  

First Order 
Logarithmic 

Multiple Nonlinear 
Rational 

FOLNR 
(𝑎𝑎0 + 𝑎𝑎1 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) + 𝑎𝑎2 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) + 𝑎𝑎3 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3))/(𝑏𝑏0 + 𝑏𝑏1 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) +

𝑏𝑏2 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) + 𝑏𝑏3 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3))  

Second Order 
Logarithmic 

Multiple Nonlinear 
SOLN 

𝑎𝑎0 + 2𝑎𝑎1 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) + 𝑎𝑎2 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)2 + 2𝑎𝑎3 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) + 2𝑎𝑎4 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) +
𝑎𝑎5 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)2 + 2𝑎𝑎6 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 2𝑎𝑎7 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 2𝑎𝑎8 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) +

𝑎𝑎9 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)2  

Second Order 
Logarithmic 

Multiple Nonlinear 
Rational 

SOLNR 

�𝑎𝑎0 + 2𝑎𝑎1 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) + 𝑎𝑎2 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)2 + 2𝑎𝑎3 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) + 2𝑎𝑎4 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) +
𝑎𝑎5 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)2 + 2𝑎𝑎6 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 2𝑎𝑎7 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 2𝑎𝑎8 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) +

𝑎𝑎9 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)2�/�𝑏𝑏0 + 2𝑏𝑏1 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) + 𝑏𝑏2 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)2 + 2𝑏𝑏3 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) +
2𝑏𝑏4 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) + 𝑏𝑏5 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)2 + 2𝑏𝑏6 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 2𝑏𝑏7 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) +

2𝑏𝑏8 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 𝑏𝑏9 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)2�  

 

Lastly, the boundedness check was made by examining the minimum and maximum values, derived from the 

differential evolution algorithm, of these candidate models in given intervals. This last process was done to see if 

the models were realistic or not. 
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2.3 Optimization 

Structural optimization involves identifying the best design or a set of optimal designs by minimizing specified 

single or multiple objectives while ensuring that all constraints are met. Optimization methods can be categorized 

into traditional and non-traditional approaches. Traditional techniques, like constrained variation and Lagrange 

multipliers, are analytical and are only effective for continuous and differentiable functions. However, because 

composite design problems often involve discrete search spaces, these traditional methods are not suitable. Instead, 

stochastic optimization methods, such as genetic algorithms (GA) and simulated annealing (SA), are more 

appropriate for these scenarios [19]. In this study, the optimization problem is addressed using Modified 

Differential Evolution (MDE), Modified Nelder-Mead (MNM), Modified Simulated Annealing (MSA), and 

Modified Random Search (MRS) methods, all applied with their default settings.  

The algorithms were implemented using Mathematica software. Mathematica’s built-in functions, NMinimize and 

NMaximize, can be employed for both global and local optimization tasks. The optimization process can be 

performed by selecting the appropriate Nmimize and Nmaximize functions according to the desire to maximize or 

minimize the objective function. In addition, continuous and discrete constraints that will be included in the system 

can be directly added within these functions. In the present study, optimization problems were solved using the 

Nminimize solver. 

 

2.3.1. Modified differential evolution algorithm 

Differential Evolution (DE) is a population-based stochastic optimization algorithm introduced by Storn and Price 

in 1997. It is particularly well-suited for optimizing complex, nonlinear, and multi-modal objective functions, 

offering a robust alternative to traditional methods that may struggle in such scenarios. MDE operates by iteratively 

improving a population of candidate solutions through processes inspired by biological evolution, including 

mutation, crossover, and selection. In Mathematica, MDE is integrated into functions like NMinimize and 

NMaximize, providing a powerful tool for finding global optima in high-dimensional and complex search spaces. 

The algorithm’s balance between exploration (searching broadly) and exploitation (refining promising areas) 

makes it highly effective for challenging optimization problems, offering users a reliable and efficient approach to 

optimize complex functions. [20]. 

 

2.3.2. Modified nelder-mead algorithm 

The Nelder–Mead (NM) optimization algorithm is a straightforward direct search method that operates without 

the need for derivative information. It initiates the minimization process by employing a simplex. As the iteration 

progresses, the simplex may reach a flat configuration, signifying that the function’s values are nearly identical 

across all vertices. The iterative steps of the Nelder-Mead algorithm involve ordering, centroid determination, and 

transformation [18]. While the Nelder–Mead algorithm is not designed as a global optimization method, it often 

works well in practice for problems with few local minima. Additionally, recent updates to the algorithm have 

extended its capabilities to handle constrained, discrete, and global optimization challenges [20]. 
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2.3.3. Modified simulated annealing algorithm 

Simulated Annealing (SA) is a probabilistic optimization algorithm inspired by the annealing process in 

metallurgy, where materials are heated and then gradually cooled to minimize energy states and reduce defects. It 

is particularly well-suited for global optimization in large and complex search spaces with multiple local optima. 

Mathematica integrates MSA into functions like NMinimize and NMaximize, allowing users to fine-tune several 

parameters to enhance performance. 

Essential parameters influencing MSA include InitialPoints, which sets the starting location(s) in the search space. 

SearchPoints dictates the number of candidate solutions evaluated in each iteration. A higher number of search 

points ensures broader exploration but at a higher computational cost. 

The RandomSeed parameter ensures the reproducibility of results by controlling the randomness in the algorithm, 

crucial for verifying and comparing different optimization runs. The Boltzmann Exponent determines how quickly 

the "temperature" decreases, affecting the likelihood of accepting suboptimal solutions during exploration. Level 

Iteration defines how many iterations the algorithm performs at each temperature level, controlling the depth of 

exploration. The effectiveness of MSA depends on carefully tuning these parameters. By adjusting these 

parameters, MSA can be optimized to solve a wide range of complex problems [21]. 

 

2.3.4. Modified random search algorithm 

Random Search (RS) is a straightforward yet effective optimization algorithm, ideal for large, complex, or poorly 

defined search spaces. It differs from gradient-based methods in that it does not depend on derivative information 

but rather generates random candidate solutions within the search space and evaluates their performance based on 

the objective function. One of MRS's main strengths is its extensive exploration capability, reducing the likelihood 

of being trapped in local optima, a common limitation of more deterministic methods. 

In Mathematica, RS is integrated into functions like NMinimize and NMaximize to search for global optima, 

particularly when the objective function is discontinuous, non-differentiable, or noisy. Despite its simplicity, MRS 

is widely applicable and can be combined with other techniques or used as a preliminary tool in complex 

optimization tasks. 

Key parameters in MRS include InitialPoints, PenaltyFunction, SearchPoints, and PostProcess. The balance 

between the key parameters is critical to the success of MRS in identifying high-quality solutions [22]. The 

flowchart regarding mathematical modeling and optimization process is given in Figure 2 as follows. 

 

2.4 Problem Definition 

To determine design parameters effect of the drilling process on the delamination factor for HDPE/Washingtonia 

biocomposites, mathematical modelling and optimization studies were carried out using experimental data. The 

problem definition involved selecting a dataset, proposing mathematical models, and creating optimization 

scenarios to determine the most suitable design parameters and corresponding output for the drilling process. The 

dataset, taken from a reference study (Table 3), included the delamination factor output (Fd) and related design 
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parameters such as feed rate (f), spindle speed (N), and diameter (d) in the drilling process. Subsequently, 14 

mathematical models were developed to describe the relationship between three design parameters and the output 

parameter based on the experimental data. The best model was chosen by evaluating R² training, R² testing, R² 

validation, and boundedness test results to represent the experimental data accurately. After selecting the 

appropriate model that provides boundedness criteria and gives the best R² values, three different optimization 

scenarios were defined. Modified version of stochastic optimization algorithms; MDE, NMM, MSA, MRS were 

utilized to solve the defined problems. 

 

 

Figure 2. The flowchart regarding mathematical modeling and optimization process 

 
2.5 Optimization Scenarios 

The following scenarios were used to find the minimum delamination factor and corresponding optimum design 

variables. Furthermore, the effect of defined constraints in each scenario on the delamination factor was 

investigated. 

Scenario 1. All the design variables are assumed to be real numbers within the continuous search space. The design 

variables range were set as follows: 50 ≤ feed rate (f) ≤ 190, 355 ≤ spindle speed (N) ≤  1400, 5 ≤  drill diameter 

(d) ≤  10.  
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Scenario 2. The integer values of the design parameters are defined as a constraint in the system. The search space 

for design variables were set as follows: 50 ≤ feed rate (f) ≤ 190, 355 ≤ spindle speed (N) ≤ 1400, 5 ≤ drill diameter 

(d) ≤ 10. 

Scenario 3. They were entered as a constraint in the system that the design parameters could only take certain 

specific values determined in the experimental set: feed rate (f) ∈{50, 108, 190}, spindle speed (N) ∈{355, 710, 

1400}, drill diameter (d) ∈ {5, 7, 10}. 

 
Table 3. Experimental data used in this research (Belaadi et al., 2022)[9] 

f 
(mm/min) 

N 
(rev/min) 

d 
(mm) Fd, EXP Fd, RSM 

50 355 5 1.1166 1.1176 
108 355 5 1.1230 1.1223 
190 355 5 1.1266 1.1267 
50 710 5 1.1166 1.1167 

108 710 5 1.1221 1.1212 
190 710 5 1.1259 1.1253 
50 1400 5 1.1176 1.1184 

108 1400 5 1.1219 1.1224 
190 1400 5 1.1261 1.1258 
50 355 7 1.1222 1.1226 

108 355 7 1.1261 1.1262 
190 355 7 1.1274 1.1290 
50 710 7 1.1230 1.1214 

108 710 7 1.1250 1.1248 
190 710 7 1.1273 1.1273 
50 1400 7 1.1229 1.1225 

108 1400 7 1.1261 1.1254 
190 1400 7 1.1265 1.1273 
50 355 10 1.1293 1.1289 

108 355 10 1.1317 1.1309 
190 355 10 1.1326 1.1314 
50 710 10 1.1267 1.1273 

108 710 10 1.1266 1.1290 
190 710 10 1.1289 1.1292 
50 1400 10 1.1278 1.1275 

108 1400 10 1.1286 1.1288 
190 1400 10 1.1289 1.1283 

 

III. RESULTS AND DISCUSSIONS 

This study established a mathematical relationship between design parameters (feed rate (x1), spindle speed (x2), 

drill diameter (x3), and output parameter (delamination factor (Fd)). The goal was to identify the values of these 

design parameters that minimize the delamination factor using the most effective model. The success of the 

mathematical models in meeting training, testing, validation, and boundedness control criteria is presented in Table 

4. Upon reviewing Table 4, it becomes evident that all models performed remarkably well during the training 

phase, displaying high performance prediction levels close to 1 as per the R2 criterion. Namely, all models 

successfully passed the training phase. However, during the testing phase, models including FON and SOTNR 

exhibited unacceptably low prediction performance levels. A similar assessment during the validation phase 

revealed that models such as FON, SOTN, and SOTNR displayed very low prediction performance. When 

considering the boundedness control criterion, it was determined that the maximum and minimum delamination 

factor values revealed by the SONR, SOTN, SOTNR and SOLNR models may not be unreasonable. As a result 

of these evaluations, it was seen that the FON SOTNR, SOTN, SONR, SOTN and SOLNR models did not meet 

the R2 and boundedness check evaluation criteria. Among other models, models with an R2 estimation performance 

of 0.85 and above in the training, testing and validation stages and which produced significant results according 
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to the boundedness check criterion were preferred as the objective function in the optimization process. LR and 

SOLN were the two models that met the mentioned conditions. While LR had 0.99, 0.86, 0.92 estimation 

performance in the training, testing and validation stages, respectively, these values were found to be 1, 0.88, 0.87 

for the SOLN model. 

 

 
Figure 3. Comparison of LR and SOLN model prediction performance with experimental results 

 

Figure 3 presents the experimental and predicted results for both the LR (Linear Rational) model and the SOLN 

(Second Order Logarithm Nonlinear) model. This figure allows a comparison between the observed and the 

predicted values of delamination factor for the two models. Both models produced predictions that were perfectly 

aligned with the experimental results up to the 18th data point. However, between the 18th and 25th data points, 

slight deviations between the predicted and experimental outcomes were observed. This range corresponds to the 

dataset that was allocated for testing and validation. Because the models attempt to predict data they have not 

previously encountered, these deviations are reasonable and expected. 

 
Table 4. Proposed Mathematical models to explain inputs and output relation 

Model R2
training R2

testing R2
validation Minimum Fd Maximum Fd 

L 0.999998 0.644907 0.740797 1.11834 1.13315 
LR* 0.999999 0.858051 0.923233 1.11615 1.13017 
SON 0.999999 0.776201 0.965609 1.1166 1.13043 

SONR 1 0.698208 0.855111 -1.1113E+11 174848 
TON 1 0.784234 0.955925 1.11588 1.13187 
FON 1 0.364962 0.464991 1.10921 1.13758 
HM 1 0.77835 0.772345 1.11436 1.13161 

SOTN 1 0.96258 0.58856 0.122134 1.2111 
SOTNR 0.99596 -1951.82 -15810.6 -3934370 5735.77 
TONR 0.999999 0.866178 0.778461 1.11651 1.13049 
FOLN 0.999998 0.799344 0.611545 1.11793 1.13253 

FOLNR 0.999999 0.878908 0.760117 1.11609 1.13037 
SOLN* 1 0.876652 0.870804 1.11633 1.1305 
SOLNR 1 0.772175 0.957495 -1587.15 4.08908 

Full form of models was given in appendix. 

 

Figure 4 graphically represents and compares the LR and SOLN model's behavior for design parameters d=5, 7, 

and 10. When the drill diameter is set to 5, an increase in spindle speed alone does not significantly affect the 

delamination factor in either model. However, an increase in feed rate is directly proportional to an increase in the 
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delamination factor. To achieve the lowest delamination factor, it is necessary to maintain both the feed rate and 

spindle speed parameters at their minimum levels. 

 

LR model 

 

 

SOLN model 

 

 

  

  

Figure 4. Comparison of LR and SOLN model regarding N, f, d design parameters and corresponding delamination factor 
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In contrast, when the drill diameter is set to 7, unlike the previous case (d=5), an increase in spindle speed in the 

LR model, without altering the feed rate, results in a slight decrease in the delamination factor. In the SOLN model, 

an initial increase in spindle speed leads to a reduction in the delamination factor, but as the spindle speed continues 

to rise, the delamination factor reverses its trend and begins to increase. The minimum delamination factor is 

observed when the feed rate is kept at its lowest, and the spindle speed is maintained at moderate levels. 

Finally, when the drill diameter is adjusted to 10, the LR model predicts that the minimum delamination factor is 

achieved by increasing spindle speed while decreasing the feed rate. In the SOLN model, the lowest delamination 

factor is obtained by selecting moderate spindle speed and minimal feed rate. Notably, in the SOLN model, a 

decrease in spindle speed with a constant feed rate causes a sharp increase in the delamination factor, which stands 

out as a significant deviation compared to the other conditions. 

The optimization results for the selected models using three different scenarios have been presented in Table 5. 

The drilling parameters f, N, and d are represented as x1, x2, and x3, respectively. 

In the first scenario, all design parameters were set to be continuous within the search space. For the LR model, 

consensus was reached among the four algorithms on the values of the parameters f, N, and d, which were 

determined to be 50 mm/min, 355 rev/min, and 5.00 mm, respectively. Consequently, the minimum Fd value 

obtained was 1.11615. For the SOLN model, the optimal drilling parameters were identified as 50 mm/min, 586.4 

rev/min, and 5.00 mm for f, N, and d, resulting in an Fd value of 1.11633. 

In the second scenario, all design parameters were constrained to integer values within the defined search spaces. 

The MDE and MSA algorithms both identified an optimal Fd value of 1.11615 for the LR model, recommending 

drilling parameters of 50 mm/min, 355 rev/min, and 5.00 mm for f, N, and d, respectively. In contrast, the NM and 

RS algorithms appeared to be trapped in local minima, failing to reach the global optimum. Specifically, the NM 

algorithm identified the design parameters and drilling factor as f=51 mm/min, N=1400 rev/min, d=8 mm, with 

Fd=1.12406, while the RS algorithm determined f=96 mm/min, N=1101 rev/min, d=5 mm, and Fd=1.12187. For 

the SOLN model, the MDE algorithm suggested optimal drilling parameters of 50 mm/min, 586 rev/min, and 5.00 

mm for f, N, and d, with an Fd value of 1.11633. The MSA algorithm provided a similar result, yielding an Fd 

value of 1.11634, with parameters f=50 mm/min, N=617 rev/min, and d=5 mm. As with the LR model, the MNM 

and MRS algorithms converged to local minima in the SOLN model and were unable to find the optimal solutions. 

In the third scenario, the design variables were chosen based on the level values established during the creation of 

the experimental set. As a result of the optimization using the LR model, all four optimization algorithms produced 

the same results as the first scenario for the design parameters f, N, d, and drilling factor Fd. In this case, the design 

parameters were f = 50 mm/min, N = 355 rev/min, and d = 5 mm, resulting in an Fd value of 1.11615. When 

evaluating the optimization using the SOLN model, the design parameters were found to be f = 50 mm/min, N = 

586.4 rev/min, and d = 5.00 mm, with the corresponding delamination factor Fd found to be 1.11642 using all 

algorithms. 

Upon evaluating all the results in Table 5, it is evident that the optimal designs obtained using the LR model are 

slightly superior to those obtained using the SOLN model, as anticipated. This can be attributed to the LR model's 

better prediction performance compared to the SOLN model. While all algorithms produce similar results to each 

other in scenarios 1 and 3 for LR and SOLN models, different outcomes are observed in scenario 2. Notably, MDE 

emerges as the most successful algorithm in this scenario. 
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In the referenced study [9], response surface methodology (RSM) and artificial neural networks (ANN) were used 

as modeling approaches, with second-order polynomial and hyperbolic tangent models identified as the most 

successful. However, the RSM-based model lacked essential performance evaluation stages, such as testing and 

validation, thereby reducing its reliability. Furthermore, neither RSM nor ANN models performance were 

evaluated using a boundedness check criterion to ensure that the results are meaningful in an engineering context. 

In the present study, both the rational and first-order logarithmic nonlinear models underwent comprehensive 

testing and validation, and an additional boundedness check was applied to confirm the engineering relevance of 

the models’ maximum and minimum outputs. As a result, when comparing the present modeling approach with 

traditional RSM, ANN, and regression methods used in similar studies, the findings suggest a higher reliability in 

the obtained results. 

 

 
Table 5. Results of optimization for LR and SOLN models 

Model Scenario No. Constraints Optimization Algorithm Minimum Fd Suggested Design 

LR 

1 
50 ≤ x1 ≤ 190,   
355 ≤ x2 ≤ 1400,  
5 ≤ x3 ≤ 10 

DE 1.11615 x1 = 50, x2 = 355, x3 = 5 
NM 1.11615 x1 = 50, x2 = 355, x3 = 5 
SA 1.11615 x1 = 50, x2 = 355, x3 = 5 
RS 1.11615 x1 = 50, x2 = 355, x3 = 5 

2 

50 ≤ x1 ≤ 190,   
355 ≤ x2 ≤ 1400,  
5 ≤ x3 ≤ 10,  
{x1, x2, x3} ∈ Integers 

DE 1.11615 x1 = 50, x2 = 355, x3 = 5 

NM 1.12406 x1 = 51, x2 = 1400, 
x3 = 8 

SA 1.11615 x1 = 50, x2 = 355, x3 = 5 

RS 1.12187 x1 = 96, x2 = 1101,  
x3 = 5 

3 
x1 ∈ {50, 108, 190},  
x2 ∈ {355, 710, 1400}, 
x3 ∈ {5, 7, 10} 

DE 1.11615 x1 = 50, x2 = 355, x3 = 5 
NM 1.11615 x1 = 50, x2 = 355, x3 = 5 
SA 1.11615 x1 = 50, x2 = 355, x3 = 5 
RS 1.11615 x1 = 50, x2 = 355, x3 = 5 

SOLN 

1 
50 ≤ x1 ≤ 190,   
355 ≤ x2 ≤ 1400,  
5 ≤ x3 ≤ 10 

DE 1.11633 x1 = 50, x2 = 586.404, x3 = 5 
NM 1.11633 x1 = 50, x2 = 586.428, x3 = 5 
SA 1.11633 x1 = 50, x2 = 586.428, x3 = 5 
RS 1.11633 x1 = 50, x2 = 586.428, x3 = 5 

2 

50 ≤ x1 ≤ 190,   
355 ≤ x2 ≤ 1400,  
5 ≤ x3 ≤ 10,  
{x1, x2, x3} ∈ Integers 

DE 1.11633 x1 = 50, x2 = 586, x3 = 5 
NM 1.12223 x1 = 82, x2 = 565, x3 = 6 
SA 1.11634 x1 = 50, x2 = 617, x3 = 5 
RS 1.12181 x1 = 50, x2 = 959, x3 = 7 

3 
x1 ∈ {50, 108, 190},  
x2 ∈ {355, 710, 1400},  
x3 ∈ {5, 7, 10} 

DE 1.11642 x1 = 50, x2 = 710, x3 = 5 
NM 1.11642 x1 = 50, x2 = 710, x3 = 5 
SA 1.11642 x1 = 50, x2 = 710, x3 = 5 
RS 1.11642 x1 = 50, x2 = 710, x3 = 5 

 

In terms of optimization, a comparison between the present and reference studies reveals that the optimum values 

for feed rate and drill diameter were identified at the lowest tested levels, at 50 mm/min and 5 mm, respectively, 

in both studies. However, spindle speed showed variability across the algorithms applied in each study. A common 

finding in the literature indicates that a low feed rate and drill diameter, combined with a moderate to high spindle 

speed, are more favorable for minimizing the delamination factor in the drilling process [4, 8, 9]. 

 

V. CONCLUSIONS 

The study focused on mathematical modelling and optimization of the drilling process parameters and 

delamination factor relationship of HDPE/Washingtonia fiber biocomposite materials. The research highlights the 

significance of optimizing process parameters such as drill diameter, feed rate, and spindle speed to improve 

drilling efficiency and reduce the common difficulty of delamination, which is an integral part of the structural 
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integrity of manufactured components. Traditional approaches with limited regression models and neglect of 

nonlinear effects are found to be inadequate for addressing the optimization challenges in biocomposite 

production. In this study, a new mathematical modelling method is proposed, which uses artificial neural networks 

and regression as a hybrid to model the drilling process of HDPE/Washingtonia material. With the neuro regression 

method, which eliminates the use of a limited number of models in modelling methods such as ANN and RSM, 

14 different mathematical models were tested to express the drilling process mathematically. The best models 

among linear, rational, logarithmic, polynomial and trigonometric were selected based on assessment criteria such 

as R2 and boundedness check. The minimum delamination factor was obtained using four stochastic optimization 

methods: MDE, NMM, MSA, and MRS. This enabled a comparison of the results and tested their reliability. The 

important results obtained in the present study are as follows: 

i. Upon investigation of the 14 models, it was found that only the LR and SOLN models fulfilled the 

criteria for selection in the optimization process. These models exhibited appropriate R2training, 

R2testing, R2validation values, as well as valid boundedness. 

ii. When the LR and SOLN models were compared, the LR model gave smaller Fd value for Scenario 

1 and Scenario 3. 

iii. The optimum values of minimum delamination factor (Fd) and its corresponding design parameters 

were found as Fd= 1.11615, f=50 mm/min, N= 355 rev/min and d=5 mm, respectively. 

iv. To the best of our knowledge, this study is the first to utilize the neuro-regression approach for model 

the delamination factor in biocomposite materials. 

Future research could focus on examining the effects of critical design parameters, including material thickness, 

drilling geometry, and tool material, on the drilling process by applying Multiple Nonlinear Neuro Regression. 

Such a study holds significant potential to enhance understanding of these influences. Furthermore, the 

mathematical modeling of the drilling process for composites commonly derived from natural materials, such as 

flax, kenaf, ramie, and polylactic acid (PLA), could further demonstrate the Neuro Regression method advantages 

over traditional methods like artificial neural networks (ANN), regression techniques, and response surface 

methodology (RSM). This approach could offer deeper insights into material behavior, potentially establishing 

Neuro Regression as a robust alternative in composite material modeling. 
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APPENDICES 

APPENDIX A. Full form of the fitted models in Table 4. 
Model Name Nomenclature Models 

Multiple Linear L 𝑌𝑌 = 1.11016 + 0.000042839𝑥𝑥1 − 1.13552 × 10−6𝑥𝑥2 +
0.00152511𝑥𝑥3  

Multiple Linear Rational LR 𝑌𝑌 = (−519.377 + 12.8935𝑥𝑥1 + 0.497835𝑥𝑥2 + 132.416𝑥𝑥3)/
(−440.664 + 11.3939𝑥𝑥1 + 0.443951𝑥𝑥2 + 115.43𝑥𝑥3)  

Second Order Multiple Nonlinear SON 

𝑌𝑌 = 1.09409 + 0.00018213𝑥𝑥1 − 2.51266 ∗ 10(−7)𝑥𝑥12 −
5.1393 ∗ 10(−6)𝑥𝑥2 − 4.27754 ∗ 10(−9)𝑥𝑥1𝑥𝑥2 + 4.26949 ∗

10(−9)𝑥𝑥22 + 0.00445545𝑥𝑥3 − 0.0000114426𝑥𝑥1𝑥𝑥3 − 3.24234 ∗
10(−7)𝑥𝑥2𝑥𝑥3 − 0.00010131𝑥𝑥32  

Second Order Multiple Nonlinear Rational SONR 

𝑌𝑌 = (−1.58142 ∗ 108 + 911539𝑥𝑥1 − 7172.74𝑥𝑥12 −
8670.79𝑥𝑥2 + 4.48778𝑥𝑥22 + 5.59348 ∗ 107𝑥𝑥3 + 23264.3𝑥𝑥1𝑥𝑥3 +

452.799𝑥𝑥2𝑥𝑥3 − 4.40876 ∗ 106𝑥𝑥32)/(−1.38915 ∗ 108 +
799876𝑥𝑥1 − 6353.56𝑥𝑥12 − 7732.93𝑥𝑥2 + 3.98358𝑥𝑥22 + 4.94452 ∗

107𝑥𝑥3 + 21365𝑥𝑥1𝑥𝑥3 + 404.802𝑥𝑥2𝑥𝑥3 − 3.90673 ∗ 106𝑥𝑥32)  

Third Order Multiple Nonlinear TON 

𝑌𝑌 = 1.02447 + 0.000762679𝑥𝑥1 − 3.57252 ∗ 10(−6)𝑥𝑥12 +
8.54747 ∗ 10(−9)𝑥𝑥13 + 0.0000635067𝑥𝑥2 − 1.04997 ∗

10(−7)𝑥𝑥1𝑥𝑥2 + 2.82805 ∗ 10(−11)𝑥𝑥12𝑥𝑥2 − 6.42632 ∗ 10(−8)𝑥𝑥22 +
4.53921 ∗ 10(−11)𝑥𝑥1𝑥𝑥22 + 1.91246 ∗ 10(−11)𝑥𝑥23 +

0.0205229𝑥𝑥3 − 0.0000683518𝑥𝑥1𝑥𝑥3 + 4.30151 ∗ 10(−8)𝑥𝑥12𝑥𝑥3 −
3.38983 ∗ 10(−6)𝑥𝑥2𝑥𝑥3 + 1.26738 ∗ 10(−9)𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 2.46618 ∗

10(−9)𝑥𝑥22𝑥𝑥3 − 0.00181595𝑥𝑥32 + 3.05343 ∗ 10(−6)𝑥𝑥1𝑥𝑥32 −
1.10434 ∗ 10(−7)𝑥𝑥2𝑥𝑥32 + 0.0000678489𝑥𝑥33  

Fourth Order Multiple Nonlinear FON 

𝑌𝑌 = 0.980295 + 0.000986753𝑥𝑥1 − 4.14279 × 10−6𝑥𝑥12 −
9.26588 × 10−9𝑥𝑥13 + 6.49449 × 10−11𝑥𝑥14 + 0.000067316𝑥𝑥2 −

8.16945 × 10−8𝑥𝑥1𝑥𝑥2 + 4.338 × 10−11𝑥𝑥12𝑥𝑥2 + 7.22689 ×
10−12𝑥𝑥13𝑥𝑥2 − 7.83772 × 10−8𝑥𝑥22 − 9.01056 × 10−11𝑥𝑥1𝑥𝑥22 −
5.98033 × 10−13𝑥𝑥12𝑥𝑥22 − 7.90162 × 10−12𝑥𝑥23 + 3.37408 ×

10−14𝑥𝑥1𝑥𝑥23 + 3.19808 × 10−14𝑥𝑥24 + 0.0278606𝑥𝑥3 − 8.91857 ×
10−6𝑥𝑥1𝑥𝑥3 − 1.88944 × 10−7𝑥𝑥12𝑥𝑥3 + 7.90893 × 10−10𝑥𝑥13𝑥𝑥3 +
5.40496 × 10−6𝑥𝑥2𝑥𝑥3 + 9.39881 × 10−9𝑥𝑥1𝑥𝑥2𝑥𝑥3 − 2.14474 ×

10−10𝑥𝑥12𝑥𝑥2𝑥𝑥3 − 3.44292 × 10−9𝑥𝑥22𝑥𝑥3 + 3.12031 ×
10−11𝑥𝑥1𝑥𝑥22𝑥𝑥3 − 3.91792 × 10−12𝑥𝑥23𝑥𝑥3 − 0.00176114𝑥𝑥32 −
4.23002 × 10−6𝑥𝑥1𝑥𝑥32 + 1.08498 × 10−8𝑥𝑥12𝑥𝑥32 − 2.17128 ×

10−8𝑥𝑥2𝑥𝑥32 − 1.08569 × 10−9𝑥𝑥1𝑥𝑥2𝑥𝑥32 + 8.08286 × 10−10𝑥𝑥22𝑥𝑥32 −
0.000152162𝑥𝑥33 + 3.13967 × 10−7𝑥𝑥1𝑥𝑥33 − 7.49399 ×

10−8𝑥𝑥2𝑥𝑥33 + 0.0000163266𝑥𝑥34  

Hybrid Model HM 

𝑌𝑌 = (−61.9492 + 17.7266 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)− 1.43955 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)2 +
1.28699 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)− 0.964652 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) +

0.106515 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)2 + 27.2315 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) +
0.133602 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 0.696741 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)−

8.96799 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)2)/(−54.566 + 15.639 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) −
1.2737 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)2 + 1.14463 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) −

0.855412 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) + 0.0938038 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)2 +
23.9843 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 0.14251 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) +

0.620307 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)− 7.94651 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)2)  

Second Order Trigonometric Nonlinear SOTN 

𝑌𝑌 = 0.177446 + 0.18046 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) + 0.189259 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)2 +
0.00176386 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) − 0.00287373 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) +

0.236288 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)2 + 0.0644773 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3)−
0.00208998 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) + 0.00121105 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) +

0.268892 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3)2 + 0.152971 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)−
0.154314 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) − 0.00234474 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) +

0.00201114 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 0.214092 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)2 −
0.069922 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) − 0.00734882 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2)−

0.171164 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) − 0.00092947 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) −
0.00431512 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 0.0766015 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2)2 −
0.0964769 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 0.00272514 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3)−

0.000070534 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 0.173623 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) −
0.00143825 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 0.000916233 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2)𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +

0.279725 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3)2  

Second Order Trigonometric Nonlinear 
Rational SOTNR 

𝑌𝑌 = (1.02416 + 2.05291 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) + 1.01071 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)2 +
2.02437 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) + 2.00063 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) +

1.02648 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)2 + 2.02522 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) +
1.99839 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) + 2.0043 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) +

1.01234 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3)2 + 2.04227 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) +
2.00181 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 2.02175 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) +

2.03232 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 1.01345 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)2 +
2.01017 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 2.02191 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) +

2.00416 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 1.95915 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) +
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1.98707 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 0.997679 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2)2 +
2.00457 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2.00791 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +

1.9508 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2.03292 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +
1.99345 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 1.97464 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +
1.01182 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3)2)/(0.982162 + 1.96055 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) +

0.991999 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1)2 + 1.97253 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) +
1.99801 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) + 0.976149 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2)2 +

1.96414 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) + 1.99655 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) +
1.99384 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) + 0.9906 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3)2 +
1.9693 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 1.99877 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) +

1.97905 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) + 1.96071 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) +
0.990163 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1)2 + 1.97365 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) +

1.96884 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 1.98924 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) +
2.04994 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) + 2.00482 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) +

1.00601 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2)2 + 1.97735 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +
1.98231 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 2.05264 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +
1.97151 𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥3) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 1.99898 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥1) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) +

2.03598 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥2) 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3) + 0.991562 𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥3)2)  

Third Order Multiple Nonlinear Rational TONR 

𝑌𝑌 = (1.00001 + 3.00308𝑥𝑥1 + 3.16091𝑥𝑥12 + 1.08627𝑥𝑥13 +
3.00681𝑥𝑥2 + 7.04699𝑥𝑥1𝑥𝑥2 + 3.77539𝑥𝑥12𝑥𝑥2 + 0.277339𝑥𝑥22 +
5.3307𝑥𝑥1𝑥𝑥22 − 0.0076471𝑥𝑥23 + 3.00036𝑥𝑥3 + 6.07393𝑥𝑥1𝑥𝑥3 +

3.2211𝑥𝑥12𝑥𝑥3 + 6.22103𝑥𝑥2𝑥𝑥3 + 6.99652𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 3.6243𝑥𝑥22𝑥𝑥3 +
3.00257𝑥𝑥32 + 3.12472𝑥𝑥1𝑥𝑥32 + 3.34743𝑥𝑥2𝑥𝑥32 + 1.00205𝑥𝑥33)/

(0.999993 + 2.99656𝑥𝑥1 + 2.82165𝑥𝑥12 + 0.948349𝑥𝑥13 +
2.99249𝑥𝑥2 + 4.86762𝑥𝑥1𝑥𝑥2 + 3.371𝑥𝑥12𝑥𝑥2 + 6.09581𝑥𝑥22 +

4.72851𝑥𝑥1𝑥𝑥22 − 0.00782694𝑥𝑥23 + 2.99959𝑥𝑥3 + 5.91753𝑥𝑥1𝑥𝑥3 +
2.76832𝑥𝑥12𝑥𝑥3 + 5.75612𝑥𝑥2𝑥𝑥3 + 5.23857𝑥𝑥1𝑥𝑥2𝑥𝑥3 +

2.77635𝑥𝑥22𝑥𝑥3 + 2.99713𝑥𝑥32 + 2.86071𝑥𝑥1𝑥𝑥32 + 2.6186𝑥𝑥2𝑥𝑥32 +
0.99771𝑥𝑥33)  

First Order Logarithmic Multiple Nonlinear FOLN 𝑌𝑌 = 1.09039 + 0.0044644 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) − 0.000956056 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) +
0.010563 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)  

First Order Logarithmic Multiple Nonlinear 
Rational FOLNR 

𝑌𝑌 = (−184689. +34427.7 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) + 11678.9 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) +
4916.17 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3))/(−162874. +30430.4 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) +

10417.7 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) + 3967.76 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3))  

Second Order Logarithmic Multiple Nonlinear SOLN 

𝑌𝑌 = 1.04542 + 0.0349915 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) − 0.00113135 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)2 −
0.0236313 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) − 0.000607217 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) +

0.0023575 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)2 + 0.0612321 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) −
0.00870958 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)− 0.00251446 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) +

0.00131744 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)2  

Second Order Logarithmic Multiple Nonlinear 
Rational SOLNR 

𝑌𝑌 = (−61.9492 + 17.7266 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)− 1.43955 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)2 +
1.28699 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)− 0.964652 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) +

0.106515 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)2 + 27.2315 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) +
0.133602 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 0.696741 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)−

8.96799 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)2)/(−54.566 + 15.639 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) −
1.2737 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1)2 + 1.14463 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) −

0.855412 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) + 0.0938038 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2)2 +
23.9843 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) + 0.14251 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥1) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3) +

0.620307 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥2) 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)− 7.94651 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥3)2)  

 


