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 ABSTRACT  

 

The development of autonomous vehicles requires high accuracy and precision in sensor data 

for effective interaction with the environment and execution of functions. Processing this data 

with efficient algorithms positively influences vehicle decision-making. In this study, the 

TurtleBot3 platform, an ideal simulation model for autonomous vehicles, is used to detect and 

track nearby objects in the sub-system Robotic Operating System (ROS) Noetic environment. 

The lidar sensor data from this platform is refined using interpolation and a minimized Kalman 

filter to remove noise and irregularities. This approach provides clearer and more reliable 

measurement data, resulting in more stable and fine-tuned responses in the vehicle's motion 

planning. Compared to the general Kalman filter theory, this method offers faster implementation 

without relying on the exact error tolerance of the sensor to provide acceptable results. 

 

 Keywords: Mobile Robot, Autonomous, Kalman filter, Object tracking.  

 

1 INTRODUCTION 

As technology advances, research into mobile robots and autonomous vehicles is 

becoming increasingly important. Systems capable of performing various functions without 

human intervention, sensing environmental factors, and processing this information to make 

decisions have become quite common [1]. Among the systems developed are mobile robots 

used in logistics, service robotics, cleaning, industrial applications, and healthcare. These 

robots, which vary according to their purpose, are commonly known as Automated Guided 
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Vehicles (AGVs) or Autonomous Mobile Robots (AMRs) [2], [3]. While AGVs perform strip 

tracking by interacting with a magnetic field, AMRs perceive their environment through sensors 

and apply mapping and navigation processes through algorithms and methods [4]. The basic 

task for both AMRs and AGVs is to plan a route to a desired destination while avoiding 

collisions with obstacles in their environment [5]. AMRs typically use lidar sensors for mapping 

and obstacle detection. While the lidar sensors used are typically 2D, 3D lidar sensors are also 

used to obtain more geometric information about the environment [6]. In mobile robot 

applications, lidar is often preferred for simultaneous localization and mapping (SLAM) 

applications [7]. Researchers have been developing navigation and path planning methods 

using SLAM for a long time [8]. Lidar is also used in mobile robot applications to detect both 

dynamic and static obstacles [9], [10]. In environments where mobile robots operate, the objects 

encountered can be either stationary or moving.  

These objects can serve as obstacles or be designated as targets to be followed. Object 

detection and position estimation are critical requirements for safe path and motion planning in 

mobile robot navigation [11]. In indoor environments, SLAM applications based on lidar data 

have developed methods that produce successful results in navigation and path planning. 

However, the inability to fully detect dynamic changes in the environment and its surroundings 

can limit the navigation of mobile robots [12], [13]. Lidar data can not only map the 

environment but also collect data to detect dynamic objects, allowing mobile robots to better 

understand their environment [14]. The development of these methods provides an opportunity 

to avoid additional costly requirements, but it requires processing through algorithms tailored 

to the application using lidar data. In addition, lidar data must be filtered prior to processing 

due to potential measurement errors inherent in electronic devices [15]. 

In this study, a 2D lidar-based dynamic object detection and tracking method has been 

developed that is capable of identifying objects of any class and geometry in a model-

independent manner. Information obtained from lidar sensors in real-world conditions can lead 

to erroneous measurements due to reflections and noise, so the proposed method employs an 

interpolation-based process on the distance data from the lidar sensor to minimize these 

erroneous measurements, introducing a new approach that minimizes the noise of lidar data by 

reducing the reliance on Kalman filters. To implement this method, the Turtlebot3 Waffle pi 

version development platform was used, which is ideal for such problems and research. This 

platform also supports Robotic Operating Systems (ROS), which are used for environmental 

data processing for mobile robots, autonomous navigation, and mapping [16]. We made it 
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compatible with a developed method using ROS, enabling its application on both the real 

TurtleBot3 platform and the Gazebo robot simulator. Our method aims to minimize the Kalman 

filter, thereby reducing the noise in the real data obtained from the TurtleBot3's lidar sensor. We 

have also developed an approach to address this issue in the Gazebo simulator environment. 

We took measurements at different distances and conditions to enable the mobile robot to detect 

and track objects regardless of their geometry. We processed these measurements using the 

defined method to ensure appropriate filtering. The results showed successful results both in 

real conditions and in simulation environments. 

2 RELATED WORKS 

Researchers address tasks such as object recognition and tracking in mobile robot 

applications and develop different solution algorithms. In the object recognition method 

developed in [17], a trained CNN structure was used and implemented in the Gazebo 

environment. This study provided the robot with the ability to interpret the objects it encounters; 

however, the mode of operation was limited by the camera angle and the classes within the 

training set. Similarly, [18] used cameras, but at a more advanced level. Instead of mere object 

recognition, the study focused on real-time object detection by slicing the video data from the 

camera into frames and evaluating them. Algorithms capable of discriminating objects were 

used to feed a Kalman filter model with changes in the object's position across frames. The 

result was a system capable of predicting the next object position. In another study, we observe 

a low-cost model for human tracking. The measurement and detection device used in this model 

is a low-cost laser scanner [19].  

This study focused on the identification and tracking of human footprints using an 

algorithm based on footprint detection in lidar data. According to this algorithm, the midpoint 

between two different footprints was designated as the target point, and the model showed good 

success results. An important feature of the model is its ability to track a single person without 

confusion, even when multiple people are present in the tracking area. In addition, the footprints 

of different people vary on the lidar data, and the distance between footsteps changes when 

walking. Special adjustments can be made for such cases. In [20], a Kalman filter was used to 

deal with irregularities in the readings of electronic measurement devices. Specifically, a fixed 

Kalman gain was used to analyze differences between the signal curves at the input and output 

of the filter, effectively mitigating irregularities in the sensor data. The study reported promising 

results in correcting measurement irregularities using this method. 
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3 APPROACH SYSTEM OVERVIEW  

The scheme of the developed method for the detection of dynamic objects using 2D 

Lidar is shown in Figure 1. In the method, the distance information perceived by the lidar on 

the mobile robot is sometimes inaccurately or incompletely assigned due to noise and 

reflections on the real environment platform; therefore, the sensor data read from the real 

TurtleBot3 and the simulator environment may differ. In order to deal with these differences, 

two approaches have been taken in this study due to problems arising from different sensor 

structures between the physical system and the simulation environment, which involve the 

integration of different algorithms. In this study, the TurtleBot3 Waffle Pi platform 

manufactured by Robotis uses a 360-degree lidar (LDS-2) to measure distances to physical 

obstacles, with software components based on ROS (Robot Operating System) in Linux Ubuntu 

20.04. 

We chose to use ROS1 Noetic for this platform, which is compatible with both ROS1 

and ROS2 versions. Besides the physical environment, the Gazebo software will be used for 

the virtual environment. As mentioned before, the readings of virtual and physical sensors may 

differ, and the sensor resolution may change too. In the physical platform, the linear velocity of 

the robot ranges from 0 to 0.26 m/s and the angular velocity from 0 to 1.82 rad/s, and the lidar 

sensor resolution is defined as 1 degree [16]. For the virtual platform, the properties are the 

same with a lower tolerance and higher confidence about the resolution of the lidar data. Robotis 

provides a ready-made system for TurtleBot3, and this software is primarily designed for the 

basic functions of the robot. Therefore, any additional applications require a ROS package and 

control from an external master. 

 

Figure 1. Method developed to detect dynamic objects using 2D Lidar. 
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In object tracking, the accuracy of the angle and distance information obtained from the 

lidar sensor is critical. During our research on the TurtleBot3 physical platform using the LDS-

2 lidar sensor, we identified instances where distance measurements resulted in erroneous 

"zero" values due to reflections or incorrect readings. To avoid this problem, we compared the 

index numbers of erroneous distance measurements from the lidar sensor with neighboring 

index values and implemented an interpolation to mitigate these erroneous measurements. For 

the proposed method in the simulation environment, unlike the physical system, the distance 

information from the lidar sensor did not have zero values due to reflections, and the angles of 

the detected distances were sequentially synchronized. Therefore, there was no need for 

solutions to eliminate zeros in the simulation environment, allowing direct focus on the object 

detection method using the lidar. 

3.1 Minimized Kalman Filter 

Since Rudolf Kalman introduced the Kalman filter theory, it has been at the forefront of 

advanced research. Designed to overcome uncertainties in predicting the final state of a variable 

during its monitoring and measurement, this model fundamentally involves predicting a new 

value in place of the measured value, using the equations of the Kalman model [21], [22]. There 

exist improved and generalized versions with common equation variables. Equation (1) shows 

the Kalman Gain (KG), calculated based on parameters of the prediction error and the 

measurement error. KG is used in predicting the current value. Equation (2) expresses the 

current predicted value (𝑒𝑠𝑡𝑡), which is obtained by adding the product of the KG coefficient 

and the difference between the measured value and the previous predicted value to the previous 

predicted value. Equation (3) calculates the prediction error (𝐸𝑒𝑠𝑡𝑡
) [20], [21], [23], [24], [25]. 

𝐾𝐺 =
𝐸𝑒𝑠𝑡

𝐸𝑒𝑠𝑡 + 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
 (1) 

𝑒𝑠𝑡𝑡 = 𝑒𝑠𝑡𝑡−1 + 𝐾𝐺 ∗ (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑒𝑠𝑡𝑡−1)  (2) 

𝐸𝑒𝑠𝑡𝑡
= (1 − 𝐾𝐺) ∗ 𝐸𝑒𝑠𝑡𝑡−1

 (3) 

So basically, the traditional Kalman filter could be defined with these three equations. 

The term 𝑒𝑠𝑡𝑡−1 denotes the previous predicted value, while  𝑒𝑠𝑡𝑡 denotes the current predicted 

value. 𝐸𝑒𝑠𝑡 denotes the current prediction error, while 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 denotes the measurement 

error. In the Kalman model, the relationship (measurement - old estimate) continuously 

facilitates new value predictions. Subsequently, the Kalman Gain (KG) coefficient is updated 
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and tends toward zero, allowing the predicted value to continuously converge to the actual value 

[20]. Figure 2 shows an example that graphically illustrates the prediction of the Kalman filter. 

Assuming a measurement of a value at 95 degrees with measurement errors in the range [-6, 

+6], an initial estimation error of -5 and an initial estimated value of 90 are chosen for 

consideration. This data is used to demonstrate how convergence to the true value occurs within 

10 iterations.  

 

Figure 2. Comparison of actual and Kalman filter prediction graphs. 

Considering the physical environment and the accuracy level of the LDS-2 lidar, the 

goal is to smooth the robot's responses. The response of the robot is highly dependent on the 

distance to the nearest object, so this parameter is prioritized. The measured distance from the 

lidar data is sometimes set to zero and at other times varies due to measurement tolerances. In 

such cases, instead of relying on the measured minimum, estimation is used to reduce the 

sensitivity to fluctuations. To produce an estimate at any time t, the previous predicted value is 

required; if this value is not available, it is initialized to the current measured value to start the 

algorithm. Figure 3 shows both the normal Kalman filter and the improved minimized Kalman 

filter in comparison.  

The smoothing aims to achieve independence from the values of the estimation and 

measurement errors, as indicated by the Kalman Gain (KG) coefficient in equation (1), which 

depends on the ratio of the prediction and measurement errors. To achieve this, the change in 

estimated values is kept constant relative to the difference between the current measured state 

and the previous state values, thus ensuring continuous convergence of the estimated value to 

the measured value. Therefore, as expressed in equation (4), the KG coefficient is kept constant. 

Through experimentation, this value was determined to be 0.2 to suit the robot model. Equation 

(5) expresses the difference between the current estimated value and the previous value. If 
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incorrect measurement errors occur, they are absorbed by the improved Kalman filter without 

causing abrupt responses. 

Figure 3.  Kalman Filter and Minimized Kalman Filter Diagram. 

 

𝐾𝐺 =
𝛥𝑒𝑠𝑡

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑠𝑡𝑡−1 
 (4) 

∆𝑒𝑠𝑡 = 𝑒𝑠𝑡𝑡 − 𝑒𝑠𝑡𝑡−1 (5) 

When the KG value is fixed, the relationship between the measurement error and the 

estimation error is also fixed to a constant value. This means that each position update of the 

object depends on the influence of the previous estimated state and 20% of the change in the 

measured value, thus achieving smoother responses, which lead our modifications on equations 

(2) and (3) to produce the following (6) and (7) equations. 

𝑒𝑠𝑡𝑡 = 𝑒𝑠𝑡𝑡−1 + 0.2 ∗ (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑒𝑠𝑡𝑡−1) (6) 

𝐸𝑒𝑠𝑡𝑡
= 0.8 ∗ 𝐸𝑒𝑠𝑡𝑡−1

 (7) 

During the movement of the mobile robot, there are sometimes inappropriate responses 

such as sudden changes in speed and direction. The causes of this problem include abrupt 

transitions caused by simple if-else statements, sudden changes in distance from the lidar 

sensors, and measurement errors. To solve these problems, we propose variable velocity and 

angular velocity coefficients that can absorb sudden changes in linear and angular velocity. We 

can achieve changes in linear velocity through a mathematical function where the variable is 

the position angle of the object. Since the angle values range from 0 to 180 degrees, we can 
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map them to the range [0, 1], which is called the mapped_theta variable, so that the output of 

this function is in the range [0, 1]. In other words, using this coefficient, we can scale the speed 

value as a percentage of the maximum speed value. So, our linear velocity changing rules can 

be listed as follows: (1) maximum when the angle of the object is less than 30 degrees; (2) 

decreases exponentially after 30 degrees; and (3) tapers to zero near 90 degrees. The appropriate 

mathematical function that combines these three points is expressed in equation (8), which uses 

the mapped_theta as its independent variable. Here, 𝑘𝑣(𝜃) refers to the linear velocity 

controller, and 𝜃  represents the mapped_theta. In addition, the graph of this function is shown 

in Figure 4. 

𝑘𝑣(𝜃) =
1

1 + 0.2 ∗ 𝑒(20∗(𝜃−0.167))
 (8) 

 

 

Figure 4. kv function. 

 

According to this graph, the coefficient kv begins a rapid descent when the 

mapped_theta variable reaches 0.167 (corresponding to a 30-degree angle). At a value of 0.34, 

corresponding to a 60-degree angle of the object, the coefficient becomes 0.15 when multiplied 

by the maximum speed, giving a value of 15%. As mapped_theta approaches 0.5, or as the 

object angle approaches 90 degrees, the output speed converges to zero. This satisfies these 

criteria and provides a nonlinear change in linear velocity. Using this method, we can control 

the angular velocity. However, as the object angle decreases, we need a function where the 

angular velocity value also decreases-a reverse version of the linear velocity criteria. The 

function used for the change in angular velocity is expressed in equation (9). Here, 𝑘𝑤(𝜃)  

corresponds to the angular velocity coefficient change. 

𝑘𝑤(𝜃) =  
1

1 + 𝑒(−15∗(𝑚𝑎𝑝𝑝𝑒𝑑𝑡ℎ𝑒𝑡𝑎−0.334))
 (9) 
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Figure 5 displays the graph of the function that handles the change in angular velocity. 

As the object’s angle approaches zero, it ensures that the angular velocity converges to zero. In 

addition, a function was obtained that non-linearly increases the angular velocity as the object 

angle exceeds 30 degrees. 

 

Figure 5. kw function.  

3.2 Proposed Approach for The Virtual (Gazebo) Environment 

Lidar data was used to implement object tracking using the Gazebo simulator as the 

simulation environment. Gazebo includes the Turtlebot3 robot model, which is equipped with 

sensors and actuators similar to the physical hardware. To run this method in the Gazebo 

simulator environment, a turtle_world environment was used. To obtain lidar data, a data 

subscription was performed on the "/scan" topic within a ROS package node, allowing access 

to the transmitted data. The content of the data was examined using the "/rostopic info" 

command to identify and utilize parameters critical to the mobile robot. Figure 6 illustrates the 

subscribed topics within the Gazebo environment.  

 

Figure 6. Data flow in the Gazebo environment. 

Figure 7 shows the object detection method diagram for the Gazebo environment. It 

shows the process where the nearest detected lidar distance data and its index are identified 

from the "/scan" scan data obtained with the help of ROS. To guide or move the mobile robot 

to the nearest object, this process is facilitated by themes defined by ROS. The control of linear 
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and angular velocities is transferred to the right and left motors of the mobile robot using the 

Twist function. We ensured successful navigation of the mobile robot to the detected object 

based on specified angle and distance tolerances. 

 

Figure 7. Developed object detection algorithm for virtual environment. 

 

The pseudo code expressed in virtual_env1 for calculating linear and angular velocities 

can be explained in terms of multiple steps. According to this code, the closest vector distance 

data is determined from the lidar sensor. Then the index number of the closest distance is 

extracted, which allows the relative angle of the closest distance with respect to the robot to be 

calculated. To orient the robot to the object based on the calculated angle and distance, the 

angular difference between the robot's heading angle and the angle of the detected object is 

calculated. If this angular difference is within +/- 8 degrees, the angular velocity is set to 0 to 

minimize oscillations during orientation. If the angular difference is -90 or 90 degrees, 

indicating that the object is directly to the left or right, the angular velocity is set to maximum 

in the opposite direction of the object. At the same time, if the distance to the object is less than 

0.35 units, the linear velocity is set to 0, causing the robot to stop. Conversely, if the distance is 

greater than 0.35 units, the linear velocity is maximized, allowing the robot to search for or 

track the object. A notable drawback of this method is the use of numerous if-else structures. In 

a simplified way, in the following Algorithm 1. table a summary of the operations in the form 

of codes. 
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Algorithm 1. Coded representation of the algorithm’s flow. 

 

3.3 Proposed Approach for The Physical Environment 

Unlike the virtual environment, the mobile robot in the physical environment has a 

different number of topics, as shown in Figure 8. These topics are used to share sensor 

information and monitor changes in the hardware. The noise generated by the Lidar sensor has 

resulted in some distances being assigned a value of "0" and in the detection of sudden noisy 

distance values during measurements. 

Figure 9 outlines the solutions to these problems, with the steps summarized as follows: 

first, the indices of the zeros were identified. Since these are not fixed indices, new values were 

assigned by interpolating between the real values before and after the zeros. To detect the 

nearest object, the nearest distance from the noise-filtered data is used as a reference. The index 

of this nearest distance is also used to calculate the angle of the object. To avoid errors in the 

measured minimum values, an estimation is made using the proposed minimized Kalman filter. 

This method also helps to avoid sudden speed changes and wrong turns. To navigate to the 

object at the determined angle and distance, the linear and angular velocities are calculated. 

These velocities are then sent to the motors using the ‘/Twist’ publisher. 

Figure 10 shows the comparison between the raw lidar data containing zeros and 

erroneous measurements and the data after the interpolation process. It is evident that the values 

initially assigned as zero ("0") have been absorbed after interpolation. 
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Figure 8. Data flow in Turtlebot3 Waffle Pi. 

 

 

Figure 9. Developed object detection algorithm for physical environment. 

 

Figure 10. The impact of interpolation on raw lidar data. 

4 EXPERIMENTAL RESULTS 

In this study, an improved Kalman filter-based method for the detection and tracking of 

dynamic objects using 2D Lidar is proposed. The proposed method provides different solutions 

for simulated and physical Turtlebot3 environments. Applications have been developed for 

detecting objects at different distances and angles both in the physical environment and on the 
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Turtlebot3 platform. Furthermore, the developed minimized Kalman filter method addresses 

how improvements were made to noisy raw lidar data. 

4.1 Results for Physical Turtlebot3 Environment 

The physical environment experiments used the Waffle Pi version of the Turtlebot3. In 

the first experiment, objects placed at angles of 30, 60, and 90 degrees were detected, and their 

angles relative to the Turtlebot3 were determined. Figure 11 shows objects placed at angles of 

30, 60, and 90 degrees relative to the Turtlebot3. 

In the experiments conducted, objects placed at a distance of less than 1 meter were 

analyzed for velocity variations using two different methods. Figure 12 (a) shows the velocity 

variations based on different angles using a simple if-else structure. Similarly, Figure 12 (b) 

shows the velocity variations obtained using the proposed method aimed at smoothing changes 

based on different angle values. 

 

Figure 11. Detection of objects placed at different angle positions. 

  

Figure 12. Velocity responses of Robot speed relative to object placed at different angles for 

physical environment. a) Linear velocity changes using if-else conditions, b) Linear 

Velocity changes using math equations. 

 

The velocity responses to objects placed at different angles using a simple if-else 

structure show abrupt changes, resulting in the robot’s jerky movements. As shown in Figure 

12(a), the velocity changes are characterized by high accelerations. To reduce these high 

a) b) 
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accelerations, the proposed method uses exponential equations depending on the acceleration 

coefficients, as shown in Figure 12(b). Acceleration rates are reduced in steps of 30 degrees, 

resulting in smoother velocity changes. To verify the object detection based on the minimum 

detected distance, measurements were taken for three different distances in front of the robot as 

shown in Figure 13, by defining three distances of 35 cm, 65 cm, and 95 cm, in this test we 

used a static and fixed object in order to observe the efficiency of the designed filter. 

 

Figure 13. Distance measurement application of object at different distances. 

 

As a result, the effects of changes in the minimum distance are shown in Figures 14 (a) 

and (b), comparing the outputs of noisy data and the proposed minimized Kalman filter. 

According to the comparative results obtained based on variations in different distances, it can 

be seen that the object distances obtained with the minimized Kalman filter are denoised 

compared to the raw lidar data. It is observed that the use of the minimized Kalman filter 

reduces sudden accelerations and abrupt oscillations caused by noisy data during object 

tracking by the mobile robot 

.   

Figure 14. Object detection distances based on raw and minimized Kalman filtered data for 

the physical environment. a) Object distance detection based on raw lidar data b) Object 

detection distance obtained by using minimized Kalman filter on lidar data. 

 

a) b) 
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In addition, the distance of a stationary object was monitored over a period of time, and 

comparative data including raw lidar data, data processed through the Kalman filter, and data 

processed through the enhanced minimized filter are shown in Figure 15. This collection 

includes lidar data obtained from a stationary object at a given distance. According to the results 

obtained, the data processed through the developed minimized Kalman filter shows a better 

absorption of fluctuations compared to both the noisy raw data and the general Kalman filter. 

 

Figure 15. Comparison of raw lidar data, data passed through the general Kalman filter, 

and data passed through the minimized Kalman filter. 

4.2 Results for Gazebo Environment 

Experiments conducted in the Gazebo environment involve examining changes in 

velocity by placing different objects at different angles and fixed distances, similar to those in 

the physical environment. Unlike the real environment, the virtual environment is free of zeros. 

Therefore, we wanted to observe the accuracy of our method in both virtual and physical 

environments. The experiments conducted in the Gazebo environment are shown in Figure 16. 

The speed variation of the object placed at 30, 60, and 90 degrees in the virtual 

environment is shown in Figure 17, as specified in the method, showing both the speed 

variations based on the simple if-else structure and those adjusted using exponential speed 

coefficients. According to the results obtained, smoother speed transitions were observed in the 

virtual environment due to the absence of physical environment noise. 

 

Figure 16. Experiment on object distance with angles of 30, 60, and 90 degrees in the 

Gazebo environment. 
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Figure 17. Robot speed responses according to object placed at different angles for virtual 

environment. a) linear speed changing using if-else conditions for virtual environment b) 

linear velocity changing using mathematical equations for virtual environment. 

 

Figure 18 illustrates experiments conducted in the virtual gazebo environment with 

objects placed at different fixed distances. This experiment focuses on the distances perceived 

by the lidar for objects placed at 3 different distances. 

 

Figure 18. Experiment applied for different fixed distances for the virtual environment. 

 

Figure 19 shows the closest object distances obtained from lidar data with and without 

application of the minimized Kalman filter in the virtual environment at 3 different distances. 

In the results with the minimized Kalman filter applied, the distance measurement transitions 

are smoother compared to the unfiltered lidar data in the virtual environment, where the lidar 

data is free from noise-induced sudden distance transitions. 

a) b) 
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Figure 19. Object detection distances based on raw and minimized filtered data in the 

gazebo environment. a) Object distance detection based on raw lidar data b) Object 

detection distance obtained by using minimized Kalman filter on lidar data. 

5 CONCLUSION 

This paper proposes a method based on an extended Kalman filter for tracking objects 

without specifying geometries and shapes, so it is focused on enhancing the quality of lidar data 

intended for use in autonomous mobile robots; however, as an examples, a 35x20x20 cm box 

and observer legs have been used in different tests. Real-world lidar data often produce 

erroneous measurements due to reflections and noise. To mitigate these inaccuracies, a 

minimized Kalman filter methodology incorporating interpolation and Kalman filtering 

techniques has been developed. The proposed method is adaptable to both the Turtlebot3 

physical robot and the Gazebo simulation environment, presenting two different approaches. 

Experimental trials for object tracking have been conducted using both the physical Turtlebot3 

and the Gazebo environment. Instead of a simple control mechanism where linear and angular 

velocities change based on the perceived angle and distance of the object, the study uses well-

tuned mathematical functions with intervals and breakpoints to achieve smoother velocity 

transitions. In addition, the minimized Kalman filter was observed to protect against sudden 

jumps in measurements and to mitigate state noise during discrete-time measurements. Object 

detection and tracking are performed using lidar information, and future work will focus on 

improving object classification using new lidar data, considering both computational 

performance and object tracking accuracy. 
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