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 ABSTRACT  

 

The super-resolution method, which has gained significant popularity today, aims to obtain 

high-resolution images from low-resolution ones, enhancing image quality and making details 

clearer. This technique allows for more detailed analysis of images, providing significant 

advantages in medical imaging, restoration of old photographs, and the analysis of security 

cameras. In medical imaging, super-resolution contributes to more accurate diagnosis of diseases 

by clarifying low-resolution MRI, CT, and ultrasound images. Similarly, in the restoration of old 

photographs, improving blurred visuals allows for the preservation and renewal of historically 

significant images. In the field of security, enhancing images obtained from low-resolution 

surveillance cameras makes it easier to identify suspects and allows for a more detailed analysis 

of events, playing a critical role in solving crimes. In recent years, deep learning-based 

approaches have made significant progress in the field of super-resolution. Notably, 

Convolutional Neural Networks (CNN) have achieved great success in solving these problems. 

However, one of the most remarkable developments in super-resolution is the SRGAN model, 

based on Generative Adversarial Networks (GAN). SRGAN has surpassed traditional methods 

by more effectively improving image quality. In this study, the SRGAN model was trained on 

three different biomedical datasets, achieving PSNR values of 31 and SSIM values of up to 94%. 

These results demonstrate the potential of super-resolution in enhancing biomedical imaging, 

offering clearer images for more accurate disease diagnosis, thereby improving the precision of 

medical analyses. Moreover, given that these developments can also be applied in fields such as 

security and restoration, the importance of super-resolution techniques across different 

disciplines is increasingly recognized. 
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1 INTRODUCTION 

Super-resolution (SR) is a method of obtaining high-resolution images from one or more 

low-resolution versions of the same image. High-resolution images provide more detail and 

clarity, thereby increasing the accuracy of image analysis and classification [1]. SR technology 

has become increasingly important with rapid advancements in digital image processing and 

analysis. This technology enhances the quality and details of low-resolution images, producing 

high-resolution results. One of the most common problems encountered in digital images is the 

loss of detail and blurriness [2]. SR can address these issues by producing sharper and higher-

quality images. 

SR is often used to improve the quality of old or low-quality images. This technology 

enhances the clarity of images, providing detailed and high-quality visuals [3]. Particularly in 

the restoration of historically significant old photographs, SR has made a significant difference. 

Using SR techniques, details lost in old, low-resolution, and degraded images can be recovered, 

adapting the image to modern digital standards [4]. For example, enhancing and restoring the 

details of nostalgic and historically valuable images significantly increases visual quality, 

allowing these photographs to be used more effectively in modern digital formats. 

One of the important application areas of SR is the medical field. In medical imaging 

techniques, SR enhances the resolution of images, helping doctors make more accurate 

diagnoses. Particularly in imaging techniques such as magnetic resonance (MR), computed 

tomography (CT), and ultrasound, high-resolution images allow doctors to analyze diseases in 

more detail [5]. The early detection of cancer cells or abnormal tissues becomes easier with SR 

technology, enabling the creation of more effective treatment plans for patients. Diseases 

identified early, especially in serious conditions like cancer, can be treated before they progress, 

thanks to SR. 

SR also has a significant impact in the field of security and surveillance. Images 

obtained from security cameras are often low-resolution, and the lack of detail can result in the 

loss of critical information. SR technology enhances the clarity of these images, enabling the 

identification of suspects and the detailed analysis of events [6]. This allows security forces to 

intervene more effectively in incidents. Additionally, using SR technology, surveillance systems 

in cities can be made more efficient, and clearer results can be obtained in detecting security 

issues. 
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Super-resolution can be implemented using two main methods: Single Image Super-

Resolution (SISR) and Multi-Image Super-Resolution (MISR). SISR aims to obtain a high-

resolution image from a single low-resolution image [7]. This technique is often applied using 

deep learning models, particularly Convolutional Neural Networks (CNNs). Deep learning 

analyzes the features of low-resolution images and generates a high-resolution prediction. 

MISR, on the other hand, uses multiple low-resolution images of the same scene captured from 

different angles or at different times to produce a high-resolution image [8]. This method 

benefits from the redundancy of information across images, resulting in higher-quality 

outcomes. 

In recent years, significant progress has been made in deep learning-based super-

resolution (SR) research. Particularly, CNN-based models have demonstrated great success in 

addressing SR problems. CNNs are known for their strong performance in image processing 

and analysis and provide innovative solutions in the SR domain [9, 10]. One of the first major 

breakthroughs in super-resolution was the SRCNN (Super-Resolution Convolutional Neural 

Network) model developed by Dong et al. (2015). SRCNN uses a three-layer CNN to create 

high-resolution versions of low-resolution images. This model first scales a low-resolution 

image to a higher resolution and then performs feature extraction and reconstruction on this 

image [11]. 

After the success of SRCNN, Kim et al. introduced a deeper model called VDSR (Very 

Deep Super-Resolution Network). VDSR is a 20-layer deep neural network and leverages the 

power of deep learning to predict high-resolution versions of low-resolution images [12]. Lim 

et al. developed the Enhanced Deep Super-Resolution (EDSR) model, which significantly 

improved SR performance. EDSR uses a structure similar to VDSR but enhances performance 

with several key improvements [13]. The RDN (Residual Dense Network) model developed by 

Zhang et al. represents a new approach to SR problems and has been effective in improving 

resolution [14]. 

In deep learning-based SR research, the sharpening of blurred images has also been an 

important area of study in the literature. For example, Xu et al. have conducted important 

research in this area using deep convolutional networks to sharpen blurred images. These 

studies reduce blurry areas through sharpening filters, allowing fine details in the image to be 

emphasized [15]. Reducing random noise in digital images is important for improving image 

quality. Zhang et al. introduced a deep learning model called DnCNN that effectively reduces 
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image noise. Additionally, contrast enhancement techniques highlight the difference between 

light and dark areas in the image, resulting in clearer and more vibrant visuals [16]. 

In this study, three different biomedical datasets—skin cancer, retina fundus, and blood 

cell cancer—were trained with the SRGAN model [17], and the model's performance was 

evaluated using PSNR and SSIM metrics. The results show that for the skin cancer dataset, the 

model achieved a PSNR of 31.11 and an SSIM of 85.74%; for the retina fundus dataset, a PSNR 

of 30.75 and an SSIM of 94.83%; and for the blood cell cancer dataset, a PSNR of 33.65 and 

an SSIM of 88.38%. These results demonstrate the effectiveness of SR in enhancing the quality 

of medical images for analysis. 

2 MATERIAL AND METHOD 

This study uses three different datasets from global sources: the Skin Cancer dataset 

from the International Skin Imaging Collaboration (ISIC) [18], the Blood Cell Cancer dataset 

from Taleqani Hospital in Tehran, Iran [19] , and the Retina Fundus dataset from the 

Papageorgiou Hospital at Aristotle University of Thessaloniki [20].  

2.1 Skin Cancer Dataset 

From the databases of the International Skin Imaging Collaboration (ISIC), a total of 

2,357 images of malignant and benign oncological diseases were obtained. These images were 

initially classified according to the ISIC classification and divided into equal numbers for all 

subsets, excluding melanomas and moles, which were slightly more prevalent. Figure 1 shows 

some example images from the skin cancer dataset. 

 

Figure 1. Skin cancer dataset sample images. 
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As seen in Figure 1, the dataset consists of images related to various skin lesions or 

moles. Irregularities in shape, color, and patterns can be observed among these lesions, which 

are crucial for the detection of cancerous cells [21]. The distribution of color, asymmetry, border 

characteristics, and size differences in the lesions are used to diagnose the disease.  

2.2 Blood Cell Cancer Dataset 

The accurate diagnosis of Acute Lymphoblastic Leukemia (ALL), a highly common 

form of cancer, often requires invasive, expensive, and time-consuming diagnostic tests [22]. 

Peripheral blood smear (PBS) images play a critical role in the initial screening of ALL by 

differentiating cancerous cells from non-cancerous cases. Manual examination of these PBS 

images by laboratory users is prone to diagnostic errors due to the non-specific nature of ALL's 

symptoms. This dataset consists of 3,242 PBS images from 89 patients suspected of having 

ALL, which were prepared and stained by skilled laboratory personnel. These images are 

divided into two classes: benign (non-cancerous) and malignant, with malignant ALL further 

categorized into three subtypes: Early Pre-B, Pre-B, and Pro-B ALL. All images were captured 

using a Zeiss camera with a 100x magnification microscope and saved as JPG files. Figure 2 

shows the blood cell cancer dataset. 

 

Figure 2. Blood cell cancer dataset sample images. 

In Figure 2, it can be observed that cancerous blood cells are larger and have a purplish 

color compared to healthy blood cells. Leukemia is characterized by the uncontrolled 

proliferation of abnormal white blood cells in the blood and bone marrow, replacing normal 

cells and weakening the body's ability to fight infections and impairing other essential 

functions. 
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2.3 Retina Fundus Veri Seti 

This dataset consists of 129 retinal images forming 134 image pairs, which are divided 

into three categories based on their features. The images were captured using a Nidek AFC-210 

fundus camera with a 45° field of view. The data was collected from 39 patients at the 

Papageorgiou Hospital in Thessaloniki, Greece. Figure 3 shows the retina fundus dataset. 

 

Figure 3. Retina fundus dataset sample images. 

In Figure 3, the optic nerve, blood vessels, and retina surface can be seen. The optic 

nerve’s center is usually a bright spot, and blood vessels radiate outward from this point. To 

diagnose eye diseases, the structure of the retinal vessels, abnormalities around the optic disc, 

hemorrhages, and areas such as the macula are examined. The white spots in the images are 

markings used to identify problem areas in the eye. Fundus images are often used to diagnose 

conditions such as diabetic retinopathy, where hemorrhages, cotton wool spots, and other 

vascular changes are significant features. 

2.4 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) are an unsupervised deep learning framework 

proposed by Goodfellow et al. [23]. The framework consists of two networks: a generator (G) 

and a discriminator (D), optimized to minimize a two-player minimax game where the generator 

learns to deceive the discriminator, and the discriminator learns to protect itself from being 

deceived. As explained by Goodfellow and his colleagues, “The generator model can be likened 

to a team of counterfeiters trying to produce fake money, while the discriminator model 

resembles the police attempting to detect the counterfeit money” [24].  
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During GAN training, the generator receives a random noise vector as input and 

produces an output distribution PG. The discriminator is then trained to distinguish between PG 

and the real data distribution PData. Simultaneously, the generator is trained to learn how to 

deceive the discriminator. In theory, PG should converge towards PData as the discriminator 

becomes unable to differentiate between the generated and real samples, resulting in an ideal 

generator model capable of producing data following the real data distribution. 

While GANs are a powerful framework, they often face stability issues, where 

competing networks rarely converge. Variations of the framework that use different loss 

functions, such as Wasserstein GANs (WGANs) [25], have been developed to improve training 

stability. Unlike the original GAN framework, WGANs minimize the Earth Mover's Distance 

and impose a gradient penalty in the loss function to constrain the discriminator's gradient norm 

relative to its input. 

2.5 Super Resolution Generative Adversarial Networks 

Super Resolution Generative Adversarial Networks (SRGAN), SRGAN is a method that 

uses generative adversarial networks (GANs) to produce photorealistic super-resolution (SR) 

images with high scaling factors. While traditional SR approaches focus on minimizing pixel-

based error metrics (e.g., Mean Squared Error – MSE), SRGAN adopts an innovative perceptual 

loss function to produce images of a quality closer to human perception [26]. This loss function 

takes advantage of a discriminator network trained to distinguish between real and super-

resolved images. SRGAN uses a deep residual network (ResNet) architecture and applies a 

VGG loss that measures the Euclidean distance between feature maps obtained from the 

VGG19 network. The SRGAN architecture is shown in Figure 4. 

 
Figure 4. SRGAN Architecture. 
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Extensive experiments have shown that SRGAN sets a new standard for PSNR and 

Structural Similarity Index (SSIM) metrics on three publicly available datasets. Additionally, 

the quality of SR images produced by SRGAN has significantly outperformed other state-of-

the-art methods, according to the results of the Mean Opinion Score (MOS) test [27]. This study 

demonstrates the potential of GANs in enhancing perceptual quality in the field of super-

resolution. 

2.6 Peak Signal-to-Noise Ratio 

Peak Signal-to-Noise Ratio (PSNR) is a signal processing metric used to compare a 

processed signal to its original source. This comparison allows us to measure how faithfully the 

processed signal retains the qualities of the original, as well as to identify any noise or 

distortions introduced during processing [28]. PSNR directly represents the relationship 

between a signal before and after the degradation process. Equations 1 and 2 show these 

relationships. 

𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10

𝑀𝐴𝑋1
2

𝑀𝑆𝐸
 (1) 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛=1

𝑗=0

𝑚=1

𝑖=0
 (2) 

𝑀𝐴𝑋 is the highest possible value of the signal. In the case of an 8-bit grayscale image, 

𝐴𝑋=255, and 𝑃𝑆𝑁𝑅 is inversely proportional to MSE (Mean Square Error), as shown in 

Equation (1). The final value 𝑃𝑆𝑁𝑅 is given in decibels. PSNR is inversely proportional to 

MSE (Mean Squared Error), and the final value of PSNR is expressed in decibels. PSNR is 

commonly used to evaluate the quality of image or video signals based on the MSE relative to 

the source image. However, it has also been used as an analytical measure for segmentation 

algorithm assessments [29]. However, it has also been used as an analytical measure for 

segmentation algorithm assessments [30]. In the case of multi-threshold algorithms, it has been 

used to determine the number of thresholds in addition to their value [31].  

2.6.1 Structural Similarity Index   

The Structural Similarity Index (SSIM) is a metric used to evaluate the quality of digital 

images based on their structural integrity. SSIM was developed based on the perceptual 

characteristics of the Human Visual System (HVS) and, unlike traditional methods, compares 

the structural information of images to assess the level of degradation [32]. 
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SSIM evaluates quality by focusing on the degradation of a scene’s structural 

information. SSIM consists of three components: luminance, contrast, and structure. 

Luminance compares the average brightness values of two images; contrast is calculated based 

on the variance of the images; and structure is compared by calculating the covariance of the 

two images. The SSIM value is calculated as shown in Equation (3). 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥2 + 𝜇𝑦2 + 𝐶1)(𝜎𝑥2 + 𝜎𝑦2 + 𝐶2)
 (3) 

Where 𝜇𝑥  and 𝜇𝑦 are the mean brightness values of the original and distorted images, 

𝜎𝑥2 and 𝜎𝑦2 are their variances, and 𝜎𝑥𝑦 is the covariance between the two images. 𝐶1and 

𝐶1are constants added for stability in the calculations.  

3 RESULTS AND DISCUSSION 

The PSNR and SSIM performance graphs for the skin cancer dataset after training the 

SRGAN model are presented in Figure 5. It is clear that during training, the PSNR value 

exceeds 30, which represents an ideal level for image quality [33]. Additionally, the SSIM value 

surpasses 85%, indicating that the generated images maintain a high level of structural integrity. 

 

Figure 5. PSNR and SSIM Performance Graph for the Skin Cancer Dataset. 

The PSNR and SSIM performance graphs for the retina fundus dataset are shown in 

Figure 6. During training, the PSNR value increases above 30, which is considered an excellent 

level for image quality [34]. Furthermore, the SSIM value approaches 95%, signifying that the 

generated images have a high structural resemblance to the originals. 
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Figure 6. PSNR and SSIM Performance Graph for the Retina Fundus Dataset. 

For the blood cell cancer dataset, the PSNR and SSIM performance graphs are shown 

in Figure 7. As illustrated, the PSNR value approaches 31 during training, and a final value of 

30.97 is achieved after 1000 iterations. Additionally, the SSIM performance value of 88.18% 

demonstrates the structural integrity of the generated images. 

 
Figure 7. PSNR and SSIM Performance Graph for the Blood Cell Cancer Dataset. 

The results for the SRGAN model's performance on different medical image datasets 

are presented in Table 1.  

Table 1. Dataset Performance Values. 

Datasets PSNR SSIM MAE 

Skin Cancer 31.06 85.84% 1.11% 

Retina Fundus 30.71 94.30% 1.80% 

Blood Cell Cancer 30.97 88.18% 1.51% 

 

For the skin cancer dataset, the PSNR value of 31.06 indicates that the image quality is 

quite good. The SSIM value of 85.84% shows that the images have been reconstructed with 

high structural accuracy, while the Mean Absolute Error (MAE) value of 1.11% indicates a 

meager error rate. For the retina fundus dataset, the PSNR value of 30.71 represents good image 
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quality, and the SSIM value of 94.30% indicates an exceptionally high structural similarity to 

the original images. The MAE value of 1.8% shows that the model made very few errors with 

this dataset. Finally, for the blood cell cancer dataset, the PSNR value of 30.97 demonstrates 

the highest performance, indicating superior image quality compared to the other datasets. The 

SSIM value of 88.18% confirms the model's strong structural accuracy, and the MAE value of 

1.51% indicates a low error rate. These results show that the SRGAN model can be successfully 

applied to different medical image datasets and effectively produces high-resolution images. 

4 CONCLUSION AND SUGGESTIONS 

In this study, the performance of the SRGAN model on different medical image datasets 

was evaluated. The results demonstrate that the model achieves successful outcomes on medical 

images, producing high-resolution images. Specifically, the analyses on the skin cancer, retina 

fundus, and blood cell cancer datasets reveal the model’s overall success. Figure 8 shows the 

LR: Low Resolution and SR: Super Resolution images obtained as a result of the study 

conducted on three different original skin cancer images. 

 
Figure 8. LR and SR results of different images in the skin cancer dataset. 

For the skin cancer dataset, the PSNR value of 31.06 indicates that the image quality is 

quite high, which is crucial for medical diagnoses. A PSNR value above 30 suggests that the 

model is performing effectively. The SSIM value of 85.84% indicates that the structural 

integrity of the images has been preserved. The MAE value of 1.11% represents a low error 

rate. Figure 9 shows the LR and SR images obtained as a result of the study conducted on three 

different original retina fundus images. 
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Figure 9. LR and SR results of different images in the retina fundus dataset. 

For the retina fundus dataset, the PSNR value of 30.71 confirms that the image quality 

is high. The SSIM value of 94.30% shows a very close structural resemblance between the 

original and generated images. The low MAE value of 1.8% indicates that the model made very 

few errors on these images, suggesting that it can be applied in sensitive areas like retinal 

imaging. Figure 10 shows the LR and SR images obtained as a result of the study conducted on 

three different original blood cell cancer images. 

 

Figure 10. LR and SR results of different images in the blood cell cancer dataset. 
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Finally, the blood cell cancer dataset achieved the highest PSNR value of 30.97, 

demonstrating the best performance. The SSIM value of 88.18% confirms the model’s success 

in maintaining structural accuracy, while the MAE value of 1.51% reflects a low error rate. 

Overall, the SRGAN model has proven to generate successful results across different 

medical datasets. These findings indicate that the model holds great potential for medical image 

processing applications. 
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