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Abstract. In this paper, we study curvature properties of hemi-slant subman-
ifolds of Lorentzian Kenmotsu space forms. We define Lorentzian Kenmotsu

space forms and study their curvature properties. We give an example for
hemi-slant submanifold of Lorentzian Kenmotsu space forms. Finally, the cur-

vature properties of distributions are analyzed and the conditions for Einstein

are investigated.

1. Introduction

Bishop and O’neill investigated negative curvature manifolds [3]. They stud-
ied these manifolds using warped product. From the second half of the twentieth
century, the warped product began to be used in contact manifolds. Kenmotsu
investigated a different class of an almost contact manifold. He defined new condi-
tions by

(∇Xϕ)Y = −η(Y )ϕX − g(X,ϕY )ξ(1.1)

∇Xξ = X − η(X)ξ

He showed that the contact manifold satisfying these two conditions is normal.
But this manifold was not Sasakian [7]. A differentiable manifold called Lorentzian
manifold with a Lorentzian metric of index 1. A Lorentzian manifold has lightlike,
timelike and spacelike vector fields. Therefore, the Lorentzian metric can also be
used on odd dimensional manifolds. So we can study Lorentzian contact manifolds.
Firstly, Takahashi defined and studied Lorentzian Sasakian manifolds using the
Lorentzian metric on Sasakian manifold [13]. After, Duggal has investigated the
space time manifolds [6]. From all these studied, Rosça investigated Lorentzian
Kenmotsu manifolds [9]. Many authors have been studied on Lorentzian Kenmotsu
manifolds [2, 4, 5, 8, 14, 15].
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In this paper, we are studied curvature properties of hemi-slant submanifolds of
Lorentzian Kenmotsu space form. Firstly, we are defined Lorentzian Kenmostsu
space forms and study their curvature properties. After, the definition of a hemi-
slant submanifold of an Lorentzian Kenmotsu space form is given and an example
is presented. Finally, the curvature properties of distributions are analyzed and the
conditions for Einstein are investigated.

2. Lorentzian Kenmotsu Manifolds

Let B be almost contact manifold with an almost contact structure (ϕ, η, ξ),
where ξ is a vector field on B, η is a 1−form and ϕ is a tensor field of type (1, 1)
satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1.

If a semi-Riemannian metric g on almost contact manifold B by

g(ϕX,ϕY ) = g(X,Y )− εη(X)η(Y ), g(ξ, ξ) = ε = −1

therefore (B,ϕ, η, ξ, g) is called a Lorentzian almost contact manifold. Then we get
η(X) = εg(X, ξ). Moreover, ξ is never a spacelike vector field and a lightlike vector
field on B. We consider a local basis {e1, ..., e2n, ξ} in TB i.e.

g(ei, ej) = δij and g(ξ, ξ) = −1

that is e1, ..., e2n are spacelike vector fields, and ξ is timelike.
We not that, for all X,Y ∈ Γ(TB), if Φ(X,Y ) = g(X,ϕY ), Φ is said to be

fundamental 2−form.
On the other hand, manifold is normal if

N = [ϕ,ϕ] + 2dη ⊗ ξ = 0

where [ϕ,ϕ] is Nijenhuis tensor field of ϕ.

Definition 2.1. Let B be a Lorentzian almost contact manifold. B is called a
Lorentzian Kenmotsu manifold if normal and dη = 0 and dΦ = 2εη ∧ Φ.

Theorem 2.2. [10] Let B be a Lorentzian contact manifold. Therefore for all
X,Y ∈ Γ(TB), B is a Lorentzian Kenmotsu manifold if and only if

(2.1)
(
∇Xϕ

)
Y = ε{g(Y, ϕX)ξ − η(Y )ϕX}.

.

Corollary 2.3. Let B be a Lorentzian Kenmotsu manifold. Therefore we get

(2.2) ∇Xξ = εϕ2X

for all X,Y ∈ Γ(TB).

3. Lorentzian Kenmotsu Space Forms

Let Lorentzian Kenmotsu manifold B has constant ϕ−holomophic section cur-
vature k. Therefore it is called Lorentzian Kenmotsu-space form. If constant
ϕ−holomophic section curvature is k, manifold B is denoted by B(k). Therefore,
curvature tensor satisfied,
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R(X,Y, Z,W ) =
k + 3

4
{g(Z, Y )g(W,X)− g(W,Y )g(Z,X)}

+
k − 1

4
{g(Z,ϕY )g(W,ϕX)− g(W,ϕY )g(Z,ϕX)

−2g(W,ϕZ)g(Y, ϕX) + g(Z,X)η(W )η(Y )

−g(Z, Y )η(W )η(X) + g(W,Y )η(Z)η(X)}.(3.1)

Theorem 3.1. Let B be a Lorentzian Kenmotsu manifold. If B have constat ϕ−
holomophic sectional curvature, therefore the Ricci tensor is not parallel.

Proof. We using (3.1). For all X,Y ∈ Γ(TB), we get

S(X,Y ) =
(k − 1) + (k + 3)n

2
g(ϕY, ϕX)− 2nη(Y )η(X)

which proves the assertion. �

Corollary 3.2. Let B be a Lorentzian Kenmotsu manifold. Therefore we get

τ =
((k − 3)n− 2)(2n+ 1)

4

where τ is the scalar curvature.

4. Hemi-Slant Submanifolds of Lorentzian Kenmotsu Space Forms

Let B be a submanifold of a Lorentzian Kenmotsu manifold B and ∇ be the
Levi-Civita connection of B. For all X,Y ∈ Γ(TB) and N ∈ Γ(TB)⊥, we have

(4.1) ∇̄XY = ∇XY + h(X,Y )

(4.2) ∇̄XN = −ANX +∇⊥XN.

This equations is called Gauss and Weingarten formulas, respectively. Moreover,
from (4.1) and (4.2), we get

(4.3) g(ANX,Y ) = g(h(X,Y ), N).

For any X ∈ Γ(TB), we give

ϕX = TX +NX

where NX and TX is the normal and tangential components, respectively.
For any V ∈ Γ(T⊥B), we have

ϕV = tV + nV

where nV and tV is the normal and tangential components, respectively [12].

Lemma 4.1. Let B be a submanifold of a Lorentzian Kenmotsu manifold B. There-
fore, for all K,L ∈ Γ(TB)

(4.4) (∇KT )L = ANLK + th(K,L) + ε{g(TK,L)ξ − η(L)TK}

(4.5) (∇KN)L = nh(K,L)− h(K,TL)− εη(L)NK.
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From now on, we accept that the ξ is tangent to the submanifold B. Therfore,
we can consider the orthogonal direct decomposition

TB = D ⊕ ξ,
where D is the orthogonal distribution to ξ.

Definition 4.2. Let B be a submanifold of Lorentzian Kenmotsu manifold B .
Therefore B is called anti-invariant if and only if ϕ(TxB) ⊂ T⊥x B for all x ∈ B.

Definition 4.3. Let B be a submanifold of a Lorentzian Kenmotsu manifold B . If
angle betwen ϕB and TB is a constant, submanifold B is called slant submanifold.

In [1], Sp{ξ} defines the timelike vector field distribution. Let W is a spacelike
vector field. If vector field W is orthogonal to ξ, we get

g(ϕW,ϕW ) = g(W,W ) ≥ 0.

For spacelike vector fields the Cauchy-Schawrz inequality

g(W,W ) ≤ ‖W‖ ‖W‖
is verified.

Then we have

cos θ =
g(ϕW,TW )

‖ϕW‖ ‖TW‖
.

Definition 4.4. Let B be submanifold of of a Lorentzian Kenmotsu manifold B.
Therefore B is called a hemi-slant submanifold which D1 and D2 two orthogonal
spacelike distributions such that

(i) TB = D1 ⊕D2 ⊕ sp{ξ}
(ii) D1 is anti-invariant.
(iii) D2 is slant with angle θ 6= 0.

Therefore, the angle θ is called the slant angle of a submanifold B.
On the other hand, let di be dimension of the distribution Di for i = 1, 2.

Therefore we have the following cases:
If d2 = 0, therefore B is an anti-invariant submanifold.
If d1 = 0 and θ = 0, therefore B is an invariant submanifold.
If d1 = 0 and θ 6= π

2 , therefore B is a proper slant timelike submanifold.
If d1d2 6= 0 and θ 6= π

2 , B is a proper hemi-slant timelike submanifold.
For a local orthonormal frame {e1, ..., e2p, e2p+1, ..., e2p+2q, ξ},

D1 = sp{e1, ..., e2p}, D2 = sp{e2p+1, ..., e2p+2q}
where dimD1 = 2p and dimD2 = 2q.

Example 4.5. In what follows, R2m+1 with Lorentzian Kenmotsu structure given
by

ϕ(

n∑
i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂z
) =

n∑
i=1

(Yi
∂

∂xi
−Xi

∂

∂yi
) + Yiyi

∂

∂z

g = e−2z(

n∑
i=1

dxi ⊗ dxi + dyi ⊗ dyi)− εη ⊗ η

ξ =
∂

∂z
, η = dz

where (x1, ..., xn, y1, ..., yn, z) are Cartesian coordinates on R2m+1.
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Now, a submanifold B of R7 defined by

B = F (s, l, k, u, t) = (s, 0, k, l, u, 0, t).

Therefore local frame of TB

e1 =
∂

∂x1
, e2 =

∂

∂y1
, e3 =

∂

∂x3
,

e4 =
∂

∂y2
, e5 =

∂

∂z
= ξ

and

e∗1 =
∂

∂x2
, e∗2 =

∂

∂y3

from a basis of T⊥B.
We choose

D1 = sp{e1, e2}
and

D2 = sp{e3, e4},
then D1, D2 are anti-invariant and slant distribution. Thus

TB = D1 ⊕D2 ⊕ sp{ξ}

B is a hemi-slant submanifold of R7.

5. Curvature Properties of Distributions

[11], Let B be a hemi-slant submanifold of a Lorentzian Kenmotsu manifold B .
From (3.1) and (4.1), a hemi-slant submanifold B has constat ϕ-sectional curvatre
k if and only if the Riemanian curvatre tensor R satisfied

R(X,Y, Z,W ) =
k + 3

4
{g(Z, Y )g(W,X)− g(W,Y )g(Z,X)}

+
k − 1

4
{g(ϕY,Z)g(ϕX,W )− g(ϕY,W )g(ϕX,Z)

−2g(ϕZ,W )g(ϕX, Y ) + g(Z,X)η(W )η(Y )

−g(Z, Y )η(W )η(X) + g(W,Y )η(Z)η(X)}
+g(h(Z, Y ), h(W,X))− g(h(Z,X), h(W,Y )).(5.1)

Proposition 1. Let B be hemi-slant submanifold of Lorentzian Kenmotsu space
form B(k).Therefore we get

R(X,Y, Z,W ) =
k + 3

4
{g(Z, Y )g(W,X)− g(W,Y )g(Z,X)}(5.2)

+g(h(Z, Y ), h(W,X))− g(h(Z,X), h(W,Y ))

for all X,Y, Z,W ∈ Γ(D1).

Proof. The proof follows from (5.1). �

Corollary 5.1. Let B be hemi-slant submanifold of Lorentzian Kenmotsu space
form B(k) and anti-invariant distribution D1 is totally geodesic. Therefore D1 is
flat if and only if k = −3.
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Theorem 5.2. Let B be hemi-slant submanifold of Lorentzian Kenmotsu space
form B(k).If anti-invariant distribution D1 is totally geodesic, therefore it is Ein-
stein.

Proof. Let D1 is totally geodesic. For all X,Y ∈ Γ(D1) using (5.2), we have Ricci
curvature by

S1(X,Y ) =

2p∑
i=1

k + 3

4
{g(X,Y )g(Ei, Ei)− g(X,Ei)g(Ei, Y )}.

Then, by elementary calculations, we get

S1(X,Y ) =
(k + 3)(2p− 1)

4
g(X,Y )

which proves the assertion. �

Corollary 5.3. Let B be hemi-slant submanifold of Lorentzian Kenmotsu space
form B(k). If D1 is totally geodesic, scalar curvature of D1 given by

τD1 = p(p− 1)
k + 3

4

Theorem 5.4. Let B be hemi-slant submanifold of Lorenzian Kenmotsu space form
B(k). Therefore the scalar curvatre of D2 is given by

τD2 = q
(k + 3)(2q − 1) + 3(k − 1)

2
.

Proof. For all U, V ∈ Γ(D2), from (5.2), Ricci curvature of D2 is given by

S2(U, V ) =
3(k − 1)(k + 3) + (2q − 1)

4
g(U, V )

which proves the assertion. �

6. Conclusion

Lorentzian manifolds have potential for applications in many fields of mathe-
matics and physics. In particular it is applicable to the theory of relativity, theory
of spacetimes. Researchers have increased studies on this field from different areas
in recent years. After the defination of Lorentzian Kenmotsu manifold, hemi-slant
submanifolds were studied. In this paper, the idea of examining curvature of hemi-
slant submanifold are emphasized. The works on this subject will be useful tools
for the applications of hemi-slant submanifold with different manifolds.
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