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A BST R AC T  

In this study, the performance of classical and quantum machine learning models was compared 

using the Breast Cancer dataset, which consists of diagnostic data aimed at classifying breast tumor 

types. Breast cancer, being one of the most common and life-threatening cancers in women, requires 

accurate diagnostic tools for early detection and effective treatment. The primary objective of this 

study is to evaluate the accuracy of quantum-assisted models through quantum feature selection 

methods. Initially, classical machine learning algorithms such as Support Vector Machines (SVM), 

Decision Trees, Random Forests, and Logistic Regression were applied to the dataset for baseline 

analysis. Subsequently, a quantum feature map was constructed using the Cirq library, enabling 

feature transformation based on this map. The classification was performed using the SVM model 

with the quantum-transformed features. The Logistic Regression and SVM models demonstrated 

the highest performance among classical machine learning models, achieving an accuracy rate of 

96.49%, followed by Random Forest at 94.74% and Decision Tree at 92.11%. In the context of 

quantum feature transformation, the model utilizing the top five selected features achieved an 

accuracy rate of 94.74%, in contrast to 98.25% for the model trained with all features. These findings 

underscore the potential of quantum feature maps in enhancing model performance compared to 

classical techniques. The results suggest that quantum computing may offer significant advantages 

when integrated into machine learning frameworks, particularly in domains such as medical 

diagnostics, where high accuracy is crucial. 
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Kuantum Özellik Haritaları Kullanılarak Özellik Seçimi: 

Göğüs Kanseri Veri Kümesi Üzerinde Klasik ve 

Kuantum Modellerin Performans Analizi 

ÖZ 

Bu çalışmada, meme tümörü türlerini sınıflandırmaya yönelik tanısal veriler içeren Breast Cancer 

veri kümesi kullanılarak klasik ve kuantum makine öğrenmesi modellerinin performansları 

karşılaştırılmıştır. Kadınlarda en yaygın ve yaşamı tehdit eden kanser türlerinden biri olan meme 

kanseri, erken teşhis ve etkili tedavi için doğru tanı araçlarına ihtiyaç duymaktadır. Bu bağlamda, 

çalışmanın temel amacı, kuantum destekli modellerin doğruluk oranlarını kuantum tabanlı öznitelik 

seçimi yöntemleriyle değerlendirerek analiz etmektir. İlk aşamada, veri kümesine klasik makine 

öğrenmesi algoritmaları olan Destek Vektör Makineleri (SVM), Karar Ağaçları, Rastgele Ormanlar 

ve Lojistik Regresyon uygulanarak temel bir analiz gerçekleştirilmiştir. Ardından, Cirq kütüphanesi 

kullanılarak bir kuantum öznitelik haritası oluşturulmuş ve bu harita doğrultusunda öznitelik 

dönüşümü yapılmıştır. Dönüştürülmüş öznitelikler ile sınıflandırma işlemi, SVM modeli 

kullanılarak gerçekleştirilmiştir. Klasik modeller arasında en yüksek doğruluk oranına %96,49 ile 

Lojistik Regresyon ve SVM modelleri ulaşmış, bunu %94,74 ile Rastgele Orman ve %92,11 ile 

Karar Ağacı modelleri takip etmiştir. Kuantum öznitelik dönüşümü bağlamında ise, en iyi beş 

öznitelikle eğitilen model %94,74 doğruluk oranına ulaşırken, tüm özniteliklerle eğitilen model 

%98,25 doğruluk göstermiştir. Elde edilen bulgular, kuantum öznitelik haritalarının model 

performansını klasik tekniklere kıyasla artırma potansiyeline sahip olduğunu ortaya koymaktadır. 

Sonuçlar, özellikle yüksek doğruluğun kritik öneme sahip olduğu tıbbi tanı gibi alanlarda, kuantum 

hesaplamanın makine öğrenmesi çerçevelerine entegre edilmesi durumunda önemli avantajlar 

sunabileceğini göstermektedir. 

Anahtar Kelimeler: Kuantum Makine Öğrenimi, Kuantum Özellik Haritaları, Özellik Seçimi, 

Cirq, Hibrit Kuantum-Klasik Modeller  

1 Introduction 

Breast cancer is one of the most common types of cancer among women, affecting millions worldwide 

each year and representing a significant public health concern. Early detection and treatment are critical 

factors that influence the course of the disease. Identifying breast cancer at an early stage substantially 

improves patient survival rates and the success of treatment [1]. The accuracy of diagnostic tools used 

in this process plays a pivotal role in detecting the disease during its early stages. Alongside traditional 

diagnostic methods, machine learning and data science techniques have increasingly been employed in 

cancer diagnosis, focusing on developing models that achieve high accuracy rates. 

Quantum computers leverage the principles of quantum mechanics to perform computations that differ 

fundamentally from classical computers. Unlike classical bits, representing information as either 0 or 1, 

quantum bits (qubits) can exist simultaneously in superpositions of both 0 and 1, enabling quantum 

computers to process complex calculations more efficiently [2]. Quantum programming involves 

designing algorithms that exploit quantum phenomena, such as superposition and entanglement, to solve 

problems. Quantum machine learning (QML) [3] applies these quantum algorithms to machine learning 

tasks, offering the potential for faster data processing and enhanced model performance in specific 

applications. Hybrid classical-quantum machine learning [4] combines the strengths of both classical 

and quantum techniques by using quantum algorithms to enhance or accelerate specific aspects of 

traditional machine learning workflows, creating a synergistic approach for tackling computationally 

intensive problems. 

Machine learning has gained an essential place in the field of data analysis and modeling. In recent 
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years, quantum computing and quantum machine learning have been investigated as alternatives to 

classical methods [5]. Quantum machine learning aims to improve data processing and modeling 

processes using quantum computing principles. In particular, quantum feature maps [6] offer potential 

advantages in areas such as data transformation and feature selection.  

Classical machine learning methods can provide effective results on large data sets. These methods 

include algorithms such as support vector machines (SVM), decision trees, random forests, and logistic 

regression [7]. The performance of these algorithms is well understood in studies on various data sets. 

Quantum feature maps [8] make it possible to represent data in high-dimensional spaces using quantum 

circuits. This approach offers new opportunities beyond classical feature transformation methods. There 

are limited studies on how quantum feature maps affect feature selection and model performance. 

This study compares the performances of classical and quantum machine learning models using the 

Breast Cancer dataset. In particular, the role of quantum feature maps in data transformation and the 

impact of this transformation on classical machine learning algorithms are analyzed. The study aims to 

evaluate the potential advantages of quantum feature maps by examining the accuracy performance of 

quantum and classical methods. The structure of the paper is as follows: First, the data set and methods 

used will be detailed. Then, the performances of classical and quantum machine learning models will 

be compared, and the results will be discussed. Finally, in light of the findings, the potential of quantum 

machine learning and suggestions for future research will be presented. 

2 Literature Review 

If the studies conducted in the literature in recent years are examined: 

In a study by Prajapati et al. in 2023 [9], quantum computing and machine learning techniques, 

particularly quantum neural networks, dimensionality reduction algorithms, and support vector 

machines (SVM), are used for breast cancer prediction. Molecular classification and diagnosis 

techniques of breast cancer are discussed, as well as the effectiveness of these techniques and 

comparative analyses of different algorithms. 

Wang [10], published in 2024, proposes a new method for feature selection (QSVMF) using quantum 

support vector machines (QSVM) and a multi-objective genetic algorithm. QSVM aims to improve 

classification accuracy, reduce the number of features selected, and reduce quantum circuit costs. 

Experiments on a breast cancer dataset show that QSVMF outperforms classical methods. The QSVMF 

model achieved an accuracy ranging between 95% and 98%. 

Patel et al. in 2024 [11], propose a Hybrid Quantum Classical Algorithm (HQCA) for image 

classification. The model builds a quantum kernel using ZZFeatureMap and applies an image-boosting 

layer to reduce the size of the dataset. The proposed method provides higher accuracy and efficiency 

than other quantum models. 

Patil et al. in 2024 [12], evaluates the performance of various machine learning models in breast cancer 

detection by comparing Naive Bayes, Random Forest, Support Vector Machines (SVM), Logistic 

Regression, and Decision Trees, based on a review of 41 publications. The findings indicate that the 

Random Forest model achieves the highest accuracy due to its ensemble learning technique, making it 

a promising tool for healthcare professionals. The study provides a comparative analysis of different 

machine learning approaches, highlighting their advantages and limitations, and demonstrates that the 
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proposed method outperforms alternative techniques. The study achieved the following accuracy values: 

Support Vector Machine (SVM) with 93.85%, Decision Tree with 94.73%, Random Forest with 

97.36%, and Logistic Regression with 95.61%.   

Sidey-Gibbons in 2019 [13], demonstrates the use of machine learning (ML) techniques for cancer 

diagnosis using descriptions of nuclei from breast masses. Three predictive models General Linear 

Models (GLMs), Support Vector Machines (SVMs) with a radial basis function kernel, and single-layer 

Artificial Neural Networks were developed using a publicly available dataset (N = 683), randomly split 

into evaluation (n = 456) and validation (n = 227) samples. The models achieved high accuracy (94%-

96%), sensitivity (97%-99%), and specificity (85%-94%), with the SVM model reaching a maximum 

accuracy of 96% and an area under the curve (AUC) of 97%. Performance slightly improved when using 

a voting ensemble, with accuracy reaching 97%, sensitivity 99%, and specificity 95%.  

Sharma et al. in 2018 [14], employs machine learning techniques, specifically comparing Support 

Vector Machines (SVM) and Artificial Neural Networks (ANN), to classify breast, liver, ovarian, and 

prostate cancers using both standard organ condition data and gene expression data. The findings reveal 

that the SVM classifier consistently achieves higher accuracy than the ANN classifier, underscoring the 

potential benefits of machine learning in enhancing diagnostic precision. The study achieved the 

following performance values: specificity with 98.2%, sensitivity with 93.22%, accuracy with 96.66% 

for Support Vector Machine (SVM).   

3 Materials And Methods 

3.1. Technical Requirements 

Cirq [15] is an open-source quantum computing library developed by Google. It can be used to design, 

simulate, and operate quantum circuits. 

Cirq allows users to define and build quantum circuits. Users can design circuits using quantum bits 

(qubits) and quantum gates (gates) [16]. It allows quantum circuits to be run in various simulators. This 

is useful for testing the correctness of circuits before running them on real quantum computers. Cirq 

provides integration with Google's quantum computers, specifically Google Quantum AI's quantum 

processors. This way, designed quantum circuits can be run on real quantum hardware. Cirq allows you 

to define parametric quantum gates and build parametric circuits using these gates. This is useful for 

optimizing and tuning quantum algorithms. It offers various tools and functions for analyzing quantum 

circuits. It provides information about circuits' depth, complexity, and other characteristics.  

The Python programming language also supported the study and prepared with the Cirq library on Colab 

[17] servers. Python's significant libraries (NumPy [18], Matplotlib [19]) were preferred for data 

processing and visualization. 

3.2. Dataset 

In this study, the Breast Cancer dataset is used. The dataset is taken from the Scikit-learn library and 

contains features and tags for breast cancer diagnosis [20], [21]. The dataset consists of 569 samples, 

with each sample containing 30 features. Features represent characteristics of cell nuclei, and labels 

indicate whether the cancer is malignant or benign. A random selection of 10 rows from the dataset, 

which consists of a total of 31 features including the target variable, is presented in Figure 1. 
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Figure 1: The random selection of 10 rows from the dataset 

3.3. Data Preprocessing 

Data pre-processing steps were applied to make the data suitable for analysis: 

Scaling: Data were scaled using StandardScaler and MinMaxScaler [22].  

StandardScaler is a technique used to standardize data. The purpose of the scaling formula given in 

Equation 1 is to normalize the data by making the mean of the data 0 and the standard deviation 1. This 

allows the data to be scaled on the basis of mean and standard deviation. 

𝑧 =
(𝑥 − 𝜇)

𝜎
           (1) 

here: 

x : Original data value 

μ : Average of the data set 

σ : Standard deviation of the data set 

z : Standardized data value 

MinMaxScaler is used to convert data to a specific range, usually between 0 and 1. The purpose of the 

MinMaxScaler formula given in Equation 2 is to normalize each data value between minimum and 

maximum values. 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
           (2) 

here: 

𝑥 : Original data value 

𝑥𝑚𝑖𝑛 : Minimum value in the data set 

𝑥𝑚𝑎𝑥 : Maximum value in the data set 



Sevdanur GENÇ 
Feature Selection Using Quantum Feature Maps: Performance Analysis of Classical and Quantum Models on the Breast Cancer Dataset 

 
International Journal of Data Science and Applications (JOINDATA) 8(1), 28-44, 2025 33 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 : Scaled data value 

First, the data were standardized with StandardScaler. Then, the data were normalized between 0 and 1 

using MinMaxScaler. 

Separation into Training and Test Sets: The data were divided into 80% training and 20% test sets. 

This separation was used to evaluate the model performance. 

3.4. Model Performance Metrics 

In machine learning, various metrics and methods are employed to objectively evaluate the performance 

of analyzed models [23]. In this study, the performance of machine learning models was assessed using 

Precision, Recall, F1 Score, and Accuracy metrics. The mathematical formulations of these metrics are 

presented in Equations (3), (4), (5), and (6), respectively. In these equations, TP denotes True Positive, 

FP denotes False Positive, TN denotes True Negative, and FN denotes False Negative. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (3)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (4)  

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (5)  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (6)

   

These metrics, used to evaluate the performance of machine learning models, are crucial for identifying 

the strengths and weaknesses of the model in different scenarios.   

3.5. Classical Machine Learning Models 

Four different classical machine learning models were used in the study: 

Support Vector Machines (SVM): It is a classification algorithm that aims to find an optimal 

hyperplane that separates the data into two classes and defines this plane with the maximum margin 

using the most distant points from the data. An SVM model was trained with a linear kernel using the 

SVC [24] class. The Support Vector Machine (SVM) model uses a linear kernel as the kernel function. 

Among the other default hyperparameters of the model, the regularization parameter C is set to 1.0. If a 

polynomial kernel were used, the degree of the polynomial would be set to 3. Also, the gamma value 

for the kernel coefficient is set to scale. 

Decision Tree: Builds a model in a tree structure that classifies or regresses data on a set of conditions 

and decisions; each internal node distinguishes the data based on a property, and each leaf node 

represents a class or value. A decision tree model was created using the DecisionTreeClassifier [25] 

class. By default, the Decision Tree model uses Gini as the splitting criterion. The best splitter is 

preferred to select the best split. The maximum depth of the model is not specified, and the tree can 

grow ultimately. Also, the minimum number of samples required to split a node is set to 2. 

Random Forest: It is an ensemble method where multiple decision trees come together, and each tree 

votes; a majority vote of the trees makes a decision, thus increasing the overall accuracy of the model. 



Sevdanur GENÇ 
Feature Selection Using Quantum Feature Maps: Performance Analysis of Classical and Quantum Models on the Breast Cancer Dataset 

 
International Journal of Data Science and Applications (JOINDATA) 8(1), 28-44, 2025 34 

A random forest model was trained using the RandomForestClassifier [26] class. In the Random Forest 

model, 100 decision trees are used by default. While Gini is used as the discrimination criterion, the 

maximum depth of the trees is not specified so that the trees can grow ultimately. The minimum number 

of samples required to split a node is set to 2. Also, the maximum number of features used to build each 

tree is calculated by the square root. 

Logistic Regression: It is a model used to estimate the probabilities of data and forms a linear decision 

boundary in classification problems. The model calculates the class probabilities with a sigmoid function 

and thus determines to which class each observation belongs. A logistic regression model was created 

using the LogisticRegression [27] class.  In the Logistic Regression model, the maximum number of 

iterations was set to 1000. L-BFGS was used as the optimization algorithm among the default 

hyperparameters, while the regulation parameter C was set to 1.0. L2 regularization is applied as a 

penalty. Each model was trained on the training set, and the accuracy performance was calculated based 

on the test set. 

3.6. Quantum Feature Maps 

Quantum feature maps were defined and implemented using the Cirq library. It is a technique that 

enables the transformation of classical data into a high-dimensional space of quantum states through 

quantum circuits. This transformation aims to improve data representation and processing, especially in 

quantum machine learning algorithms, by utilizing quantum mechanical properties of data. A quantum 

feature map is a tool used to encode data features over quantum circuits. 

The QuantumFeatureMap class creates a quantum circuit using a given number of quantum bits (qubits). 

These circuits are used to implement quantum feature maps. The class usually constructs the circuit 

using Hadamard gates (H) [28] and CNOT gates (Controlled-NOT) [29]. While Hadamard gates bring 

qubits into superposition states, CNOT gates create quantum entanglement. Entanglement is a physics 

phenomenon in which two separate particles behave identically regardless of distance from any point in 

the universe [30]. Superposition is when a circuit containing more than one source is considered; the 

total effect of these sources on the circuit is equal to the sum of the effects of each source alone [31]. 

The QuantumFeatureMap class [32] can contain a transformation matrix used to encode data points in 

quantum circuits and transform them into quantum states. This transformation allows the data to be 

processed in quantum circuits. This class also defines the feature map using a quantum circuit containing 

Hadamard and CNOT gates. This map is created for use in data transformation.  

Feature Transformation: It is a technique used in data processing and aims to transform data into a 

specific format or space. In machine learning, feature transformation is often done to make data more 

suitable for modeling. Especially in quantum machine learning, this transformation is related to the 

representation of classical data in quantum circuits. The function transforms the data by applying the 

quantum feature map using a given number of quantum bits (qubits). This allows classical data to be 

encoded in quantum circuits. The function usually uses a constant matrix for the transformation process. 

This matrix determines how the data is represented in quantum circuits. By applying the input data to 

the quantum circuits, the function enables the data to be transformed into quantum states. This makes 

the data suitable for quantum calculations. 

The quantum_feature_transformation function transformed the data using a quantum feature map. The 

SVM model was retrained with the transformed data.  
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In the Quantum Feature Map model, quantum feature transformation is realized by using 1 qubit for 

each feature. The circuit is constructed with Hadamard gates (cirq.H) and CNOT gates. In this 

transformation, a constant transformation matrix (transformation_matrix = np.ones) was used to fit the 

data to the quantum circuit. The hyperparameters of the SVM model were left as default, and a simple 

quantum feature transformation was applied to the quantum circuits with Hadamard and CNOT gates. 

3.7. Performance Evaluation 

The performance of classical and quantum models is compared:  

Classical Models: The accuracy performance of each classical model was calculated on the test set. 

Quantum Models: The SVM model was trained and tested with quantum feature map transformed data. 

The accuracy performance of each feature was calculated to evaluate the effect of features. 

3.8. Feature Selection 

The data set was split into training and test sets. The training and test sets were split into 80% training 

and 20% testing using the train_test_split function. The following steps were applied for model 

evaluation:  

Selection of Best Features: The best features were selected using average accuracy rates. The 

accuracies of the selected features were visualized, and the top 5 features with the best performance 

were identified.  

Evaluating the Performance of Features: A Support Vector Machine (SVM) model was trained for 

each feature after quantum transformation. The model's success was measured by its accuracy on the 

test set. This process was repeated 5 times for each feature, and average accuracy values were calculated. 

Comparison of Model Performance: The performances of SVM models trained with all features and 

only the best features are compared. Accuracy rates are visualized comparatively. 

4 Experimental Results 

4.1. Performance of Classical Machine Learning Models 

This study tested four different classical machine-learning models using the Breast Cancer dataset. The 

accuracy of these models on all features [33] and their performance metrics are shown in Table 1. 

Table 1: Performance Of Classical Machine Learning Models 

Model Acc Prec Rec F1 

SVM 0.9561 0.9714 0.9577 0.9645 

Decision Tree 0.9298 0.9437 0.9437 0.9437 

Random Forest 0.9649 0.9589 0.9859 0.9722 

Logistic Regression 0.9737 0.9722 0.9859 0.979 

The results presented in the table illustrate the performance of various classical machine learning models 

on the breast cancer dataset. The SVM model achieved the highest success rate with an accuracy of 

95.61%, coupled with a precision of 97.14% and a recall of 95.77%. This indicates a high level of correct 

positive predictions and a low false positive rate. While demonstrating a lower performance with an 
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accuracy of 92.98%, the Decision Tree model maintains stable results with a precision and recall of 

94.37%. On the other hand, the Random Forest model ranks second with an accuracy of 96.49%, 

showcasing the highest recall rate of 98.59%, which indicates a strong ability to detect the positive class. 

Finally, the Logistic Regression model displays robust performance with an accuracy of 97.37%, 

offering competitive results in both precision (97.22%) and recall (98.59%). Overall, the SVM and 

Random Forest models present higher overall accuracy and performance metrics compared to other 

models, highlighting their effectiveness as viable options for breast cancer classification tasks. 

 

Figure 2: Performance distributions of classical machine learning models 

As Figure 3 shows, the accuracy values for each feature are recorded in the all_feature_accuracies array. 

The code is executed a specified number of times (five times) to compute the accuracy of each feature. 

The average_accuracies array obtains the average accuracy value for each feature by calculating the 

mean of the accuracy values across all conditions. By employing the np.argsort function, the indices of 

the top five features with the highest average accuracy values are determined. The portion [-

num_best_features:] is utilized to select the five features with the highest accuracy values. 

  

Figure 3: Top five features selected by mean absolute value 

Four different classical machine learning models were tested for the five selected features. The accuracy 

of these models on all features is shown in Table 2. 
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Table 2: Performance of Classical Machine Learning Models after Top 5 Feature Selection 

Model Acc Prec Rec F1 

SVM 0.9649 0.9467 1.0000 0.9726 

Decision Tree 0.9211 0.9306 0.9437 0.9371 

Random Forest 0.9474 0.9452 0.9718 0.9583 

Logistic Regression 0.9649 0.9467 1.0000 0.9726 

The analysis evaluated the classification performance of four different machine learning models (SVM, 

Decision Trees, Random Forests, and Logistic Regression) using the top five selected features. 

According to the results, both the SVM and Logistic Regression models demonstrated the highest 

performance with an accuracy of 96.49%. These models were particularly notable for correctly 

identifying all positive classes (Recall = 1.0) and achieving a high F1 score (0.9726). The Random 

Forest model also provided satisfactory results with an accuracy of 94.74% and a balanced Precision-

Recall ratio. However, the Decision Tree model, with an accuracy of 92.11%, exhibited comparatively 

lower performance but still delivered an acceptable level of classification success. Overall, the results 

indicate that the SVM and Logistic Regression models outperform the others on this dataset. 

Table 3: Performance Metrics of all features and best features 

Model 
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SVM 0.9649 0.9561 0.9467 0.9714 1.0000 0.9577 0.9726 0.9645 

Decision Tree 0.9211 0.9298 0.9306 0.9437 0.9437 0.9437 0.9371 0.9437 

Random Forest 0.9474 0.9649 0.9452 0.9589 0.9718 0.9859 0.9583 0.9722 

Logistic Regression 0.9649 0.9737 0.9467 0.9722 1.0000 0.9859 0.9726 0.979 

The performance metrics of classical machine learning models using both the best-selected features and 

all available features are summarized in Table 3. The results indicate that Logistic Regression achieved 

the highest accuracy (97.37%) when trained on all features, followed closely by Random Forest 

(96.49%) and SVM (95.61%). When using only the best-selected features, SVM and Logistic 

Regression both achieved an accuracy of 96.49%, demonstrating the effectiveness of feature selection. 

Precision and recall values show that SVM and Logistic Regression exhibited the highest recall (1.000) 

when trained on the best features, whereas the highest precision was observed in Logistic Regression 

(97.22%) and SVM (97.14%) when using all features. The F1 scores further confirm that the overall 

best-performing models were Logistic Regression (0.979) and Random Forest (0.9722) when trained on 

all features, with a slight decrease when using selected features. These findings suggest that while 

feature selection maintains competitive performance, training models with all features leads to superior 

classification accuracy, highlighting the potential impact of feature selection on model generalization.  
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Figure 4: Performance distributions of classical machine learning models 

As Table 4 shows, the analysis of feature significance revealed that the selected features play a crucial 

role in model performance. Among the top five features, the "worst perimeter" exhibited the highest 

accuracy at 95.61%, indicating its strong predictive power in distinguishing between classes. Following 

closely, both "worst radius" and "worst area" achieved an accuracy of 94.74%, suggesting their 

relevance in the classification process. The "mean area" and "mean radius" features also contributed 

positively, with accuracies of 93.86% and 92.98%, respectively. Overall, these findings underscore the 

importance of these specific features in enhancing the accuracy of the classification models, thereby 

demonstrating their potential utility in breast cancer diagnosis. 

Table 4: Accuracy Rates of Top 5 Feature Selection 

Feature Index Accuracy Average Accuracy 

0 mean radius 0.9298 

3 mean area 0.9386 

20 worst radius 0.9474 

23 worst area 0.9474 

22 worst perimeter 0.9561 

Considering Figure 4 and Table 2, the Logistic Regression and SVM model achieved the highest 

accuracy rate (96.49%), followed by the Random Forest and Decision Tree models.    

4.2. Application of Quantum Feature Maps 

After applying the quantum feature transformation, the effect of each feature on the model performance 

was evaluated. Figure 5 shows the average accuracy of each feature. Table 5 and Figure 6 show the 

values of the best five features.  
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Figure 5: Average accuracy of each feature 

The worst perimeter feature has the highest accuracy rate, while the mean perimeter and worst area 

features have equal accuracy rates. 

Table 5: Accuracy Rates of Top 5 Feature Selection 

Feature Index Accuracy Average Accuracy 

2 mean perimeter 0.9123 

23 worst area 0.9123 

20 worst radius 0.9211 

27 worst concave points 0.9298 

22 worst perimeter 0.9386 

Table 6 shows the performance metric results of the model on all features and the best five features. 

Table 6: Performance Metrics of all features and best features 

Performance Metrics All Features Best Features 

Accuracy 0.9825 0.9474 

Precision 0.9726 0.9452 

Recall 1.0 0.9718 

F1 Score 0.9861 0.9583 

As Table 6 shows, the performance metrics presented in the table highlight the impact of feature 

selection on model efficacy. When utilizing all features, the model achieved an accuracy of 0.9825, 

which indicates a high level of overall correctness in predictions. However, when evaluated with the 

selected best features, the accuracy decreased to 0.9474. This suggests that while the full feature set may 

provide a more nuanced understanding of the data, the selected features still maintain a substantial 

predictive capability. Precision scores exhibited a similar trend, with values of 0.9726 for all features 

and 0.9452 for the best features, reflecting a decrease in the proportion of true-positive identifications. 

Notably, the recall metric remained remarkably high, at 1.0 for all features, and only slightly reduced to 

0.9718 with the best features, indicating that the model retained its effectiveness in identifying actual 

positive cases despite the reduction in features. The F1 Score, a harmonic mean of precision and recall, 

also demonstrated this trend, decreasing from 0.9861 to 0.9583. Overall, these metrics underscore the 

importance of feature selection, revealing that while fewer features can lead to a decline in some 

performance aspects, the model still retains strong predictive abilities with the best features selected. 
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Figure 6: Accuracy distributions of the top 5 features 

Accuracy rates of the features play an important role in increasing the success of the model. 

4.3. Comparative analysis of the models 

In this study, the performances of classical machine learning models on breast cancer datasets were 

analyzed, and the best features were selected by applying quantum feature transformation. The results 

obtained are as follows:  

Performance of Classical Machine Learning Models (Top 5 best feature selection and mean absolute 

value): Logistic Regression and SVM models were the most successful models, with a 96.49% accuracy 

rate. It was followed by Random Forest with a 94.74% accuracy rate and Decision Tree with a 92.11% 

accuracy rate.   

Quantum Feature Transformation and Selection of the Best Features: The best five features were 

determined from quantum feature transformation. The accuracy rate of the model trained with these 

features was 94.74%. However, the accuracy rate of the model trained with all features was calculated 

as 98.25%. 

5 Conclusion, Discussion and Suggestions 

It has been observed that quantum feature maps offer potential advantages, especially in high-

dimensional data transformations. Quantum transformation has been found to provide results beyond 

classical methods in some cases and be influential in selecting features. However, the current limitations 

and computational costs of quantum computing must also be considered. 

5.1. Conclusion 

This study compared the performances of classical and quantum machine learning approaches using the 

Breast Cancer dataset. Classical machine learning models (SVM, Decision Trees, Random Forests, 

Logistic Regression) provided high accuracy rates on the dataset and generally performed as expected. 

Each of these models offered effective results in classifying the data. 

The study's findings compare the performances of classical and quantum feature selection methods on 

breast cancer datasets. When the best five features selected by the classical method were used, the 
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Logistic Regression and SVM model was the most successful model, with an accuracy of 96.49%.  

However, the model trained with the best five features selected using quantum feature transformation 

reached 94.74% accuracy. The model trained with all features performed most with 98.25% accuracy.  

These results show that quantum feature transform can positively affect feature selection and model 

performance. In particular, the quantum method provides an advantage over classical methods by 

enabling high accuracy rates to be achieved using fewer features. Quantum machine learning methods 

have presented important findings, especially regarding the use of quantum feature maps. The 

transformation process using quantum feature maps improved the accuracy performance of some 

features. In particular, the selection of the best features after quantum transformation increased the 

model's accuracy and, in some cases, provided higher performance than classical methods. Classification 

with the best features improved the accuracy rate, which shows that quantum methods can be 

advantageous in some data sets. 

5.2. Discussion 

In this study, the performance of classical and quantum feature selection methods on breast cancer 

datasets was compared with findings from the literature. Wang (2024) reported that the QSVMF model 

achieved accuracy between 95% and 98%, while Patil et al. (2024) obtained accuracy values of 93.85% 

for SVM, 94.73% for Decision Tree, 97.36% for Random Forest, and 95.61% for Logistic Regression. 

Similarly, Sidey-Gibbons (2019) demonstrated high classification performance, with SVM achieving a 

maximum accuracy of 96% and an AUC of 97%, further improving to 97% accuracy in a voting 

ensemble. Sharma et al. (2018) also reported high SVM performance, with specificity of 98.2%, 

sensitivity of 93.22%, and accuracy of 96.66%. In comparison, our study found that when the best five 

features selected by classical methods were used, Logistic Regression and SVM achieved the highest 

accuracy of 96.49%. However, when quantum feature transformation was applied, the model’s accuracy 

reached 94.74%. Notably, training the model with all features resulted in the highest accuracy of 

98.25%, surpassing the performances reported in previous studies. These findings highlight the 

effectiveness of both classical and quantum feature selection methods while demonstrating that using 

all available features yields superior classification accuracy. 

The study's findings reveal that quantum machine learning approaches offer potential advantages, 

especially in data transformation and feature selection processes. Using quantum feature maps has 

shown that data can be transformed into a high-dimensional space and that this transformation can 

positively affect classification performance. This emphasizes the potential of quantum computing in 

data analysis and the importance of its integration with traditional methods. 

However, the current limitations of quantum computing and high computational costs are challenges in 

practical applications. The development and optimization of quantum computers are critical for the more 

efficient and economical application of these methods on large-scale datasets. The high accuracy rates 

obtained with classical methods show the effectiveness of existing methods and the classification 

success in the dataset. Although quantum feature maps have been observed to be superior to classical 

methods in some cases, more research is needed to determine how effective quantum methods will be 

for each data set and problem. 

5.3. Suggestions 

1. Improving Quantum Computing: Increasing the computational capacity of quantum computers and 

optimizing algorithms is essential for the effective use of quantum machine learning methods on larger 
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data sets and real-world applications.  

2. Testing with Different Data Sets: Testing quantum feature maps and quantum machine learning 

methods on different data sets and application domains will be useful to evaluate these methods' overall 

performance and validity. 

3. Investigation of Hybrid Models: Combinations of quantum and classical machine learning methods, 

especially the development of hybrid models, can provide higher performance and flexibility by 

leveraging the advantages of both approaches.  

4. More in-depth study of quantum machine learning in applied research, for example, in areas such as 

health data, financial analyses, and big data analysis, can demonstrate the benefits of quantum 

technology in practical applications. 

5.4. Future Studies 

Future work should include a more comprehensive evaluation of quantum machine learning methods 

and testing them on various data sets. Furthermore, overcoming the limitations of quantum computing 

and addressing the challenges faced in practical applications will allow us to better evaluate the potential 

of quantum technologies. Studies investigating the integration of quantum and classical approaches can 

increase the knowledge in this field and provide more effective and efficient solutions.  

For this study, in the future, different feature selection techniques will be tested in both classical and 

quantum machine learning, and comparisons will continue using different algorithm models and 

performance metrics.  
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