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 The aim of this study is to compare the performance of multiple linear regression (MLR) and 

artificial neural network (ANN) models in predicting rolling force and spread during free rolling 

in the hot rolling process. Accurate prediction of rolling force and spread in hot rolling is critical 

for ensuring homogeneous load distribution across rolling stands, enhancing energy efficiency, 

reducing failure stops, and achieving dimensional accuracy and high-quality final products. The 

data used in this study were generated through FEM analysis, with a portion of the results verified 

experimentally. The dataset includes variables such as material temperature, rolled material 

dimensions, reduction amount, and rolling speed, all of which influence rolling force and spread. 

A maximum acceptable error rate of 2.9% for spread and 6.7% for rolling force was determined. 

Both MLR and ANN models were applied to the dataset, and their prediction performances were 

compared using the mean square error (MSE). For rolling force estimation, the ANN model 

achieved a training R value of 0.9888 and a test R value of 0.9844, while the MLR model obtained 

an R2 value of 0.9651 and an adjusted R2 value of 0.9829. In spread estimation, the ANN model 

achieved a training R value of 0.9947 and a test R value of 0.9844, compared to the MLR model's 

R2 value of 0.9871 and adjusted R2 value of 0.9863. The results indicate that both models perform 

comparably well in estimating rolling force and spread. However, the artificial neural network 

model demonstrates a slight advantage, offering marginally superior prediction performance.      
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1. Introduction 

In recent years, reducing carbon emissions and 

dependency on oil for energy has become a priority. 

Increasing energy efficiency and optimizing production 

processes to produce the same quality products at lower 

costs have gained significant importance. Particularly in 

the steel sector, where energy consumption is high, the 

rolling process remains one of the most widely used 

production methods. In hot bar rolling mills, the number 

of passes and their design are critical parameters for 

ensuring product quality and energy efficiency. A correct 

pass design not only enhances energy efficiency but also 

reduces initial investment costs by enabling the selection 

of an optimal number of rolling stands and appropriately 

powered motors during the investment phase [1, 2]. 

During the rolling pass design process, the accurate 

calculation of rolling loads and spread is crucial. These 

calculations are essential to achieving the desired product 

properties and ensuring correct pass design. Rolling loads 

refer to the forces exerted on the material during rolling 

and depend on numerous factors, such as the dimensions, 

temperature, chemical composition, and section reduction 

of the rolled material. Accurate calculations of these loads 

are vital to controlling deformations and stresses during 

bar shaping. For instance, Houpping Hong (2019) 

calculated material sections and rolling loads in a six-pass 

design [3]. 

Material deformation at high temperatures plays a 

significant role in determining product quality and 

productivity. Specifically, the rolling force and spread of 

the material during rolling influence several parameters, 

including the dimensional accuracy of the final product, 

the power requirements of the rolling stands, roll wear, and 

energy consumption. In a study by D.H. Kim et al. (2002), 

roll wear was measured based on pass shapes, and its 

impact on the product cross-section was evaluated [4, 5]. 

The spread of the material determines how its 

dimensions change during shaping, ultimately affecting 
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the rod's final shape. Accurate spread calculations are 

critical for achieving the desired product dimensions and 

shapes. In 1961, L.G.M. Sparling and B. Eng developed an 

empirical model to calculate the spread [6]. 

Numerous empirical formulas have been developed to 

calculate rolling forces and spread. While some provide 

accurate results under specific conditions, others are more 

reliable in particular scenarios [6]. With advancements in 

computer technology, the finite element method (FEM) 

has emerged as a powerful tool for calculating rolling 

forces and spread. FEM offers advantages over empirical 

formulas, such as the ability to handle a broader range of 

parameters and geometries. In 2014, J. Bartnicki modeled 

the rolling of hollow round materials using FEM and 

demonstrated its agreement with experimental results. 

More recently, Ana Claudia González-Castillo et al. 

(2021) utilized FEM analysis to predict mechanical 

properties in thermomechanical rolling, while Shafaa Al-

Maqdi et al. (2020) performed FEM analyses under 

various rolling conditions for hot billet rolling processes 

[7–11]. 

Despite its accuracy, FEM faces limitations in industrial 

applications due to its computational complexity, long 

processing times, and the high cost of software licenses. 

However, it remains a flexible tool for studying parameters 

affecting rolling force by allowing the simulation of 

different experimental scenarios and adjustments to hot 

rolling models. For example, Zhenhua Wang et al. (2019) 

established a regression model of rolling force using FEM 

data for hot sheet rolling [12, 13]. 

Traditional approaches such as multiple linear 

regression (MLR) have been widely used to estimate 

critical process parameters. MLR models analyze linear 

relationships between input and output variables. 

However, the nonlinear and complex relationships 

inherent in hot rolling processes limit the performance of 

MLR models. In 2005, D.M. Jones et al. developed an 

MLR model based on data from a hot rolling mill and 

reported its performance metrics [12, 14]. 

In contrast, data-driven modeling techniques like 

artificial neural networks (ANN) have shown superior 

performance in modeling nonlinear systems. ANN models 

can effectively learn and predict input-output 

relationships, outperforming traditional methods like 

MLR. For instance, Mahdi Bagheripoor and Hosein Bisadi 

(2013) developed an ANN model for estimating rolling 

parameters in hot rolling processes, utilizing FEM analysis 

results for training. Ruihua Jiao et al. (2021) further 

advanced the field by introducing a deep learning model 

based on regenerative neural networks to predict roll wear 

in hot rolling processes [14–22]. ANN methods have also 

been applied successfully in optimizing production times 

and predicting diesel engine performance and emission 

parameters [23, 24]. 

The literature highlights FEM as a powerful approach 

for calculating rolling parameters, offering precise results. 

However, its application to rolling pass design is time-

intensive and costly. Recent research has extensively 

examined MLR and ANN methods for estimating rolling 

parameters, yet studies focusing on the hot billet rolling 

process remain insufficient. 

This study aims to comprehensively compare the 

performances of multiple linear regression (MLR) and 

artificial neural network (ANN) models in predicting 

rolling force and spread during the hot billet rolling 

process. By analyzing experimentally verified data 

generated through FEM, this research provides valuable 

insights for optimizing hot rolling processes and serves as 

a key resource for industry professionals. Unlike existing 

studies, which primarily examine these methods 

separately, this study fills a gap in the literature by directly 

comparing the two methods. Furthermore, the findings 

contribute to improving production efficiency and 

reducing costs by guiding the development of optimization 

strategies for multi-pass hot rolling. 

 

2. Materials and Method 

2.1 Hot Rolling Process and Obtaining Experimental Data  

In the steel industry, hot rolling plays a critical role in 

producing high-quality products. In the hot rolling process 

used for manufacturing rebar and coils, steel billets are 

heated in annealing furnaces at temperatures ranging from 

1000 to 1250 °C and subsequently rolled in rolling mills to 

achieve the desired section and shape. The length of the steel 

billets used in the continuous rolling process typically ranges 

from 6 to 12 meters. 

In this study, experimental results obtained from the 

rolling mill of a rebar manufacturing company were utilized. 

Free rolling with uncalibrated flat rolls was examined. Steel 

billets measuring 150 mm × 150 mm and 12 meters in length 

were rolled under the parameters specified in Table 1. 

The results of six experiments carried out on hot rolling 

processes are presented in Table 1. The column headings in 

the table explain the basic parameters and results of each 

experiment. The dimensional measurements of the rolled 

material are given in the first, second and third columns as 

shown in Figure 1, the material speed in meters/second in the 

fourth column, and the temperature of the rolled material 

in °C in the fifth column. The experimental results are given 

as the spread (width) of the rolled material in column six and 

the rolling force in kilonewton in column seven. 

The spread of material was obtained by measuring the 

width of the material coming out of the rolling mill with the 

measuring caliper shown in Figure 2. In the measuring 

caliper, the material is squeezed between the two ends of the 

tongs to measure the width and height, and the thickness of 

the material is found by measuring the tongs distance with a 

caliper. The rolling forces were obtained from the rolling 

mill automation. The material chemical analysis results are 

given in Table 2. 
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Table 1. Experimental parameters and results  
 

Input 

Height 

H1  

(mm) 

Input 

Width 

W1 

(mm) 

Output 

Height 

H2  

(mm) 

Rolling 

Speed 

U 

(m/sec) 

Material 

Temp. 

T 

 (°C)  

Output 

Width 

W2 

(mm) 

Rolling 

Force 

F  

(kN) 

150 150 100 0.31 1100 175 1120 

150 150 110 0.31 1100 170 1000 

150 150 120 0.31 1100 163 850 

150 150 100 0.31 1050 176 1200 

150 150 100 0.31 1150 177 950 

150 150 100 0.21 1100 172 1000 

 

 
Figure 1. Rolled material measurement 

 

 
Figure 2. Rolling stand and measuring caliper  

 

Table 2. Chemical composition  
 

%C %Si %Mn %P %S %Cr %Ni %Mo 

0.2028 0.1796 0.5651 0.024 0.0161 0.1257 0.1035 0.0172 

 

2.2 Finite Element Method And Obtaining Results  

Experiments in hot rolling processes are extremely costly 

and difficult to conduct. On the other hand, the finite element 

method gives very good results in the simulation of hot 

rolling processes. 

In this study, SIMUFACT program was used for FEM 

analysis and in this program St32-2, which is the material 

closest to the chemical properties of rebar quality according 

to DIN 1700 standard, was used. It was defined with the code 

St37-2_h in Simufact forming software. Table 3 shows the 

chemical structure of St37-2 material according to DIN 1700 

standard. 

 

 

 

 

 

Table 3. St37-2 chemical composition according to DIN 1700 
standard  
 

%C %Mn %P %S %N %Cu CEV 

Max. 

0.2 

Max. 

1.4 

Max. 

0.04 

Max. 

0.04 

Max. 

0.012 

Max. 

0.55 

Max. 

0.38 

 

The workpiece dimensions, rolling amount, rolling speed 

and rolling temperature minimum and maximum values are 

shown in Table 4. The workpiece length was taken as 400 

mm in each analysis. A total of 87 different FEM analyses 

were performed in these intervals. Since the diameter of the 

roller used in the experiments was Ø420 mm, the same 

diameter roller was used in the FEM analysis. 

In literature studies, it has been observed that the friction 

coefficient depends on the rolling speed and material 

temperature and is used between 0.30 and 0.45 [25-27]. In 

this study, the friction between the rolls and the workpiece 

during modeling in the FEM software was defined as 0.4 

according to the Coulomb model. 

In the modeling, the heat transfer coefficient between the 

workpieces was defined as 50 W/(m2.K) and the heat 

radiation emission coefficient as 0.25. The initial 

temperature of the rolls was determined as 50 °C in 

accordance with industrial applications [28]. 

Hexahedral mesh was used for the analysis and the mesh 

spacing was determined as 2.6, and elements between 44,800 

and 62,890 were used according to the workpiece 

dimensions. 

The spread as a result of the simulation was obtained by 

measuring the material with a measuring tool in the result 

display window, as seen in Figure 3. The rolling force was 

taken with a 10% average from the graphic drawing window. 

The rolling force graph is shown in Figure 4. 

 

Table 4. Value ranges in which the experiments were performed  
 

  

Input 

Height 

Input 

Width 

Output 

Height 

Rolling 

Speed 

Material 

Temperature 

  

H1 

(mm) 

W1 

(mm) 

H2 

(mm) 

u 

(m/sn) 
T (°C) 

Minimum 120 120 80 0.22 900 

Maximum 150 150 145 1.1 1200 

 

 

 

 

Figure 3. Measurement of the spread   



 

 

 

Figure 4. Rolling force graph    

 

2.2 MLR and ANN Training  

MLR analysis can be defined as a statistical technique in 

which the dependent variable is explained by more than one 

independent variable. This analysis allows determining how 

the dependent variable is affected by more than one 

independent variable and the relative effects of these 

variables on the dependent variable. In the analysis, the linear 

relationship between the dependent variable and the 

independent variables is modeled and the coefficients of the 

independent variables are calculated. Thus, it can be 

determined how much change a unit change in the 

independent variables causes in the dependent variable. 

MLR is a powerful tool for examining complex relationships 

between variables and making predictions. Multiple linear 

regression is as follows: 

𝑌 = 𝑎1 + 𝑏1𝑥1 + 𝑏2𝑥2+𝑏3𝑥3+⋯+ 𝑏𝑖𝑥𝑖 (1) 

Here Y is the dependent variable to be determined; x1, x2, 

x3 … xi are known variables for which estimates will be 

made and a, b1, b2, b3 … bi are coefficients and the values are 

determined by the least squares method. MLR analysis was 

used to determine the relationship between the crushing force 

and the material dimensions of the spread, the rolling amount, 

the rolling speed. The MLR analysis was performed using 

Minitab version 18. 

Artificial neural networks are a machine learning 

algorithm inspired by the working principle of the human 

brain. Its basic structure includes an architecture consisting 

of interconnected artificial neurons and input, hidden and 

output layers, as shown in Figure 5. Artificial neurons 

receive inputs, apply an activation function and transfer them 

to other neurons in a weighted manner. The network learns 

the relationship between input and output by working 

iteratively on training data. During this learning process, the 

weights are constantly updated and the most appropriate 

weight values are determined. Artificial neural networks 

have powerful features such as being able to model complex 

nonlinear relationships, make high-accuracy predictions and 

solve classification problems. 

 

 
Figure 5. Schematic representation of artificial neural network 

 

In this study, a 2-layer, 10-neuron neural network 

architecture was used to effectively model both the rolling 

force and the spread processes. The neural network, thanks 

to its ability to learn relationships between complex data, 

allows us to deeply analyze the interactions of these two 

critical parameters. 

Various parameters were carefully determined in order to 

increase the effectiveness of the neural network training 

process. The model was trained for a total of 1000 epochs to 

provide an in-depth analysis of the learning process. During 

the iterations, the minimum gradient value was set to 10⁻⁷, 

thus increasing the sensitivity of the network during the 

learning phase. The maximum error limit was set to 1000, 

thus clearly defining the acceptable error range of the model. 

The architecture used was determined as Feed-forward 

backpropagation type. Thanks to this structure, the weight 

ratios are updated backwards while the data is processed in 

the forward direction, thus optimizing the learning process 

for the network to produce more accurate results. During 

training, the Levenberg-Marquardt algorithm was preferred 

to provide fast and efficient learning; this algorithm provides 

high-speed convergence, allowing the model to reach 

optimal results in a shorter time. In addition, Gradient 

Descent with Momentum was used as the adaptation learning 

function. This method makes the learning process more 

stable, while a faster convergence is provided with the 

momentum contribution. Hyperbolic tangent sigmoid 

function is preferred as the transfer function; this function 

helps the model to learn non-linear relationships more 

effectively. As a result, the performance of the neural 

network will be evaluated with the mean square error 

criterion and thus the learning success will be revealed 

quantitatively [16].  

 

3. Results and Discussion 

Two different modeling approaches were used to estimate 

the spread and rolling force in the rolling process. First, 

numerical analysis was performed using the finite element 

method (FEM). In the FEM model, material spread and 

rolling forces were calculated. Then, FEM analyses were 

verified with experimental measurements and two different 
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prediction models were developed using the obtained data. 

 

3.1 Comparison of FEM Results with Experimental 

Results  

The aim of the study was to verify the analysis results 

performed using the finite element method (FEM) with 

experimental data. In this context, experimental 

measurements were performed on six different samples. The 

material dimensions used in the experiment, rolling speeds, 

and the spreading amounts and crushing forces obtained as a 

result of the experiments are shown in Table 5. The 

experimental results were compared with the results obtained 

with the FEM analysis and the differences between them 

were examined. As a result of the analyses, it was seen that 

the FEM model was compatible with the experimental data 

and represented the behavior of the real system with high 

accuracy. The comparison graphs of the spreading amount 

are shown in Figure 7 and the crushing force are shown in 

Figure 8. 

When the experimental results are compared with the 

FEM results, an error between 0.6% and 2.9% in the spread 

and 1.7% and 6.7% in the rolling force is observed. These 

error rates can be considered at an acceptable level for rough 

rolling. Y. Mahmoodkhani calculated the error rate as less 

than 10% in his study in 2016, stated that this error rate is 

negligible in the calculation of crushing forces and 

developed an adjustment tool with this error margin [29]. 

 

3.2 MLR Results 

MLR analysis was conducted using a total of 87 data 

points to better understand the relationship between rolling 

force and various influencing factors. The results are 

presented through various tables and graphs. Specifically, 

the variance analysis performed for rolling force is detailed 

in Table 6, which highlights the explanatory power of the 

model and the interactions between variables. Table 7 

presents the coefficients related to rolling force, providing 

insights into the model's accuracy and functionality. 

In MLR analysis, coefficients play a critical role in 

quantifying the effects of independent variables on the 

dependent variable. Each coefficient indicates the extent of 

change in the dependent variable resulting from a one-unit 

change in the corresponding independent variable. This 

allows for a clear interpretation of the variables' effects. The 

signs of the coefficients determine the direction of the effect, 

while their magnitudes indicate the relative importance of 

these effects. Properly determined coefficients enhance the 

predictive capability of the model and ensure more reliable 

results. As such, the coefficients serve as an essential 

reference point for evaluating the model's performance and 

identifying which factors have a more substantial impact on 

the dependent variable. 

Additionally, Table 8 provides the error rates calculated 

for rolling force, offering valuable information about the 

model's performance. Figure 9 visualizes the error term 

distributions for rolling force, presenting the error 

distribution and statistical properties of the model through 

graphical representations. These findings form a crucial basis 

for assessing and validating the effectiveness of the MLR 

model. 

Table 5. Comparison of FEM and experimental results 

          FEM Results Experimental Results 

Input 

Height 

H1  

(mm) 

Input 

Width 

W1  

(mm) 

Output 

Height  

H2 

 (mm) 

Rolling 

Speed 

u  

(m/s) 

Material 

Temp. 

T  

(°C) 

Output 

Width 

W2  

(mm) 

Rolling 

Force  

F  

(kN) 

Output 

Width 

W2 

(mm) 

Rolling 

Force 

F  

(kN) 

150 150 100 0.33 1100 177 1045 175 1120 

150 150 110 0.33 1100 172.9 955 170 1000 

150 150 120 0.33 1100 165 810 163 850 

150 150 100 0.33 1050 177.5 1180 176 1200 

150 150 100 0.33 1100 178 925 177 950 

150 150 100 0.22 1100 177 951 172 1000 

 
Figure 7. Comparison of spread FEM and experimental results    

 
Figure 8. Comparison of rolling force FEM and experimental 

results 
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MLR analysis was performed according to the results of 

the spread for 87 analyses. This analysis was performed to 

better understand the relationship between the spread and 

various factors. The obtained data is presented with various 

tables and graphs. Table 9 presents the variance analysis for 

spread, while Table 10 includes the coefficients for spread. 

In addition, Table 11 includes the error rates calculated for 

spread, and these data help evaluate the performance of the 

model. Finally, the residual plots for spread are given in 

Figure 10. These graphs provide a better understanding of 

the results by visualizing the error distribution. 

 

Table 6. Variance analysis for rolling force 
 

Source DF Adj SS Adj MS 
F-

Value 

P-

Value 

Regression 5 6703984 1340797 447.91 0 

  Input Height  1 1137677 1137677 380.05 0 

  Input With 1 208485 208485 69.65 0 

  Output Height 1 3801779 3801779 1270.02 0 

  Rolling Speed  1 293421 293421 98.02 0 

  Material Temp. 1 789004 789004 263.57 0 

Error 81 242471 2993     

  Lack-of-Fit 79 231068 2925 0.51 0.851 

  Pure Error 2 11403 5701     

Total 86 6946455       

 

Table 7. Coefficients for rolling force  
 

Term Coef SE Coef 
T-

Value 

P-

Value 
VIF 

Constant 1768 265 6.68 0   

Input Height 16,868 0.865 19.49 0 1.04 

Input With 7.42 0.889 8.35 0 1.04 

Output Height -16.419 0.461 -35.64 0 1.05 

Rolling Speed 311,3 31.4 9.9 0 1.06 

Material Temp. -2.502 0.154 -16.23 0 1.03 

 

Table 8. Model summary for rolling force 

 

S R-sq R-sq(adj) R-sq(pred) 

54.7126 0.9651 0.9629 0.9615 

 

 
Figure 9. Residual Plots for Rolling Force 

 

Table 9. Variance analysis for spread 
 

Source DF Adj SS Adj MS 
F-

Value 

P-

Value 

Regression 5 13397.3 2679.46 1238.46 0 

  Input Height 1 1526.6 1526.65 705.63 0 

  Input Width 1 4558 4557.96 2106.72 0 

  Output Height 1 6506.4 6506.36 3007.28 0 

  Rolling Speed 1 920.3 920.3 425.37 0 

  Material Temp. 1 13.7 13.66 6.31 0.014 

Error 81 175.2 2.16     

  Lack-of-Fit 79 174.1 2.2 3.78 0.232 

  Pure Error 2 1,2 0.58     

Total 86 13572.5       

 

Table 10. Coefficients for spread 
 

Term Coef 
SE 

Coef 

T-

Value 

P-

Value 
VIF 

Constant -27.49 7.12 -3.86 0   

Input Height 0.6179 0.0233 26.56 0 1.04 

Input Width 1.0972 0.0239 45.9 0 1.04 

Output Height -0.6793 0.0124 -54.84 0 1.05 

Rolling Speed 17.435 0.845 20.62 0 1.06 

Material Temp. 0.01041 0.0041 2.51 0.014 1.03 

 

Table 11. Model summary for spread 

 

S R-sq R-sq(adj) R-sq(pred) 

1.4709 0.9871 0.9863 0.9857 

 

 
Figure 10. Residual Plots for Spread  

 

3.3 ANN Results 

A two-layer, ten-neuron artificial neural network model 

was developed to accurately predict the spread and rolling 

force of the material during the rolling process. This model 

allows us to better understand material behaviors thanks to 

its capacity to learn relationships between complex data. The 

learning performance of the rolling force is shown in detail 

in Figure 11. This visual reflects the results obtained during 

the training process of the neural network and the accuracy 

of the model. In addition, the error rates for the rolling force 

prediction are presented graphically in Figure 12.  
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Figure 11. Training performance for rolling force  

 

 
Figure 12. Regression results for rolling force 

 

These graphics constitute an important source for 

evaluating the prediction performance of the model and 

visualizing the error distribution. These findings reveal the 

effectiveness of the neural network and provide valuable 

information for optimizing material processing processes.  

The performance results obtained in the prediction of 

rolling force provide an important basis for evaluating the 

effectiveness and accuracy of the model. In the training 

phase, the R value of the model was calculated as 0,9888, 

which shows the high fit between the training data and the 

model. This high value reveals that the model successfully 

learned the data during the training process and has a strong 

ability to make predictions. In the validation phase, the R 

value was determined as 0,9887. This result shows that the 

model exhibits consistent performance with data other than 

training and has high generalization ability. The R value 

obtained in the testing phase was calculated as 0,9844, which 

shows that the model achieves successful results with data it 

has not used before. Finally, when all data are taken into 

account, the total R value was determined as 0,9877. This 

high value shows that the overall performance of the model 

is quite satisfactory and provides quite reliable results in the 

prediction of rolling force. 

The learning performance for the prediction of the spread 

is presented in detail in Figure 13. This visual shows how 

effectively the model predicted the amount of spread during 

the training process and reflects the learning curve of the 

model. Figure 13 compares the results obtained during 

different iterations, showing the development and 

performance of the model over time. In addition, this graphic 

provides the opportunity to analyze the potential 

improvements in the learning process of the model and at 

which stages it is more successful. On the other hand, the 

regression results of the spread are shown graphically in 

Figure 14. These graphics clearly show the differences 

between the model's predictions and the actual values, 

visualizing the error distribution. The analysis of the error 

rates helps us understand under which conditions the model 

makes more errors and which factors affect the accuracy of 

the predictions. These two visuals provide a critical reference 

point for evaluating the prediction performance of the 

amount of spread and analyzing the effectiveness of the 

model. 

 
Figure 13. Training performance for spread 

 

 
Figure 14. Regression results for spread 
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Table 12. MLR and ANN performance comparison 

  Multi Liner Regression (MLR) Artificial Neural Network (ANN) 

  R-sq R-sq(adj) R-sq(pred) R (train.) R (valid.) R (test)  R (all) 

Rolling Force 0.9651 0.9629 0.9615 0.9888 0.9887 0.9844 0.9878 

Spread 0.9871 0.9863 0.9857 0.9947 0.9981 0.9991 0.9961 

The results obtained in estimating the spread show a very 

good performance. The R value was calculated as 0,9946 in 

the training phase, which shows that the model provides 

excellent compatibility with the training data. The R value 

was determined as 0.9881 in the validation process, which 

shows that the model also shows consistent performance 

with new data. The R value obtained in the testing phase was 

calculated as 0.9991, which shows that the model achieved 

very successful results with data it had not seen before. The 

total R value was determined as 0.9961, which indicates that 

the results of the artificial neural network model showed a 

very high correlation with the data. These findings reveal that 

the model's ability to estimate the spread is extremely strong. 

 

3.4 Comparison of MLR and ANN Results 

MLR analysis is a traditional method often used to 

describe linear relationships between dependent and 

independent variables. The model is relatively simple to 

construct and interpret, but its ability to capture complex, 

nonlinear relationships is limited. On the other hand, 

artificial neural networks are capable of learning complex, 

nonlinear relationships between input and output data. In 

particular, artificial neural networks may be a more suitable 

option for understanding how small changes in input 

parameters affect outputs. 

In this study, both modeling approaches were trained and 

tested using experimental and finite element analysis data. 

The R values for both models are shown in Table 12. 

 

4. Conclusions 

The prediction of material spread and rolling force in the 

hot rolling process is critically important for process control 

and optimization. In this study, two different modeling 

approaches, namely multiple linear regression (MLR) and 

artificial neural networks (ANN), were utilized and 

compared for predicting these parameters. 

The maximum error rate in spread was observed to be 

2.9%, with the FEM result recorded as 177 mm and the 

experimental result as 172 mm. The minimum error rate was 

found to be 0.6%, with the FEM result recorded as 178 mm 

and the experimental result as 177 mm. For rolling force, the 

maximum error rate was determined to be 6.7%, with the 

FEM result recorded as 1045 kN and the experimental result 

as 1120 kN, while the minimum error rate was 1.7%, with 

the FEM result recorded as 1180 kN and the experimental 

result as 1200 kN. The FEM and empirical results were 

found to be closely aligned and highly consistent. 

In rolling force prediction, the training R value of the 

ANN model was 0.9888, and the test R value was 0.9844. In 

contrast, the R2 value for the MLR model was 0.9651, with 

an adjusted R2 value of 0.9829. For spread prediction, the 

ANN model achieved a training R value of 0.9947 and a test 

R value of 0.9844, while the R2 value for the MLR model 

was 0.9871, with an adjusted R2 value of 0.9863. Both 

models provided closely aligned predictions for rolling force 

and spread in the hot rolling process. However, the ANN 

model demonstrated slightly superior performance in rolling 

force prediction. 

This study systematically compares the performance of 

MLR and ANN models, offering a novel contribution to both 

academic literature and industrial applications, thereby 

addressing a significant gap in this field. The findings have 

the potential to enhance production efficiency and reduce 

costs, facilitating the development of optimization strategies 

for multi-pass hot rolling processes. 
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