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Abstract:This research focuses on the mapping of spatial and temporal effects of 
flare on vegetation cover.  The data (11 Landsat 5 TM, 49 Landsat 7 ETM+, 27 
Landsat 8 OLI-TIRS, and 15Landsat 9 OLI-TIRS) dated from 10/10/1984 to 
17/12/2023 with < 3 % cloud cover was used to study 11 flaring sites in the Niger 
Delta. Data processing and analysis were carried out using MATLAB codes. 
Normalized Difference Vegetation Index (NDVI)for Landsat 5 and 7 bands (1-4) 
and Landsat 8 and 9 bands (2-5) was determined from the atmospherically corrected 
multispectral bands.The results show that the temporal in NDVI is specific to each 
site, and that the effect of the flares on the vegetation cover does not majorly depend 
on the size of facility. Eleme I (−2.71 × 10-5-2.32 × 10-5) and II (−1.740 × 10-4-
2.074 × 10-5) presented significant results for a small portion of the area. Umurolu 
(−1.679 × 10-5-5.868 × 10-5) and Bonny (−3.089 × 10-5-2.423 × 10-5) show 
significant results for a wider area which could be because of the number of flare 
stacks within them 4 and 5 respectively. All small and medium facilities show 
statistically significant results which could be attributed to the rate and volume of 
gas burning from them. Therefore, it can be concluded that Landsat data can be used 
to map the spatial and temporal impacts of flare on vegetation cover in the Niger 
Delta. 
Keywords: Remote Sensing, Environmental Science, Thematic Mapping, Land 
Cover, Environmental Studies. 
 

Introduction 
The Niger Delta region is in the Southern part of Nigeria; and it consists of Akwa Ibom, Bayelsa, 

Cross River, Delta and Edo states from South South region; Abia and Imo states from South East 
region; and Ondo State from South West region (Morakinyo, 2015; Onosode, 2003). The Niger Delta 
is an arcuate shaped basin that consists of diverse vegetation and four different ecological zones such 
as coastal ridge barriers, brackish/freshwater swamp forests, mangrove forests and lowland rain forests 
(Odukoya, 2006).  

The Niger Delta is the home for oil and gas exploration, exploitation and processing activities in 
Nigeria. Hence, activities of multinational oil companies such as Shell Petroleum Company, AGIP, 
Total, ELF, etc.are ongoing. The effects of oil and gas activities in the environment of the Niger Delta 
includes increase in temperature (Lu et al., 2020; Morakinyo et al., 2019); environmental pollution 
(Morakinyo et al., 2023a;Morakinyo et al., 2023b; Umbugala & Morakinyo, 2023; Lu et al., 2020); 
contamination of vegetation (Morakinyo, 2015); destruction of vegetation and agricultural pursuits 
(Morakinyo et al., 2020a,b; Nwaogu & Onyeze, 20208), stunted growth and or death of farm produce, 
reduction and destruction of agricultural activities and vegetation (Musa et al., 2024; Morakinyoet al., 
2023a;Morakinyo, 2023c;Morakinyoet al., 2021;Morakinyo et al., 2020 a, b). 

Remote sensing technology deals with the mapping of the environment using space borne 
platforms (Jansen &Gregorio, 2004). It is essential in the production of large, repetitive geospatial data 
of the environment. The geospatial information acquired at different locations can be employed for the 
characterization and assessment of changes in the environment (Yuan et al., 2005). Characteristics of 
remotely sensed data are spatial, temporal, and spectral and are used for mapping of land cover 
dynamics, landuse land cover (LULC) changes, retrieval of land surface temperature (LST) 
(Morakinyo et al., 2022), planning etc. for decision making purposes(Berlanga-Robles and Ruiz-Luna 
2002).The availability of satellite data has made it possible to observe LC from space (Molliconeet al. 
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2003); and geospatial information needed for evaluation of changes on Earth’s surface are collected at 
different time intervals(Jensen 2005).  

Landsat data has been useful in the study of the environment in several ways such as assessment 
of LULC (Jensen 2005); monitoring of vegetation health (Morakinyo et al., 2023a); LST retrieval (Lu 
et al., 2020); forest and agricultural areas monitoring (Campbell 2007); urbanization and planning 
processes (Jensen & Cowen 1999); urban studies (Wang et al. 2020). Open access to satellite data 
enables spatially valid datasets over large areas with great spatial information and temporal frequency 
(Xiao et al. 2006). Improvements in remote sensing data gathering with increased spatial accuracy; 
and availability of various free satellites data provides opportunities and improve quantitative studies 
of activities on Earth surface for example land cover dynamics, the rate and pattern of LULC change, 
vegetation monitoring (Epstein et al., 2002). 

Many studies have been conducted on Normalized Difference Vegetation Index (NDVI) 
because of its usefulness in assessing vegetation, simplicity and can be easily obtained from any 
multispectral sensor with a visible and a near Infra-Red band, hence the reason for its general 
application(Huang et al., 2020)for the assessment of vegetation such as land use studies, land cover 
changes, commercial agriculture, assessments of the climate effects on vegetation dynamics (Kalisa et 
al., 2029); drought monitoring (Hua et al., 2019, Wei et al., 2021;Karnieli et al., 2010; Polat et al., 
2024); forest health and vegetation changes (Gessner et al., 2023; Kloos et al., 2021; Chang et al., 
2022;Chrysopolitouet al., 2013); monitoring land cover dynamics (Lavender, 2016); ecological 
environmental change (Jiang 2021); LULC changes (Hu et al., 2023); systematic planning of urban 
environment (Guha, 2021; Guha et al., 2020); and global vegetation monitoring (Roßberg& Schmitt, 
2023); the study of chlorophyll concentration in leaves (Pastor-Guzman, 2015); productivity of 
plant(Vicente-Serrano et al., 2016) and plant stress Chavez, 2016).The robustness of the NDVI-related 
models is directly determined by the reliability of the NDVI (Butt, 2018). 

Spatial and temporal mapping of flare effects using remote sensing technology is the focus for 
this study. The significance of this study is to help evaluate the spatial and temporal variation of flare 
impact on vegetative cover detected by Landsat sensors. There are three (3) principal research 
questions for this study: (1). Can Landsat data be used for spatial and temporal mapping of flare 
effects on vegetation cover at the flare sites in the Niger Delta? (2). What is the spatial and temporal 
variability in the detection of flare effects on vegetation cover at each flare site? (3) How accurately 
can regression analysis be used for the evaluation of the flare effects on vegetation cover? Therefore, 
the overall aim of this study is to evaluate of the ability of Landsat 5, 7, 8 and 9 data for spatial and 
temporal mapping of flare effects on vegetation cover at gas flaring sites in the Niger Delta. The 
objectives for this study are: (1) Computation of NDVI from atmospherically corrected Landsat data 
for each site; (2) Regression analysis against time to produce 3 maps (Annual change in NDVI 
(regression slope), regression coefficient, r and p-value for the regression at each pixel for each site.(3) 
Computation of mean and standard deviation (SD) of NDVI for further analysis. 

 
Materials and Methods 
Study Area 
Eleven (11) flaring sites including two (2) refineries (Eleme 1 and Eleme 2); seven (7) flow stations 
(Onne, Umurolu, Alua, Rukpokwu, Obigbo, Chokocho & Umudioga); One (1) Liquefied Natural Gas 
(LNG) plant (Bonny) and One (1) oil well (Sara) all from Rivers State, Niger Delta region (Figure 1) 
were studied for the spatial and temporal mapping of flare effects on vegetation. All sites are located 
within the Latitude 4 o 40 1 and 5 o 01 1 N and Longitude 6 o 50 1 and 7 o 01 1 E (Morakinyo et al., 
2022a; Morakinyo, 2015).  
 
Study Data 
Eleven (11) Landsat 5 TM data, forty-nine (49) Landsat 7 ETM+ data, twenty-seven (27) Landsat 8 
OLI-TIRS data, and Fifteen (15) Landsat 9 OLI-TIRS data dated from 10/10/1984 to 17/12/2023 with 
< 3 % cloud cover was used for this study. The USGS website where these data were downloaded is 
(https://earthexplorer.usgs.gov/).  
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Figure 1. Above Left Map of Nigeria, (ESRI, 2024); Above Right) Map of Rivers State (ESRI, 2024); 

Below) 11 gas flaring studied sites (ESRI, 2024). 
 
Methods 
Processing of Landsat Data 
1. Geo-location points were verified: Ten (10) ground control points (GCPs) were selected over the 

Niger Delta using Google Earth (Table 1). Twenty (20) images with five (5) images each from 
Landsat 5, Landsat 7, Landsat 8 and Landsat 9 were uploaded into the ArcGIS and the selected 
GCPs were identified. The comparison of the coordinates of these controls obtained from the 
Google Earth and ArcGIS was carried out with a negligible difference found (1.0×10⁻6 to 7.3×10⁻6 

m) (Table 1). This was taken as an acceptable error range for the geo-location of the imagery.   
2. Removal of zero and out of range values from the data using MATLAB code; and their 

replacement with not a number (nan) in order to avoid divide by zero errors in calculations. Values 
at the upper and lower limits of the 8-bit, 12 bit and 14 bit data range which cannot be 
distinguished from noise were all removed.  

 
Table 1. Geo-location points verification for Landsat 5, 7, 8 and 9 data 
S/N Google Earth 

Latitude (θ)   
Google Earth 
Longitude (λ) 

Landsat 5, 7, 8 and 
9Latitude (θ) 

Landsat 5, 7, 8 and 
9Longitude (λ) 

Remarks 

1 04 24 35.42  07 09 36.00 04 24 35.40 07 09 36.00 An edge of a two-storey 
building 

2 04 25 48.34 07 11 15.41 04 25 48.34 07 11 15.39 A point on a tower 

3 04 44 18.04 06 46 26.03 04 44 18.04 06 46 26.00 A two-point road junction 

4 04 58 17.09 06 37 51.89 04 58 17.01 06 37 51.23 Edge of a fence. 

5 04 52 59.09 06 52 09.95 04 52 59.09 06 52 09.00 A point on a LNG terminal 

6 04 51 40.12 06 57 57.93 04 51 40.00 06 57 57.00 A three-point road junction 

7 05 03 08.89 06 55 15.91 05 03 08.10 05 55 15.21 A three-point road junction 

8 05 00 59.28 06 57 15.5 05 00 59.20 06 57 15.30 Edge of a building at Rivers 
International Airport 

9 04 45 26.24 07 07 04.29 04 45 26.20 07 07 04.30 Edge of Eleme II fence 

10 04 47 56.02 07 03 26.73 04 47 56.01 07 03 26.50 Edge of a building 

 
3. The radiometric calibration of the multispectral bands of the data was done. The Digital Number 

(DN) values were converted to the top of atmosphere (TOA) radiance values based on the sensor 
calibration parameters provided within the metadata files from USGSaccording to the Landsat 5 
(Chander & Markham, 2003), Landsat 7 (NASA, 2002), Landsat 8 and Landsat 9 Science Data 
Users Handbooks (Ihlen, 2019) using equations1. 

Lλ= ((LMAXλ− LMINλ) / (QCALMAX − QCALMIN))× (QCAL−QCALMIN) + LMINλ  (1)  
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Where: 
Lλ= Spectral radiance at the sensor’s aperture (Wm⁻²sr⁻¹µm⁻¹); 
QCAL =The quantized calibrated pixel value in DN (Digital Number); 
LMINλ=Spectral radiance scaled to QCALMIN (Wm⁻²sr⁻¹µm⁻¹); 
LMAXλ=Spectral radiance scaled to QCALMAX (Wm⁻²sr⁻¹µm⁻¹); 
QCALMIN =Minimum quantized calibrated pixel value in DN = 1 for LPGS (a processing software 
version) products; 
QCALMAX = The maximum quantized calibrated pixel value in DN  = 255. 
 
For Landsat 8 and 9, the DN can be converted to spectral radiance using equation 2 
Lλ= ML×Qcal+ AL   (Ihlen, 2019)     (2) 
Where:  
Lλ= Spectral radiance (Wm⁻²sr⁻¹µm⁻¹); 
ML= Radiance multiplicative scaling factor for the band from the metadata; 
AL= Radiance additive scaling factor for the band from the metadata; 
Qcal= Level 1-pixel value in DN. 
 

4. Computation of TOA reflectance for multispectral bands 1 to 4 for Landsat 5 and 7including the 
application of simple sun angle correction is done with equation (3) which assumes Lambertian 
surface reflectance(NASA, 2002;Markham & Barker, 1986): 

𝜌𝜌p= (𝜋𝜋 ×Lλ ×d²) ÷ (ESUNλ× cos 𝜃𝜃𝜃𝜃)    (3)  
Where: 
𝜌𝜌p = Unitless effective at-satellite planetary reflectance; 
L is measured per unit solid angle; 
𝜋𝜋L = Upwelling radiance over a full hemisphere; 
d = Earth-Sun distance in astronomical units; 
ESUNλ= Mean solar exo-atmospheric irradiances; 
𝜃𝜃𝜃𝜃 = Solar zenith incident angle in degrees (Chander & Markham, 2003). 
 
For Landsat 8 and 9, Level 1 DN of multispectral bands 2-5 can be converted to TOA uncorrected 
reflectance for solar elevation angle using equation 4. 
ρλ’ = Mρ×Qcal+ Aρ    (Ihlen, 2019)   (4) 
Where:  
ρλ' = TOA Planetary Spectral Reflectance, without correction for solar angle(Unitless); 
Mρ= Reflectance multiplicative scaling factor for the band from the metadata; 
Aρ= Reflectance additive scaling factor for the band from the metadata; 
Qcal= Level 1-pixel value in DN. 
 
The Landsat 8 and 9 corrected reflectance for solar elevation angle is as follows: 
ρλ=ρλ’/cos (𝜃𝜃SZ)  =ρλ’/ sin (𝜃𝜃SE)   (Ihlen, 2019)    (5) 
Where:  
ρλ=TOA planetary reflectance 
𝜃𝜃SZ=Local sun elevation angle; the scene centre sun elevation angle in degrees is provided in the  
metadata; 
𝜃𝜃SE=Local solar zenith angle; 𝜃𝜃SZ=90° −𝜃𝜃SE. 
 
5. Atmospheric correction method: Dark object subtraction (DOS)method (Lavender, 2016, Liang et 

al., 2001) was adopted for this study; and it assumes within the image some pixels are in 
complete shadow and their radiances received at the satellite are due to the atmospheric 
scattering. Also, this assumption is combined with the fact that very few targets on the Earth’s 
surface are absolute black, so an assumed 1 % minimum reflectance is better than 0 % (Chavez, 
1996). Furthermore, this principle is employed for the development of algorithms for atmospheric 
correction for MODerate Resolution Imaging Spectroradiometer (MODIS) and Medium 
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Resolution Imaging Spectroradiometer (MERIS) sensors (Chavez, 1996). However, this method 
assumes that the error is uniform for the entire image.  
With the application of DOS processes to this study, the pixels for the darkest location (Atlantic 

Ocean) were selected for bands 1-4 for Landsat 5 and 7, and bands 2-5 for Landsat 8 and 9(Table 2). 
The computation of reflectance for these dark pixels was carried out and the lowest value recorded for 
each band was used as an estimate of the atmospheric reflectance for the respective band. To reduce 
the atmospheric effects these small errors were subtracted from the computed reflectance for each 
pixel of the entire image. 

 
Table 2:Coordinates of dark pixels over Atlantic Ocean (L5, L7, L8 and L9) data 

Image ID Band 1 
(Lat/Long.) 

Band 2 
(Lat/Long.) 

Band 3  
(Lat/Long.) 

Band 4  
(Lat/Long.) 

LT51880571986017AAA04 04 20 02.07 
07 15 03.13 

04 20 11.21 
07 15 58.84 

04 21 36.79 
07 15 51.34 

04 21 25.05 
07 16 22.45 

LT51880571987004XXX04 04 10 00.26 
07 04 43.95 

03 48 04.22 
07 42 00.92 

03 49 09.90 
07 42 01.96 

03 51 01.14 
07 42 23.63 

LT51880571986353XXX10 04 16 48.94 
07 21 40.25 

04 11 40.48 
07 39 48.02 

04 10 16.93 
07 21 20.77 

04 08 08.69 
07 09 02.10 

LE71880571999333AGS00 03 40 37.29 
06 35 44.23 

03 41 14.57 
06 35 31.92 

03 45 10.61 
06 34 32.91 

03 43 54.41 
06 32 27.08 

LE71880572000352EDC00 03 57 55.38 
06 24 15.44 

04 17 17.76 
08 09 37.65 

04 18 50.68 
08 10 15.89 

04 19 24.42 
08 11 31.37 

LE71880572003008SGS00 04 18 00.97 
07 26 14.16 

03 36 14.95 
07 57 22.38 

03 38 15.29 
07 57 45.13 

03 41 09.19 
07 58 49.59 

 Band 2 
(Lat/Long.) 

Band 3 
(Lat/Long.) 

Band 4  
(Lat/Long.) 

Band 5  
(Lat/Long.) 

LC81880572018361LGN00 04 22 38.41 
07 04 41.30 

04 22 43.01 
07 04 26.11 

04 22 39.58 
07 04 48.01 

04 22 36.42 
07 04 15.20 

LC81880572019364LGN00 04 16 36.71 
08 10 10.49 

04 18 54.00 
08 10 32.05 

04 17 22.05 
08 10 47.00  

04 16 49.02 
08 10 19.67 

LC81880572021353LGN00 03 35 25.09 
07 56 24.71 

03 34 22.50 
07 56 12.06 

03 35 44.80 
07 55 31.42 

03 34 19.28 
07 55 37.52 

LC09L1TP18805720211211 04 22 37.00 
07 04 41.13 

04 23 00.05 
07 04 23.05 

04 22 49.61 
07 04 37.01 

04 22 26.08 
07 04 43.59 

LC09L1T18805720220317 04 06 42.08 
06 38 18.60 

04 06 06.59 
06 48 45.38 

04 06 43.39 
06 49 22.24 

04 04 52.90 
06 46 54.80 

LC09L1T18805720231225 03 58 05.19 
06 23 32.19 

03 58 42.27 
06 25 23.40 

03 58 57.30 
06 25 41.18 

03 59 11.23 
06 25 59.42 

 
6. Atmospherically corrected reflectance: This is the result obtained after the application of DOS 

method in section 5 above.  
7. Classification of Land Surface Cover (LSC):The atmospherically corrected reflectance bands 1-4 

for Landsat 5 and 7; and bands 2-5 for Landsat 8 and 9 using the K-means function (Morakinyo et 
al., 2023c, Morakinyo et al., 2021, Morakinyo et al., 2020b, Şatır & Berberoğlu, 2012) of the 
MATLAB tool were used for the first unsupervised cluster analysis for the land cover types 
classification. Three (3) classes of land cover (LC) types with cloud classified as the fourth class 
was obtained. Any of the3LC (Vegetation, water, soil and built-up area) and the cloud as the fourth 
class were identified. Also, MATLAB codes were used for the elimination of the cloud class by 
masking. The cloud-masked reflectance was used for the second cluster analysis and 4 LC retrieved 
are vegetation, soil, built up area and water (Morakinyo et al., 2021,Maaharjan, 2018, Morakinyo, 
2015).However, Landsat SWIR bands 5 and 7 (Landsat 5 and 7), and bands 6 and 7 (Landsat 8 and 
9) were also employed for the classification of land cover types but they could not give useful 
results as the bands used, therefore, they were dropped for further analysis. Furthermore, Visual 
examination of Worldview-1 and 2, and IKONOS pseudo-true colour images (RGB) from Google 
Earth and Digital Global (http://browse.digitalglobe.com/imagefinder/public.do) were also used to 
study and clarified the LC obtained. Results obtained from LC classification were used to 
summarize the LC types around each site. 

http://browse.digitalglobe.com/imagefinder/public.do
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8. Retrieval of Normalized Differential Vegetation Index (NDVI) in the N, E, S and W directions:The 
cloud-masked reflectance bands 3 and 4 for Landsat 5 and 7, and bands 4 and 5 for Landsat 8 and 9 
were used for the retrieval of NDVI (Morakinyo et al., 2023a). For Landsat 5 and 7, band 3 is Red 
(R)and band 4 is Near Infra-Red(NIR) while for Landsat 8 and 9, band 4 is R and band 5 is NIR. 
Mathematical formula for NDVI is as stated in equation (6) (Huete et al., 2002).  

NDVI = (NIR −R)/(NIR +R)   (6) 
Where, 
NIR = Near Infra-Red reflectance; 
R = Red reflectance. 

The MATLAB codes used for data processing and analyses in this study are implemented as follow: 
Retrieval of reflectance 
• Each imagery was read from the folder i.e. a folder was created for Landsat 5, Landsat 7, 

Landsat 8, and Landsat 9 respectively. 1 = L5_folder310513; 2 = L7_folder010613; 3 = 
L8_folder020613; and 4 = L9_folder030613; 

• Read in XL radiometric calibration file; fill in all gaps in XL file with Nan (i.e. Not a number). 
• For each Scene Name, convert the specific characters into numerical path, row, year, day. 
• Plot (scene Path, 'x');  plot (scene Year, 'X'); plot (scene Day, 'X') 
• Read Landsat data files; 
• Read .mtl files; 
• Write a loop to automatically go through each line of the file. Instead of printing out; 
• This process is repeated from while to the line counter to process for each X & Y; 
• Choice of dimension of area around the flare station for investigation; i.e. the 12 × 12 km; 
• Removal of zero values or bad values; 
• Dark pixel method of Atmospheric Correction for the Landsat reflective bands; 
• Channel the reading of both scene and radiometric calibration files; 
• Radiometric calibrations for multispectral bands 1, 2, 3 and 4 for Landsat 5, and Landsat 7; and 

bands 2, 3, 4, and 5 for Landsat 8, and Landsat 9. 
• Convert digital numbers (DN) back to the top-of-atmosphere radiances (Lt) for all Landsat 

bands. 
• Computation of at sensor radiance for dark pixels 
• Apply a simple sun angle correction to calculate reflectance Rt at the flaring sites from the top-

of-atmosphere radiance 
• Application of atmospheric correction to reflective bands 1-4  
• Computation of dark pixel reflectance for bands 1-4 for Landsat 5 and Landsat 7; and bands 2-5 

for Landsat 8 and 9; 
• True reflectance for bands 1 to 4 1-4 for Landsat 5 and Landsat 7; and bands 2-5 for Landsat 8 

and 9 i.e. application of atmospheric correction; 
Cluster processing (I) 
• k-means for unsupervised and supervised land cover classifications;  
• Application of MATLAB 'Statistics Toolbox' for k-means clustering;  

Masking of cloud 
• To identify cloud and mask it from the data; 

Cluster processing (II) & Land cover classifications  
• To look at the four (4) classes as a map; 
• To look at the centroid and range of each band and each cluster; 
• And compare the 'spectra' for the 4 classes: 
• To give each land cover classification as vegetation; water; soil; built up 

Retrieval of Normalized Differential Vegetation Index (NDVI)  
• Computation of the NDVI; 
• NDVI for vegetation i.e. Masking of water, soil and built up classes to remain only vegetation; 
• Computation of mean NDVI for vegetation;  

Conversion from Julian day to month and day  
• Formal function for converting julian day into month + day; 
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• Month for a given year (leap / not leap year); 
• Years divisible by 4 are leap years; 
• Catch days in January; 

 
Spatio-temporal regression analysis  
• Create a directory for the results files; 
• Stop at 307 for the processing of NDVI; 
• Load(d1(ifile).name, 'ndvi_mask', 'IDX3','water', 'vegetation', 'builtup', 'soil') ; 
• Conversion to julian days 
• Initialize output variables: slopes(ibad) = nan; rvalues(ibad) = nan; pvalues(ibad) = nan; n(ibad) 

= nan; 
• Plot the maps: Slope, r-values and p-values maps respectively; 
• print('-f150','-r600','-dpng', 'spatial_regression_Stn_1.png'). 

A summary of stages for the processing of Landsat 5, 7, 8 and 9 is shown in Figure 2. 

 
Figure 2. Methodology for processing of Landsat 5, 7, 8 and 9 data. 
 
Insitu measurement for validation of Landsat data 
Methods and processes for the evaluation of satellite data to check if such data meet their stated 
accuracy requirements and objectives is referred to as the validation of satellite products. For this 
study, the validation measurements were carried out at Eleme Refineries I and II, and Onne, Alua, 
Chokocho & Obigbo Flow Stations on 27/07/2012 for reconnaissance activities. On 04/08/2012 to 
21/09/2012 (Morakinyo, 2015), the first ground measurements and observations took place; and were 
also repeated from 05/08/2019 to 22/09/2019 (Morakinyo, 2025b; Morakinyo, 2024a, b, c; Morakinyo 
et al., 2021). The third field measurement occurred from 05/08/2023 to 22/09/2023. The insitu data 
acquired are coordinates of features and points, relative humidity, air temperature, and photographs of 
features and locations. In addition, fieldwork activities at these 6 flaring sites confirmed that their LC 
(vegetation, some buildings, open land and water bodies) types are similar; and that they are the same 
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with all other remaining flaring sites examined due to the similarity in the topography of the Niger 
Delta. 
 

 
Figure 3. Schematic diagram for spatio-temporal analysis 
 
Results and Discussion 
Retrieval of NDVI  
NDVI values were obtained for each pixel covering each site of 12 by 12 km i.e. 400 ×400 pixel. 
 
Regression Analysis 
This analysis is necessary in order to evaluate the spatial and temporal variation in detection of flare 
effects on the vegetation cover by Landsat data (Figure 3). The spatially-resolved linear regression of 
NDVI against time from 1984 to 2023 for each site was carried out for the purpose of generating three 
maps for each site (Annual change in NDVI (regression slope), regression coefficient, r and p-value 
for the regression at each pixel). Data calculated are mean (positive (+), negative (−) and all) and 
standard deviation (SD) (positive (+), negative (−) and all) of NDVI trend values. Tables3-13 
presents the mean and SD for (+), (−)and net slopes of NDVI at each site. 
 
Table 3. Eleme 3: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 

S/N Parameters Value obtained 
1. Mean (pixels with + slope) 2.3164 × 10-5 
2. Mean (pixels with − slope) -2.7076 ×10-5 
3. SD (pixels with + slope) 3.3855 ×10-5 
4. SD (pixels with − slope) 3.8550 ×10-4 
5. Mean (all) 1.9166 ×10-5 
6. SD (all) 2.0689 × 10-4 

 
Table 4. Eleme 2: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 

S/N Parameters Value obtained 
1. Mean (pixels with + slope) 2.0741 ×10-5 
2. Mean (pixels with − slope) -1.7400 ×10-4 
3. SD (pixels with + slope) 3.0926 ×10-5 
4. SD (pixels with − slope) 2.5439 ×10-4 
5. Mean (all) 1.5010 ×10-5 
6. SD (all) 1.3596 ×10-4 
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Table 5. Onne: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 

S/N Parameters Value obtained 
1. Mean (pixels with + slope) 1.0817 ×10-5 
2. Mean (pixels with − slope) -2.4278 ×10-5 
3. SD (pixels with + slope) 2.9639 ×10-5 
4. SD (pixels with − slope) 1.0757 ×10-4 
5. Mean (all) 2.2849 × 10⁻6 
6. SD (all) 7.9515 ×10-5 

 
Table 6. Umurolu: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 

S/N Parameters Value obtained 
1. Mean (pixels with + slope) 5.8684 ×10-5 
2. Mean (pixels with − slope) -1.6787 ×10-5 
3. SD (pixels with + slope) 3.7938  ×10-5 
4. SD (pixels with − slope) 4.2276 ×10-4 
5. Mean (all) 5.8057  ×10-5 
6. SD (all) 7.4988 ×10-5 

 
Table 7. Bonny: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 

S/N Parameters Value obtained 
1. Mean (pixels with + slope) 2.4228 ×10-5 
2. Mean (pixels with − slope) -3.0889 × 10-5 
3. SD (pixels with + slope) 3.3757 ×10-5 
4. SD (pixels with − slope) 1.8121 ×10-4 
5. Mean (all) 2.1294 ×10-5 
6. SD (all) 8.2903 ×10-5 

 
Table 8. Alua: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 

S/N Parameters Value obtained 
1. Mean (pixels with + slope) 8.8056 ×10-5 
2. Mean (pixels with − slope) -2.4815 ×10-4 
3. SD (pixels with + slope) 5.2640 ×10-5 
4. SD (pixels with − slope) 0.0011 
5. Mean (all) 8.7469 ×10-5 
6. SD (all) 1.4516 ×10-4 

 
Table 9. Rukpokwu: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 

S/N Parameters Value obtained 
1. Mean (pixels with + slope) 7.6961 ×10-5 
2. Mean (pixels with − slope) -4.3011 ×10-5 
3. SD (pixels with + slope) 4.1556 ×10-5 
4. SD (pixels with − slope) 1.7924 ×10-4 
5. Mean (all) 7.3986 ×10-5 
6. SD (all) 6.2093 ×10-5 

 
Table 10. Obigbo: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 

S/N Parameters Value obtained 
1. Mean (pixels with + slope) 7.9023 ×10-5 
2. Mean (pixels with − slope) -3.5435 ×10-4 
3. SD (pixels with + slope) 4.5078 ×10-5 
4. SD (pixels with − slope) 7.1281 ×10-4 
5. Mean (all) 7.8273 ×10-5 
6. SD (all) 1.1192 ×10-4 

Figures 4-14 show Maps of annual change in NDVI (regression slopes), regression coefficient, R-
values and p-values for each of the flaring site are presented in Figs 4-14. 𝛼𝛼 >0.05 is the significant 
level adopted for the analysis. The p-value maps are Ps which shows where the relationship is 
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statistically significant. The yellow colour area in the map slope shows portions within the site where 
the temporal trend in NDVI is statistically significant. Also, portions that are always cloudy or that are 
not vegetation are white in the map P. 

 
Table 11. Chokocho: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 

S/N Parameters Value obtained 
1. Mean (pixels with + slope) 1.0546 ×10-4 
2. Mean (pixels with − slope) -2.1310 ×10-4 
3. SD (pixels with + slope) 3.9183 ×10-5 
4. SD (pixels with − slope) 4.3901 ×10-5 
5. Mean (all) 1.0520 ×10-4 
6. SD (all) 5.0786 ×10-5 

Table 12. Umudioga: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 
S/N Parameters Value obtained 
1. Mean (pixels with + slope) 4.8557 ×10-5 
2. Mean (pixels with − slope) -4.0582 ×10-5 
3. SD (pixels with + slope) 5.8950 ×10-5 
4. SD (pixels with − slope) 8.9129 ×10-5 
5. Mean (all) -3.0408 ×10-5 
6. SD (all) 1.0120 ×10-4 

Table 13. Sara: Mean and SD for (+), (−) and net slopes of NDVI (Change in NDVI/ year). 
S/N Parameters Value obtained 
1. Mean (pixels with + slope) 3.3600 ×10-5 
2. Mean (pixels with − slope) -2.9388 ×10-5 

3. SD (pixels with + slope) 2.4634 ×10-5 
4. SD (pixels with − slope) 9.2132 ×10-5 
5. Mean (all) 1.4015 ×10-5 
6. SD (all) 7.6382 ×10-5 

For Figure 4 (Eleme Refinery I) there is a little portion with yellow colour in the slope map which 
spread in the N, E, S and NW directions within the site that presented significant temporal trend in the 
NDVI.−2.71 × 10-5-2.32 × 10-5is the range of value with a mean of±3.38 ×10-5and the p-value is 
from 0.05 and above. However, the significant trend for a small portion occurred (slope map) in the 
NW, S and SW directions within the site Eleme Refinery II Figure 5); and the value obtained ranges 
from (−1.740 × 10-4-2.074 × 10-5) with a mean of (± 3.093  × 10-5) and p-value from 0.05 and above. 
For Onne station (Figure 6), little portions in the E, SE, S and W directions presented a significant 
result. The range of the trend in NDVI is (−2.428 × 10-5-2.9639 × 10-5) with SD of (± 7.952 × 10-5) 
and p-value from 0.05 and above. 

Figure 7 (Umurolu) slope shows that there is a significant positive temporal trend in NDVI within 
Umurolu site (portion with yellow colour).The spatially coherent portion in NDVI within the Umurolu 
site which include boundary of the flow station and an area within the site up to a distance of 90 m 
from the flare (mostly E direction) is between (−1.679 × 10-5 and 5.868 × 10-5) with SD of (±7.499 × 
10-5); and with the p-value from 0.05 and above. For Figure 8 (Bonny LNG) some portions within the 
site in the N, NE, E, S and SE directions (area with yellow colour) gives significant results with 
−3.089 × 10-5-2.423 × 10-5 as the range of NDVI and the same p-value as for Umurolu. Also, Alua 
site (Figure 9) presented a significant result around the flow station and at a distance towards E, NE, 
W and NW directions (sections with yellow colour) where the slope ≠ 0 (between −2.482 × 10-4-
8.806 × 10-5, with a SD± 1.452 × 10-4); and p-value from 0.05 and above. 

Rukpokwu (Fig. 10) has significant trend in NDVI with the locations that are spatially coherent 
(portions with yellow colour). Such portions are around the facility, towards N, NW and SW where 
the changes in NDVI are more pronounced. NDVI range for Rukpokwu is (-4.301 × 10-5-7.696 × 10-

5), SD of (± 6.209 × 10-5) and value of p is 0.05 and above. In addition, Obigbo(Figure 11) also show 
statistically significant results (yellow colour portions) with much effect in the N, NE, E and S. NDVI 
is (−3.544 × 10-4-7.902 × 10-5), SD (±1.119 × 10-4) and p-value is 0.05 and above. For Chokocho 
(Figures 12) most portions such as flow station surroundings within the site presented significant 
results Chokocho’s NDVI range in the trend is (−2.131 × 10-4-1.055 × 10-5), SD (± 5.079 × 10-5), and 
p-value is 0.05 and above. 
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Figure 4. Maps of slope, r & p values; & land cover 

types for Eleme I 
Figure 5. Maps of slope, r & p values; & land 

cover types for Eleme II 

 
Figure 6. Maps of slope, r & p values; & land cover 

types for Onne 
Figure 7: Maps of slope, r & p values; & land cover 

types for Umurolu 
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Figure 8. Maps of slope, r & p values; & land cover 

types for Bonny 
Figure 9. Maps of slope, r & p values; & land cover 

types for Alua 

 
Figure 10. Maps of slope, r &p values; & land cover 

types for Rukpokwu 
Figure 11. Maps of slope, r &p values; & land cover 

types for Obigbo 
For Figure 12 slope, sufficient data to proof that the gas flaring effects only is the factor for the 

trend in NDVI throughout the site. Factors such as burning of refuse, clearing of bush for farming, 
burning of bush for killing of animals etc could be contributing to the result. 
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Figure 12. Maps of slope, r & p values; & land 

cover types for Chokocho 
Figure 13. Maps of slope, r & p values; & land 

cover types for Umudioga 

 
Figure 14.Maps of slope, r & p values; & land cover types for Sara 
 

Umudioga (Figure 13) presented statistically significant results within the site which is more 
pronounced around the facility towards W except in the NW direction. The N of the site shows a 
partially significant trend. The NDVI trend range for the site is (−4.058 × 10-5-4.856 × 10-5), SD 
(±1.012 × 10-4) and p-value is 0.05 and above. Furthermore, Sara site (Figures 14), located at the 
coastal boundary of River Bonny presented that a little portion within the site has a statistically 
significant result with not much in the S and SW directions. The result obtained could be as a result of 
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its coastal location. NDVI trend range (– 2.939 × 10-5-3.360 × 10-5), SD (7.638 × 10-5), and p-value of 
0.05 and above are recorded. 

The significant (+) trends results in the NDVI for a larger area within each site were presented by 
the inland facilities (Umurolu, Alua, Rukpokwu, Obigbo, Chokocho and Umudioga). Coastal facilities 
(Bonny, Eleme I and II, Onne, and Sara) show the significant (+) trends in the NDVI over a small 
area. However, Bonny facility show wider (+) significant trend than all other coastal facilities because 
it gas has 5 flare stacks within the facility. Also, for Bonny site the +  significant trend in the E 
direction of the site could be as a result of the impact of human activities e.g. urban growth. 

The results show that the temporal in NDVI is specific to each site, and that the effect of the 
flares on the vegetation cover does not majorly depend on the size of facility. Both Eleme I (−2.71 × 
10-5-2.32 × 10-5) and II (−1.740 × 10-4-2.074 × 10-5) presented significant results for a small portion 
of the area. Umurolu (−1.679 × 10-5-5.868 × 10-5) and Bonny (−3.089 × 10-5-2.423 × 10-5) show 
significant results which could be as a result ofthe number of flare stacks within them 4 and 5 
respectively. Furthermore, all small and medium facilities show statistically significant results which 
could be attributed to the rate and volume of gas burning from them. Sara site with statistically 
significant results (– 2.939 × 10-5 to 3.360 × 10-5) over a narrow area is a result of its swampy location 
with many tributaries.    

The results of previous studies similar to this research are in support of the results obtained for 
this research. From Figures 4-14, the marked yellow colour portions in the slope maps shows the area 
within the site where the NDVI temporal trend is statistically significant. This means that as a result of 
nearly zero or lowest value of NDVI, the vegetation is sparse, nearly dead or dead due to the effect of 
gas flaring in the area. This is supported by several researchers including Nwaogu & Onyeze (2020); 
they stated that destruction of vegetation and agricultural produce are some of impacts of flaring in the 
environment. Musa et al. (2024) also concluded that stunted growth, death of vegetation and farm 
produce are part of results of flaring gas effects in the environment. Furthermore, Lu et al. (2020); 
Umbugala & Morakinyo (2023); Morakinyo (2024a); Morakinyo (2025b) concluded that 
environmental pollution occurs at flaring sites. In addition, many researchers have concluded that 
NDVI is the most useful vegetation index for vegetation assessment. Other previous results that are in 
supports of this study includes (Kalisa et al., 2019); Huang et al., 2020; Hua et al., 2019, Wei et al., 
2021; Karnieli et al., 2010; Polat et al., 2024; Gessner et al., 2023; Kloos et al., 2021; Chang et al., 
2022; Chrysopolitou et al., 2013); Lavender, 2016); Jiang, 2021); Hu et al., 2023; Guha, 2021; Guha 
et al., 2020; Roßberg & Schmitt, 2023; Pastor-Guzman, 2015; Vicente-Serrano et al., 2016; Chavez, 
2016). 

The limitation of this study is that Landsat data used cover only dry season in Nigeria. Hence, the 
results obtained cannot determine the effects of the flare on the vegetation in all seasons. How each 
vegetation type responds to the flare could not be assessed due to lack of data on the vegetation types 
and their photosynthetic rate. The rate and volume of the gas burning at each site does could not be 
applied to this study due to their unavailability and so this study could not give the exact total 
influence of flare on the vegetation. 

 
Conclusions 

Generally, the results show a fall from healthy vegetation as the flare stacks are being spatially 
approached in the all sites and so the vegetation closer to the flare is dead.The impact of gas flare is 
felt up to 120 m from the stack with an annual reduction in NDVI values over the timescale analyzed. 
Onne site show an unstable trend from 1984 to 2007 (years before it was built) which could be as a 
result ofvegetation density, vegetation types and their photosynthetic rate as there was no flaring 
activities during this period. 

The results obtained showthat each site is specific with its own temporal trend in NDVI from 1984 
to 2024. Hence, it can be concluded that Landsat data can be used to map the spatial and temporal 
impacts of flare on vegetation cover in the Niger Delta. However, the spatial and temporal variability 
in Landsat data linked to the detectable flare impact on vegetation cover is specific to each site and its 
activities, and dependent on the landscape of the site, e.g. Sara facility is built in the swampy terrain. 
Flaring is still ongoing in Nigeria and its associated challenges evident with Nigerian Government yet 
to determine to have zero flare in Nigeria. Therefore, I wish to make the following recommendations: 
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 Nigerian Government should carry out the stringent enforcement of the Nigerian Petroleum 
Industry Act of 2021. 

 Nigerian Environmental protection laws should have adequate provisions for combating oil and 
gas pollution, degradation, and gas flaring. The National Environmental Standard Regulation 
Enforcement Agency (Establishment) Act (NESREA), 2007, should be amended to widen its 
scope to oil and gas sector activities. 

 The Nigerian Constitution should be amended to make environmental infringements justiciable in 
order to guarantee a healthy and sustainable environment.  

 Enactment of the comprehensive regulatory framework governing gas utilization and development 
of gas pipeline networks to all the six (6) geo-political zones in Nigeria for proper gas distribution. 

 The Nigerian Government should increase generation of electricity in Nigeria using gas.  
 Oil companies should update their equipment to modern technologies and methods to be in 

accordance with theinternational standards.  
 Nigerian Government should encourage investors in the energy sector by providing the enabling 

environment. 
 A gas flaring price targeting natural gas companies should be more effective in mitigating gas 

flaring than the wider ‘carbon price’ or pollution price/tax policy.  
 The Federal Government should provide alternative energy sources to mitigate the effect of gas 

flaring on the people and salvage the environment. 
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