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Abstract: Soil organic carbon (SOC) is an important indication of soil health and helps to sustain soil fertility. As a result, determining 

its composition and the factors that influence it is critical for long-term soil nutrient management, especially in controlled conditions 

such as greenhouses. This study utilizes machine learning to classify SOC content in greenhouses built on pyroclastic deposits in the 

Isparta region. A dataset of 276 samples and eight variables—clay (%), silt (%), sand (%), soil electrical conductivity (EC), pH, 

elevation, slope, and aspect—were used to model SOC values. SOC content was classified into five classifications: very low (<0.6%), low 

(0.6-1.2%), medium (1.2-1.8%), good (1.8-2.3%), and high (>2.3%). In this study, five machine learning models—Logistic Regression 

(LR), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF)—were evaluated using 

cross-validation to determine their classification accuracy, precision, recall, F-score, and ROC area. Random Forest (RF) and Decision 

Tree (DT) outperformed the other models, with RF achieving the highest overall accuracy (76.4%), precision (77.3%), and AUC 

(0.904), followed by DT at 75.4% and AUC of 0.874. This study shows the practicality of machine learning models in categorizing SOC 

content, highlighting their importance for long-term soil health and fertility control in greenhouse conditions. To improve model 

efficacy, future studies should include more auxiliary variables, such as soil physical and chemical qualities and lithological data, as 

well as a wider range of soil types. 
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1. Introduction 
Soil organic carbon (SOC) is an important component of 

the global carbon cycle, serving as a crucial carbon store 

that helps to the management of atmospheric carbon 

dioxide levels. Within agricultural environments, SOC 

functions as an active pool that is heavily impacted by 

human activities. Climate change and soil moisture levels 

have a significant impact on SOC content, while global 

warming and population growth highlight the 

importance of natural (climate, soil parent material, land 

cover, and topography) and anthropogenic (land use, 

management, and degradation) factors in SOC dynamics 

(Hiederer and Köchy, 2011). 

The Paris Agreement aims to reduce greenhouse gas 

emissions by 21% by 2030 when compared to the 

reference scenario (Genç, 2021). As a result, different 

projects have been launched globally and in Türkiye to 

examine SOC levels. Türkiye's SOC status is crucial to 

promoting sustainable land use and combatting climate 

change. The importance of estimating and monitoring 

SOC stocks was stressed at the 12th Conference of the 

Parties to the United Nations Convention to Combat 

Desertification in 2015, underlining SOC's role in 

combating land degradation. The "Türkiye Soil Organic 

Carbon (CARBON) Project," conducted in collaboration 

with the General Directorate of Combating 

Desertification and Erosion (ÇEM) and TÜBİTAK-

BİLGEM- Software Technologies Research Institute 

(YTE), established a high-resolution SOC map using data 

from 21,061 sampling points. The Random Forest 

modeling estimated a total carbon stock of 3.51 billion 

tons in the soil at a depth of 30 cm (ÇEM, 2018). The 

high-resolution SOC maps and data generated by the 

CARBON Project aim to enhance agricultural 

sustainability and develop effective strategies to combat 

climate change. Several studies have investigated the 

application of machine learning techniques for predicting 

SOC, highlighting the effectiveness of various algorithms. 

For instance, Long Short-Term Memory (LSTM) models 

demonstrated a high predictive accuracy, with an R² 

value of 0.89 in Southern Xinjiang, China (Wang et al., 

2023). Other research has emphasized the importance of 

spatial SOC distribution, utilizing advanced techniques 

such as meta-learning stacking to improve predictive 

performance (Taghizadeh-Mehrjardi et al., 2020). 

Additionally, recent advancements in digital soil mapping 
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have demonstrated the superiority of models like LSM-

ResNet over traditional methods (Zeng et al., 2022). The 

spatial distribution of SOC has been projected using 

remote sensing, geographic information systems, and 

machine learning algorithms (Minasny et al., 2006; 

Grimm et al., 2008; Minasny et al., 2016; Minasny et al., 

2018; Alaboz et al., 2021; Demir and Başayiğit, 2022; 

Bekana and Mohammed, 2022; Odebiri et al., 2022; Xie et 

al., 2022; Padarian et al., 2022; Demir, 2024a). In Türkiye, 

studies focused on SOC determination in greenhouse 

environments remain limited, necessitating further 

investigation into the impacts of both anthropogenic and 

natural factors on SOC levels. Given Türkiye's unique 

climatic characteristics and agricultural potential, 

exploring SOC dynamics within greenhouse settings is 

essential for optimizing soil management practices 

(TurkStat, 2023). 

This study aims to determine the variability of SOC 

content in greenhouse environments situated on 

pyroclastic deposits around Isparta. The hypothesis 

posits that pyroclastic flows and deposits resulting from 

volcanic activity during the Pliocene and Quaternary 

periods significantly influence the region's soil 

composition, leading to notable changes in SOC content. 

Materials released into the atmosphere during volcanic 

activity and quickly deposited onto the Earth's surface 

make up pyroclastic deposits. These deposits can 

significantly influence soil structure and soil organic 

carbon (SOC) accumulation when incorporated into 

surface soils. Pyroclastic materials have a high surface 

area and fine grain size, which increases their ability to 

retain water. This helps to build up organic matter and 

foster plant growth (Elitok et al., 2009; Saputra et al., 

2022). The study's primary goal is to develop 

classification models for SOC levels based on soil 

characteristics, thereby improving understanding of SOC 

dynamics and promoting sustainable agricultural 

practices. To achieve this, soil samples were collected 

from greenhouses on pyroclastic deposits and analyzed 

using the Modified Walkley-Black method to determine 

organic carbon content. Soil pH, electrical conductivity 

(EC), temperature, texture, and topographic 

characteristics were also evaluated. Based on the 

collected soil properties, classification models for SOC 

levels were constructed using modern technologies and 

machine learning techniques. This study intends to 

improve understanding of SOC dynamics in greenhouses 

built on pyroclastic deposits and to educate sustainable 

agricultural operations, laying the framework for more 

efficient and environmentally friendly farming methods. 

 

2. Materials and Methods 
2.1. Study Area 

The study area is located in the northeastern section of 

the Central District of Isparta Province, Türkiye, and 

includes pyroclastic deposits created by volcanic activity 

near Gölcük Crater Lake (Figure 1). The area is depicted 

on the M24b3 and M25a4 sheets of the 1:2500 Türkiye 

Topographic Map. A land survey was undertaken in 

Deregümü Village and its surroundings, which are 3 

kilometers from Isparta's settlement and 1125 meters 

above sea level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study area (Isparta Settlement Area) map. 
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Climate data were obtained from the Turkish State 

Meteorological Service's Isparta Central Station (MGM). 

Based on long-term records from 1929 to 2023, the 

annual average temperature in Isparta was recorded as 

12.3 °C, with the highest mean temperature reaching 18.5 

°C and the lowest at 6.3 °C. The region receives an 

average of 7.1 hours of sunshine per day and experiences 

approximately 99.1 rainy days per year. The highest 

monthly precipitation was observed in December, 

totaling 86 mm, while the lowest was recorded in July at 

15.5 mm. The maximum recorded temperature in the 

region was 40.3 °C in August, and the minimum was -21.0 

°C in February (MGM, 2024). 

According to Corine's 2018 land use data, forest and 

semi-natural areas account for 64.72% of the total area, 

covering 50,085.86 hectares. Agricultural land is the 

second largest land use type, accounting for 29.62% of 

the total area, covering 22,922.30 hectares. Artificial 

surfaces account for 5.55% of the total area, covering 

4,298.01 hectares. Water bodies account for 0.10% of the 

total area, covering 80.26 hectares (Corine, 2024). The 

distribution indicates that the study area predominantly 

comprises natural and agricultural land uses, ensuring a 

smooth and clear representation of the region’s 

characteristics. 

The 2023 data from the Turkish Statistical Institute 

(TurkStat, 2023) presents a noteworthy overview of the 

distribution of agricultural lands and greenhouse 

activities in the study area. Cereals and other crops make 

up the largest use of agricultural land, covering 96,911 

decares. Next, fallow lands are the second-largest, 

occupying 26,116 decares. Fruit, beverage, and spice 

crops follow, covering 21,516 decares. Vegetable 

cultivation takes up 6,123 decares, while farmers grow 

ornamental plants on 1,426 decares. In the study area, 

farmers grow crops in greenhouses that cover 2,506 

decares, primarily using plastic for the structures. This 

indicates that plastic is the most common greenhouse 

covering material in the region. Farmers do not use other 

methods like low tunnels, glass greenhouses, or high 

tunnels (TurkStat, 2023). As a result, greenhouse 

activities rely solely on plastic structures, limiting the 

adoption of alternative techniques. These results 

highlight effective agricultural land use and suggest 

significant opportunities for expanding greenhouse 

cultivation in the future. 

The Gölcük volcanic region, situated at the apex of the 

Isparta Angle, represents a geologically complex area 

influenced by Pliocene and Quaternary volcanic activity. 

The area is characterized by a combination of 

autochthonous and allochthonous units that have been 

intruded by volcanic material and covered with 

pyroclastic fall and flow deposits. These deposits, 

consisting of ash, lapilli, and pumice fragments, are 

associated with the volcanic eruptions of the Gölcük 

system and have contributed to the formation of surface 

soils. The pyroclastic material, through its fine-grained 

structure and high porosity, influences soil physical 

properties, such as water retention capacity and soil 

aeration, which are crucial for organic carbon 

accumulation. Additionally, the pyroclastic deposits are 

spatially distributed along faults and extensional 

structures within the Isparta region, further shaping soil 

development processes (Elitok et al., 2009; Canpolat and 

Turoğlu, 2019). The interaction of volcanic deposits with 

tectonic and climatic factors plays an important role in 

the geochemical genesis of soils in this area, enhancing 

the study’s focus on soil organic carbon dynamics. 

2.2. Greenhouses Soil Samples 

This study used various cartographic materials in the 

Remote Sensing and Geographic Information Systems 

Laboratory of the Department of Soil Science and Plant 

Nutrition at the Faculty of Agriculture, Isparta University 

of Applied Sciences to determine the greenhouse areas. 

These include a 1:2500 scale topographic map, satellite 

images, major soil group maps, land use capability 

classes, geological maps, and numerical data (Demir, 

2024b). Using Google Earth Pro, 288 greenhouse areas 

were identified for 2022. 

Sample points for this population were calculated using 

the G-power test, especially the "Means: Equal sample 

sizes, two groups" test type. This test determines 

whether the difference in the means of the two groups is 

statistically significant. In the G-power calculation, the 

alpha value was set at 5%, and the power (1-beta) was 

set at 95%, resulting in a 5% margin of error and 95% 

test power. The effect size was presumably set at 0.5, 

indicating a medium effect size (Demir et al., 2024). 

The calculated sample size was 92, meaning that at least 

92 samples were required for analysis. This sample size 

was expected to detect a medium effect size with 95% 

power and a 5% margin of error. However, it is 

important to note that the effect size was estimated 

hypothetically, and the actual effect size may differ from 

this assumption. The spatial distribution of the selected 

sampling points is shown in Figure 2. 

Topography characteristics such as elevation, slope, and 

aspect for each sample point were derived from Türkiye 

topographic maps. The M24b3 and M25a4 map sheets 

were digitized, and the corresponding elevation, slope, 

and aspect values were recorded as attribute data for 

each point using ArcGIS Pro software (Demir, 2024b). 

The Corrected Akaike Information Criterion (AICc) was 

considered, ensuring the ratio of observations to 

parameters exceeded 40 (Eyduran et al., 2015; Altay, 

2022). 

Greenhouse farming activities around Isparta are 

conducted between May and November. During the 

winter, the coverings are removed, and sampling was 

performed twice from 92 greenhouses identified for this 

study. Coordinates of the areas were recorded using GPS, 

and soil samples were taken from 0-30 cm depth at the 

end of winter and mid-July (Kacar, 2014). Stratified 

random sampling was conducted using ArcGIS Pro, 

identifying 30 points. 
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Figure 2. Greenhouse sample points map. 

 

The sampling in two distinct stages was conducted to 

accurately assess the organic carbon dynamics in the 

region, particularly considering the practice of 

greenhouse cultivation in highland areas. During the 

winter months, production in the greenhouses ceases, 

and the cover materials are removed, resulting in a 

significant increase in organic matter inputs. Therefore, 

the study focuses on the July period, when remote 

sensing data can effectively capture the status of organic 

carbon levels, as it reflects the conditions post-cultivation 

(ÇEM, 2018). By analyzing samples from both periods, 

this research aims to provide a comprehensive 

understanding of SOC variations throughout the year, 

allowing for a better assessment of the seasonal impacts 

on soil health in the context of highland greenhouse 

agriculture. Soil sampling from the designated points 

during the first sampling period was completed between 

March 19-21, 2023. In the second sampling, additional 

soil samples were taken from nearby areas with different 

land uses in July 2023. Soil samples were collected from 

non-compacted, non-border areas of the plots, placed in 

polyethylene bags, labeled, and their GPS coordinates 

recorded. During the land survey, some greenhouses 

were found to have organic fertilizer added, particularly 

those growing tomatoes. Carnation greenhouses did not 

remove their covers in winter. Farmers reported 

irrigation issues and crop losses due to soil pathogens. 

Measurements for moisture, temperature, pH, and 

electrical conductivity (EC) were taken using a KC300 

device. Using shading materials in greenhouses to control 

high temperatures caused changes in light conditions. 

2.3. Laboratory Analysis 

Soil samples collected from the study area were air dried 

after being sieved through a 2 mm mesh. The preparation 

process for the soil samples collected during the first and 

second sampling periods was completed before analysis. 

Soil texture analysis was performed using the 

hydrometer method (Demiralay, 1993). Electrical 

conductivity (EC) and pH measurements were carried 

out using a 1:2.5 soil-to-water suspension (Kacar, 2014). 
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For the determination of SOC air-dried soil samples were 

sieved through a 500 µm mesh and analyzed using the 

Modified Walkley-Black method (Kacar, 2014). 

These analyses were conducted in the collected soil 

samples. Organic carbon content was determined on 92 

soil samples collected during the first and second 

sampling periods, with three replicates for each sample. 

In addition, soil samples collected from adjacent parcels 

with different land-use types were analyzed with three 

replicates. Subsequently, calculations were carried out to 

determine the changes in organic carbon between the 

two periods, as well as to assess the difference in organic 

carbon content between the main parcels and adjacent 

land parcels. 

2.4. Statistical Analysis and Modeling 

A database was created for the soil samples collected 

during the first and second sampling periods. 

Additionally, a dataset was established for the organic 

carbon content of samples taken from neighboring 

parcels. The descriptive statistics of the soil samples 

were evaluated using Minitab 17 software. The normal 

distribution of the data was checked using the 

Kolmogorov-Smirnov test (Koşkan et al., 2011; Demir 

and Başayiğit, 2022). Levene's variance homogeneity test 

revealed significant differences among the regional types 

(P<0.05); therefore, the Tukey test, significant at α=0.05, 

was employed for post hoc comparisons. This analysis 

was conducted on 276 different SOC contents and soil 

organic matter amounts from 92 samples (Demir, 

2024a). The organic carbon class range identified 

through the Turkish Soil Organic Carbon Mapping Project 

was categorized as very low (<0.6%), low (0.6-1.2%), 

moderate (1.2-1.8%), good (1.8-2.3%), and high (>2.3%) 

(Sönmez et al., 2018). Based on these classifications, 

modeling was performed to classify the observations 

with the highest accuracy, considering parameters such 

as sand (%), silt (%), clay (%), pH, electrical conductivity 

(EC in mmhos/cm), elevation (meters), slope (%), and 

aspect (°). Classification analyses was conducted using 

the Weka software (Koçak, 2022). Machine learning 

models were developed and evaluated, including Logistic 

Regression (LR), K-Nearest Neighbors (KNN), Support 

Vector Machine (SVM), Decision Tree (DT), and Random 

Forest (RF). In the modeling process, a 10-fold cross-

validation method was applied to evaluate the 

performance of the models more reliably, using the 

entire dataset. This technique ensures that the reported 

results are not biased by a particular data split, as each 

fold is used for training and validation. Model accuracies 

were determined based on the developed models' 

General Accuracy, Precision, Sensitivity, F-Score, and ROC 

area measurements (Demir and Başayiğit, 2022). Cross-

validation also helps prevent overfitting by testing the 

models on multiple subsets of the dataset, providing a 

more comprehensive performance assessment (Demir et 

al., 2024). 

 

 

3. Results 
3.1. Soil Organic Carbon 

SOC is an important measure of ecosystem health and 

soil fertility. It includes carbon compounds from plants 

and other organic materials. These compounds greatly 

affect the structure of the soil, its ability to hold water, 

and the nutrients it contains. Proper SOC identification 

and management are crucial for increasing agricultural 

production, decreasing erosion, and controlling 

greenhouse gas emissions. Understanding the link 

between soil organic carbon and topographic parameters 

is critical in establishing sustainable soil management 

and environmental protection methods. 

Soil organic matter (SOM) refers to the total organic 

compounds in the soil and is an important factor in 

evaluating soil health. It consists of plant leftovers, 

microbial byproducts, and other organic components. 

SOC is a key component of SOM, indicating the amount of 

carbon in organic matter (Demir and Başayiğit, 2021). In 

general, SOC accounts for 58% of SOM, and this ratio is 

critical for estimating SOM content. As a result of their 

relationship with SOM, SOC estimations are critical when 

assessing soil health and fertility. 

Table 1 shows descriptive statistics for soil samples 

taken in greenhouses. The results from the two sampling 

periods clearly show variations in SOC and SOM content 

over time. In the first period, the average SOC value was 

calculated to be 1.047%, with a standard deviation of 

0.516 and a coefficient of variation (CV) of 49.313%. This 

shows that SOC is very variable, with values that deviate 

greatly from the mean. In the second period, the average 

SOC decreased to 0.757%, with a standard deviation of 

0.543 and a coefficient of variation of 71.789% (Table 1). 

The larger CV in this phase indicates a wider range of 

variability in SOC levels, resulting in a more dispersed 

distribution than in the previous period. The average 

SOM content in the first period was calculated to be 

1.805%, with a standard deviation of 0.890 and a 

coefficient of variation (CV) of 49.313%. These numbers 

suggest considerable variability in SOM, demonstrating 

that the values deviate significantly from the mean. The 

average SOM content during the second period was 

1.304%, with a standard deviation of 0.936 and a CV of 

71.789% (Table 1). The increase in the coefficient of 

variation during the second phase indicates increased 

variability and dispersion in SOM data. The variability in 

SOC and SOM rose significantly across the two periods. 

This shows that the organic content of the soil samples 

changed significantly over time, which should be 

considered when evaluating soil management strategies 

and greenhouse conditions. The notably high coefficients 

of variation in the second period highlight the 

importance of conducting a more in-depth investigation 

of the effects of soil management practices and 

environmental conditions on greenhouse soil organic 

content levels. The seasonal results of the soil samples 

collected from the greenhouse areas provide important 

insights into the distribution of SOC and SOM.  



Black Sea Journal of Agriculture 

BSJ Agri / Sinan DEMİR and Mehmet Emre ÇAĞ                               20 
 

Table 1. Descriptive statistics of the dataset of greenhouses 

Periods Variable n Min. Mean Max. StDev CoefVar Skew. Kurt. 

1. Period 
SOC, % 

276 
0.104 1.047 2.650 0.516 49.313 0.400 0.259 

SOM, % 0.179 1.805 4.389 0.890 49.313 0.400 0.259 

2. Period 
SOC, % 

276 
0.072 0.757 3.601 0.543 71.789 1.677 1.001 

SOM, % 0.124 1.304 6.208 0.936 71.789 1.677 1.001 

 

It can be observed that the skewness and kurtosis values 

for both periods align with normal distribution. In the 

first period, the calculated skewness values for SOC and 

SOM were both 0.400. These values indicate that the data 

distribution is symmetric, showing no significant positive 

or negative skew. The kurtosis values for SOC and SOM 

were also calculated as 0.259 (Table 1). These results 

suggest that the data distribution is quite close to normal, 

with neither a highly peaked nor a flat distribution. This 

means that the data sets tend to follow a normal 

distribution, without significant centralization or 

spreading. In the second period, the skewness and 

kurtosis values for both SOC and SOM were measured as 

1.677. The skewness value of 1.677 indicates a positive 

skew, meaning the data distribution tends to shift to the 

right of the mean. Similarly, the kurtosis value of 1.677 

suggests that the data distribution is slightly peaked 

compared to normal distribution, indicating that the data 

points are somewhat more concentrated around the 

mean (Table 1). However, these values remain within 

acceptable limits for normal distribution, indicating that 

the data set still generally conforms to a normal 

distribution with no major deviations in terms of 

skewness or kurtosis. 

In conclusion, the skewness and kurtosis values for both 

SOC and SOM in both periods suggest that the data 

distribution largely follows a normal pattern. This 

regularity and consistency in the organic content of the 

soil samples support the assumption of normal 

distribution, enhancing the reliability of the statistical 

analyses. These results indicate that normal distribution 

assumptions are valid for analytically assessing soil 

organic carbon content. 

During the second period of the study, soil sampling was 

conducted at points near 30 randomly selected 

greenhouse areas using a stratified random sampling 

method. These points were located in different land-use 

types adjacent to the greenhouses. These areas' SOC and 

SOM values were compared with those observed under 

greenhouse conditions. The distribution of land-use 

types for the sampling points is presented in Table 2. 

Identifying the various land-use types within the project 

area is crucial for understanding their impact on SOC and 

SOM. Each land-use type can have distinct effects on soil 

health and ecosystem dynamics. For example, vineyards 

and orchards may enhance soil organic matter content, 

while fallow land and greenhouse fallow practices play a 

significant role in soil improvement and sustainable 

agricultural practices. Other land-use types, such as 

vegetable and rose gardens, may impact soil fertility and 

organic matter content in addition to serving aesthetic 

and commercial purposes. 

A detailed analysis of these different land-use types 

contributes to the development of effective soil 

management strategies and ecosystem management. 

Furthermore, the results obtained from the different-

sized parcels in agricultural areas provide a broad 

perspective on the soil organic matter and carbon 

content, supporting the development of more effective 

management strategies for these parcels. This evaluation 

provides valuable insights into the effects of various 

land-use types on soil properties, which are critical for 

developing optimized agricultural and ecosystem 

management practices. 

 

Table 2. The land use type in the side plots of some 

greenhouse areas 
 

Greenhouse ID Number Land Use Types 

48-49-64-65-70-76-79-80 Vineyard 

33-40-52-55-66-83-87-89-90-92 Bare fallow 

21-36-88 Greenhouse fallow 

5-9 Rose garden 

16-26-45 
Mixed fruit 

orchard 

7-12 Cherry orchard 

1 Walnut orchard 

14 Vegetable garden 

 

The descriptive statistics results for the 30 greenhouse 

sampling points and their adjacent plots have been 

calculated and are presented in Table 3. In the first 

period, the average values for SOC and SOM were found 

to be 1.03% and 1.78%, respectively. The coefficient of 

variation for SOC and SOM during this period was 

determined to be 51.92% for both, indicating a wide 

distribution of the data. The skewness and kurtosis 

values for both components were measured at 0.47 and 

0.39, respectively (Table 3). These values suggest that the 

data distribution is symmetric and exhibits a tendency 

close to normal distribution, with data points evenly 

distributed around the mean. In the second period, the 

average values for SOC and SOM were calculated as 

0.73% and 1.26%, respectively. The coefficients of 

variation for SOC and SOM were found to be 81.25% for 

both, indicating a broader variation in the data during 

this period. The skewness and kurtosis values for SOC 

were 1.48 and 1.59, and for SOM, they were also 1.48 and 

1.59 (Table 3). The positive skewness values indicate a 

positive trend in the data distribution, with values 

tending to shift right relative to the mean.  
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Table 3. Descriptive statistics results in the adjacent plot dataset 

Periods Variable n Min. Mean Max. StDev CoefVar Skew. Kurt. 

1. Period 
SOC, % 

90 
0.104 1.034 2.520 0.537 51.921 0.467 0.392 

SOM, % 0.179 1.783 4.344 0.926 51.921 0.467 0.392 

2. Period 
SOC, % 

90 
0.075 0.730 3.367 0.593 81.253 1.480 1.586 

SOM, % 0.129 1.259 5.805 1.023 81.253 1.480 1.586 

Adjacent Plot 
SOC, % 

90 
0.047 0.631 2.161 0.467 74.018 1.407 1.725 

SOM, % 0.081 1.088 3.726 0.805 74.020 1.408 1.725 

 

The slightly higher kurtosis values suggest that the data 

distribution is more peaked than a normal distribution, 

with data points clustering closer to the mean. For the 

adjacent plot, the average values for SOC and SOM were 

calculated as 0.63% and 1.09%, respectively. The 

coefficients of variation for SOC and SOM in this plot 

were both 74.02%, indicating a significantly wide 

distribution of these data. The skewness and kurtosis 

values for SOC were measured at 1.41 and 1.72, 

respectively, and for SOM, they were also 1.41 and 1.72 

(Table 3). The high values of skewness and kurtosis 

indicate that the data distribution deviates more from 

normality, with data points exhibiting a rightward shift 

and a more peaked distribution compared to a normal 

distribution. 

In conclusion, the skewness and kurtosis values obtained 

from both periods and the adjacent plot indicate that the 

data distributions exhibit a certain degree of normal 

distribution tendency. However, some periods and plots 

show tendencies of deviation from normality. This 

suggests that soil organic content varies over time and 

may exhibit significant differences across different areas. 

These results provide important insights for soil 

management and assessment. 

The sampling conducted in greenhouse areas resulted in 

an analysis of SOC content over two different periods. In 

the first period, the average SOC content was determined 

to be 1.047% ± 0.516, while in the second period, this 

value was measured at 0.757% ± 0.543. According to the 

results of the variance analysis, the difference between 

the two periods was found to be statistically significant at 

the 95% confidence level. Based on the Tukey post-hoc 

test, the SOC content in the first period was classified as 

"A," and that in the second period as "B" (Table 4). These 

results indicate that the SOC content in greenhouse areas 

varies seasonally, and this variation is statistically 

significant. A higher SOC content was observed in the 

first period, while this value showed a marked decrease 

in the second period. This reduction may suggest the 

influence of seasonal changes, agricultural management 

strategies employed, or other environmental factors on 

SOC content. The results indicate that during the winter 

months in highland conditions, lower temperatures lead 

to reduced soil biological activity, resulting in decreased 

soil organic carbon decomposition. However, in open 

greenhouses, organic matter applications and 

precipitation contribute to an increase in soil organic 

carbon levels during this period. In contrast, during the 

summer months, rising temperatures and heightened soil 

biological activity are observed, which, coupled with the 

elevated temperatures within greenhouse conditions, can 

lead to a reduction in organic carbon content. The 

determined change in SOC content emphasizes assessing 

and optimizing greenhouse management and soil 

improvement measures.  Furthermore, it is 

recommended that more comprehensive studies be 

conducted to determine whether the seasonal variations 

are associated with microenvironmental conditions 

within the greenhouse or changes in agricultural 

practices. These results could provide a significant 

foundation for making strategic decisions in greenhouse 

management and optimizing SOC content. 

 

Table 4. Seasonal SOC content variance analysis results 

of greenhouse areas 
 

Periods n Means ± StDev 

1. Period 276 1.047±0.516A* 

2. Period 276 0.757±0.543B 

*= a statistically significant difference exists between the groups 

(P<0.05). 

 

SOC content in greenhouse areas has been assessed using 

investigations performed over multiple periods and on 

adjacent plots. The average SOC content obtained from 

the adjacent plot is significantly lower (0.631%) than the 

periodical data gathered from the greenhouse, especially 

when compared to the SOC content obtained during the 

first period (1.034%). Furthermore, the SOC content in 

the second period (0.730%) is consistent with the 

samples collected from the adjacent plot. However, the 

initial period's values are significantly higher, indicating 

a considerable divergence from the SOC contents 

reported in subsequent periods (Table 5). 

 

Table 5. Variance analysis results of SOC in some 

greenhouse plots and adjacent plots 
 

Periods n Means ± StDev 

Adjacent Plot 90 0.631±0.467B* 

1. Period 90 1.034±0.537A 

2. Period 90 0.730±0.593B 

*= a statistically significant difference exists between the groups 

(P<0.05). 

 

These differences between periods may stem from 

changes in greenhouse management practices, the effects 

of agricultural activities, or other environmental 
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conditions. Notably, the high SOC content during the first 

period suggests an accumulation of organic matter under 

specific conditions of that period, whereas a significant 

reduction in SOC content is observed in subsequent 

periods and the adjacent plot. It is important to consider 

that the SOC content in the adjacent plot exists at a 

different level compared to the conditions within the 

greenhouse and displays similar seasonal variations. 

These results underscore the need for assessing the 

effectiveness of in-greenhouse practices and soil 

management strategies, as well as evaluating soil 

characteristics across different plots. Additionally, this 

data provides a critical foundation for strategic planning 

aimed at monitoring and improving soil organic carbon 

levels. 

SOC content under greenhouse conditions exhibits 

significant variations based on periodic analyses. During 

the first period, the SOC content was determined to be 

1.034%, indicating a high accumulation of organic matter 

in the greenhouse environment. However, in the second 

period, the SOC content decreased to 0.730%, reflecting a 

reduction in organic carbon levels. The SOC content 

obtained from the adjacent plot was found to be 0.631%, 

which is comparable to the values recorded during the 

second period. These results demonstrate that the 

organic carbon content within the greenhouse varies 

over time. This variability highlights the need to review 

greenhouse management practices and strategies for 

organic matter addition. 

3.2. Machine Learning Models for Greenhouse SOC 

The dataset for classifying SOC content under greenhouse 

conditions consisted of 276 observations and 8 variables. 

The variables used in the prediction included clay 

content (%), silt content (%), sand content (%), electrical 

conductivity (EC) (mmhos/cm), soil pH value, elevation 

(meters), slope percentage (%), and aspect direction 

(degrees). These variables were utilized in the modeling 

process to predict the soil organic carbon (%OC) content. 

The descriptive statistics results for these variables are 

shown in Table 6. The mean clay content was 12.551%, 

with a Coefficient of Variation of 14.81%, ranging from 

9.986% to 15.104%. The clay distribution was relatively 

symmetrical, indicated by a skewness of -0.03 and a 

kurtosis of -1.41. The mean silt content was 21.633% 

(CoefVar = 8.79%), with values ranging from 18.989% to 

24.633%. A slight positive skewness of 0.19 and a 

kurtosis of -0.96 suggested a mild tendency towards 

higher silt values. Sand content averaged 65.815% 

(CoefVar = 4.28%), ranging from 62.686% to 71.025%, 

with a rightward skewness of 0.97 and a kurtosis of -

0.30, indicating a distribution close to normal. Electrical 

conductivity averaged 0.59391 mS/m (CoefVar=25.11%), 

with values between 0.32 and 0.72 mS/m, demonstrating 

a negatively skewed distribution (skewness=-1.13) and a 

kurtosis of -0.66, indicating extreme values. The mean pH 

level was 7.0773 (CoefVar=8.85%), ranging from 6.0200 

to 7.7990, reflecting a negatively skewed distribution 

(skewness=-0.73) and a kurtosis of -0.92. The average 

elevation was 1077.0 meters (CoefVar=2.67%), with a 

range of 1035.0 to 1151.0 meters, showing a mild 

positive skewness (skewness=0.45) and a kurtosis of -

0.73. The mean slope was 2.4096% (CoefVar=53.93%), 

with values between 0.0000% and 5.6290%, indicating a 

slight positive skewness (skewness=0.45) and a kurtosis 

of -0.49. Finally, the average aspect was 115.13° 

(CoefVar=95.72%), with values ranging from -1.00° to 

354.81°, displaying a positive skewness of 1.11 and a 

kurtosis of -0.09, suggesting a relatively uniform 

distribution. 

In the Türkiye Soil Organic Carbon Mapping Project, the 

organic carbon content classes were defined as follows: 

very low (<0.6%) as Class I, low (0.6-1.2%) as Class II, 

moderate (1.2-1.8%) as Class III, good (1.8-2.3%) as 

Class IV, and high (>2.3%) as Class V [29] (ÇEM, 2018). 

The accuracy of the developed machine learning models 

was evaluated using the Cross-Validation method. This 

method allows for more reliable testing of each model's 

performance by repeatedly training and testing on 

various subsets of the dataset. LR, KNN, SVM, DT, and RF 

algorithms were systematically tested on the data 

partitions defined in this process. Cross-Validation 

helped provide clearer measurements of each model's 

overall accuracy, precision, sensitivity, F-score, and ROC 

area, revealing how the models performed across 

different data subsets. 

The advantages and disadvantages of the models can be 

summarized as follows: LR, while being a simple and fast 

model, may be limited in capturing complex 

relationships. KNN can offer high accuracy but may slow 

down with large datasets.  

 

Table 6. Descriptive statistics results of independent variables dataset (n=276) 

Variable Min. Mean Max. StDev CoefVar Skew. Kurt. 

Clay, % 9.99 12.55 15.10 1.86 14.81 -0.03 -1.41 

Silt, % 18.99 21.63 24.63 1.90 8.79 0.19 -0.96 

Sand, % 62.69 65.82 71.03 2.81 4.28 0.97 -0.30 

EC, mmhos/cm 0.32 0.59 0.72 0.15 25.11 -1.13 -0.66 

pH, 6.02 7.08 7.80 0.63 8.85 -0.73 -0.92 

Elevation, meters 1035.00 1077.00 1151.00 28.80 2.67 0.45 -0.73 

Slope, % 0.00 2.41 5.63 1.30 53.93 0.45 -0.49 

Aspect, ° -1.00 115.13 354.81 110.20 95.72 1.11 -0.09 
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SVM achieves high success in classification but may 

require parameter tuning. DT provides high 

interpretability but poses a risk of overfitting. RF 

generally offers high accuracy and minimizes overfitting 

risk, but the model's explainability can be more 

challenging. This evaluation process provides a solid 

foundation for selecting the most suitable approach for 

predicting organic carbon content by analyzing the basic 

logic and performance of each model. 

When evaluating the performance of the developed 

classification models, different results were obtained in 

terms of each model's ability to predict soil organic 

carbon (%OC) content. The evaluation results are 

reported here using weighted averages from several 

categorization algorithms. 

The LR model has limitations due to missing metrics such 

as precision and F-score, making it difficult to fully assess 

its overall performance. However, it achieved a 

sensitivity value of 50.7% and an ROC area of 0.595 

(Figure 3). These results indicate that the LR model has 

limited success in predicting soil organic carbon content. 

The KNN algorithm reached a sensitivity of 52.5% and an 

ROC area of 0.611. The performance of KNN could not be 

fully evaluated due to missing precision and F-score 

metrics (Figure 3). Nonetheless, KNN showed a slightly 

higher overall accuracy compared to LR. 

The SVM model exhibited lower performance with a 

sensitivity of 49.6% and an ROC area of 0.552 (Figure 3). 

The lack of precision and F-score values limited SVM's 

ability to predict soil organic carbon content. 

The DT model demonstrated the highest performance. It 

achieved a precision of 75.3%, a sensitivity of 75.4%, and 

an F-score of 75.1. Additionally, the ROC area was 

determined to be 0.874, with an overall accuracy of 

75.4% (Figure 3). These results indicate that the DT 

model is effective in classifying soil organic carbon 

content successfully. 

The RF model exhibited the highest performance. It 

attained a precision of 77.3%, a sensitivity of 76.4%, and 

an F-score of 75.1. The ROC area was determined to be 

0.904, with an overall accuracy of 76.4% (Figure 3). RF 

was observed to be the most successful model in 

predicting soil organic carbon content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Performance results of SOC machine learning models. 
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In conclusion, the RF and DT models outperformed other 

models in classifying soil organic carbon content (Figure 

3). These models are regarded as the most suitable 

methods for effectively predicting soil organic carbon 

content due to their high accuracy rates and robust 

performance metrics (Demir and Başayiğit, 2022). Future 

studies could conduct more detailed analyses on the 

applicability and improvement of these models. 

The model with the highest accuracy in classifying 

organic carbon in greenhouses is the RF model. The 

confusion matrix representing the classification 

performance of the RF model is presented in Figure 4. 

The RF model has demonstrated a higher accuracy in 

classifying organic carbon content compared to other 

models. The accuracy rate of the RF model is determined 

to be 76.449%, which reflects the model's overall 

performance quite successfully. 

The confusion matrix illustrates the relationship between 

the RF model and the class labels: 

I. Class (Very Low): In this class, 96 samples were 

correctly classified, while 20 samples were 

misclassified. This result indicates that the RF 

model identifies this class with high accuracy 

(Figure 4). 

II. Class (Low): In this class, 103 samples were 

correctly classified, whereas 23 samples were 

misclassified. This indicates that the RF model 

effectively identifies this class with a high degree 

of accuracy (Figure 4). 

III. Class (Medium): In this class, 7 samples were 

correctly classified, and 16 samples were 

misclassified. This suggests that while the model 

recognizes this class relatively well, it encounters 

some challenges (Figure 4). 

IV. Class (Good): In this class, 4 samples were 

correctly classified, and 5 samples were 

misclassified. This result shows that the RF model 

classifies this class with reasonable accuracy but 

with some instances of misclassification (Figure 

4). 

V. Class (High): In this class, 1 sample was correctly 

classified, and 5 samples were misclassified. This 

indicates that the model faces challenges in 

classifying this class (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. RF model confusion matrix results. 

 

Figure 4 shows the classification results of the RF model, 

which was the most accurate in recognizing soil organic 

carbon and indicated overall efficacy. Although the model 

performs well in certain classes, such as Classes I and II, 

it is more likely to misclassify others. These results 

confirm the RF model's effectiveness as a powerful tool 

for detecting organic carbon soil, but they also highlight 

the need for enhancements in specific classes. Thus, 

reviewing model parameters and training data may help 

improve classification accuracy. 

 

4. Discussion 
This study presents substantial results on the 

performance of SOC content classification using several 

machine learning models, such as RF, LR, KNN, DT, and 

SVM. The results show that the RF model has the highest 
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accuracy (76.449%), showing its applicability for SOC 

classification (John et al., 2020; Zhang et al., 2024). The 

investigation used a complete dataset that included land 

and laboratory data as well as topographic features, 

allowing for high-precision categorical classification of 

SOCs (Fathizad et al., 2022). A significant asset of this 

study is the comparison of multiple machine learning 

methods, which enhances our understanding of their 

effectiveness in identifying SOC material (John et al., 

2020). Regarding the study's advantages, some 

restrictions were noted. The dataset was geographically 

restricted, and the sample numbers for several 

classifications were limited. For instance, Classes III, IV, 

and V had poorer prediction accuracy, suggesting that it 

would be challenging to discern between these groups. 

These results highlight the necessity of more 

investigation to improve categorization methods and 

deal with these issues in future studies (Fathizad et al., 

2022). 

While previous study suggests that the RF model 

performs well with similar environmental data (Yang et 

al., 2016; Wang et al., 2018; Fathizad et al., 2022; Loria et 

al., 2024), it is crucial to note that other algorithms, such 

as SVM and DT, may perform better under certain 

scenarios (Bernardini et al., 2024; Agaba et al., 2024). 

This shows that choosing a suitable model should be 

context-dependent, taking into consideration the 

dataset's and study area's unique characteristics. Future 

research should focus on using larger and more diverse 

datasets to back up the conclusions of this study. 

Furthermore, hybrid models and deep learning 

techniques are proposed to improve model performance 

(Odebiri et al., 2021; Saporetti et al., 2022; Pouladi et al., 

2023; Moharana et al., 2024). It is noteworthy that 

pyroclastic deposits play a crucial role in soil formation, 

particularly in the context of SOC development. These 

deposits, characterized by their rich mineral content and 

unique physical properties, provide an essential 

substrate for soil organic matter accumulation (Elitok et 

al., 2009; Saputra et al., 2022). The influence of 

pyroclastic materials on nutrient availability and 

moisture retention can significantly enhance SOC levels, 

particularly under greenhouse conditions. The study of 

SOC content under greenhouse conditions on pyroclastic 

deposits provided valuable insights, emphasizing the 

necessity for better model parameters and larger 

datasets for the reliable monitoring of organic carbon 

levels. While this study did not specifically address 

economic statistics, it does acknowledge the enormous 

economic benefits of SOC classification in terms of 

agricultural output and sustainable farming techniques. 

Future research should consider these economic 

implications to develop a more comprehensive 

understanding of SOC management (Stockmann et al., 

2013; Mayer et al., 2020; Derrien et al., 2023). 

The conclusions of this study contribute to the 

development of effective soil management strategies for 

greenhouse agriculture in the Isparta region. 

Additionally, the results offer valuable insights into the 

impact of global warming and climate change on soil 

organic carbon dynamics, enhancing our understanding 

of these critical environmental processes. 

 

5. Conclusion 
The study successfully proved greenhouse cultivation's 

effects on organic carbon soil under plateau 

circumstances in the Isparta region. The information, 

which included field and laboratory data and topographic 

features, was evaluated using machine learning 

techniques, and soil organic carbon concentrations were 

accurately classified categorically. The results enabled a 

more precise assessment of soil organic matter levels in 

greenhouse-growing regions, overcoming the 

inadequacies of prior approaches and representing a 

substantial advancement. 

The analysis of soil organic carbon content under 

greenhouse conditions revealed that the RF model was 

the most accurate, confirming its efficiency in organic 

carbon classification. However, several misclassifications 

were observed, particularly in the high and well-

represented classes. Based on these results, it is 

recommended to optimize the model parameters and use 

larger datasets for more accurate and reliable monitoring 

of organic carbon in greenhouse conditions. Additionally, 

a review of greenhouse management practices aimed at 

increasing organic carbon levels is necessary. 

This study contributes to soil management practices for 

greenhouse horticulture in the region while enhancing 

our understanding of the impacts of global warming and 

climate change on soil organic carbon in Türkiye. Further 

research into the interactions between pyroclastic 

deposits and organic matter is essential for optimizing 

soil health and quality. The results offer valuable insights 

into future land management and sustainable 

agricultural strategies and serve as a foundation for 

similar research in other ecosystems. 
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