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Abstract

In this article, we investigate L P-Sasakian spacetimes attached with perfect fluid whose metrics are (CERY)4-soliton admitting Z -tensor.
Also we discuss the application of such soliton to cosmology and general relativity. Besides this, we deduce a modified Poisson equation and
modified Liouville equation from the (CERY)4-soliton on L P-Sasakian spacetimes . In addition, we light up the harmonic aspect of such
soliton on perfect fluid L P-Sasakian spacetimes. Moreover, we conclude a necessary and sufficient condition for a 1-form η], which is the
g?-dual of the vector field ξ on such a spacetime to be a solution of the Schrödinger-Ricci equation. In conclusion, we present an instance of
a 4-dimensional L P-Sasakian spacetime with the (CERY)4-soliton equipped with Z -tensor.
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1. Introduction

Let (Ωm̃,g?) is a Riemannian manifold and T s
2 (Ω) is a linear space of its symmetric tensor fields for (0,2)-type and R̃iem(Ω)$ T s

2 (Ω) is
infinite space of its Riemannian metrics. A Riemannian flow (briefly, RF) is a smooth map on (Ωm̃,g?), is defined by

g? : I? ⊆ℜ→ R̃iem(Ω),

where, I? is an open interval [11]. The map R̃Y
(ρ?,ρ?,g?)

: I?→T s
2 (Ω), which is light up by

R̃Y
(ρ?,ρ?,g?)

:= 2ρ
?S (t)+ρ

?
τ(t)g?(t)+

∂

∂ t
g?(t),

is (ρ?,ρ?)-Ricci-Yamabe map of (Ωm̃,g?), where ρ?, ρ? are some scalars [11]. If R̃Y
(ρ?,ρ?,g?)

≡ 0, then we call it g?(·) an (ρ?,ρ?)-Ricci-
Yamabe flow (briefly, RYF). Also, Ricci Yamabe flow is said to be (i) Ricci flow (RF) if ρ? = 1 [12], ρ? = 0; (ii) Yamabe flow (YF) [13] if
ρ? = 0, ρ? = 1 and (iii) Einstein flow (EF) [5] if ρ? = 1, ρ? =−1.
A Riemannain manifold (Ωm̃,g?), m̃ > 2 admit (ρ?,ρ?)-Ricci-Yamabe soliton (g?,K ,λ [,ρ?,ρ?), or (briefly, (ρ?,ρ?)-RYS) if it satisfies

(LK g?)(F ,G )+2ρ
?S (F ,G )+ [2λ

[−ρ
?
τ]g(F ,G ) = 0, (1.1)

where S is the Ricci tensor, ρ?, λ [ and ρ? are the real scalars, LK g? denotes the Lie derivative of the metric g? along K and τ is the
scalar curvature. As a result, depending on whether the soliton is diminishing, increasing, or stable, λ [ > 0, λ [ < 0, or λ [=0, respectively. If
λ [, ρ? and ρ? become smooth functions, then (1.1) is called almost Ricci-Yamabe soliton (briefly, ARYS). The notion of η-Ricci Yamabe
soliton on (Ωm̃,g?) is given by

(LK g?)(F ,G )+2ψ
[
η
](F )η](G )+2ρ

?S (F ,G )+ [2λ
[−ρ

?
τ]g?(F ,G ) = 0, (1.2)
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where η] is a 1-form on Ω and ψ[ is a constant [30]. Moreover, in [28] author defined the idea of a conformal Ricci-Yamabe soliton (briefly,
CRYS) as

(LK g?)(F ,G )+2ρ
?S (F ,G )+ [2µ

?− (p̃+
2
m̃
)−ρ

?
τ]g?(F ,G ) = 0, (1.3)

where, p̃ is a time dependent scalar field. Also the author introduced concept of conformal η-Ricci-Yamabe soliton (briefly, CERYS) which
is given by

(LK g?)(F ,G )+2ψ
[
η
](F )η](G )+2ρ

?S (F ,G )+

[
2µ

?−
(

p̃+
2
m̃

)
−ρ

?
τ

]
g?(F ,G ) = 0, (1.4)

where, µ?, ρ?, ρ?, and ψ[ are real scalars [28]. If K = grad( f ), where f is a smooth function of (Ωm̃,g?) , then (1.4) is known as gradient
conformal η-Ricci-Yamabe soliton (briefly, GCERYS), for more details (see, [37, 38]):
According to [18] a generalized symmetric Z tensor on (Ωm̃,g?) is outlined to as

Z (F ,G ) = S (F ,G )+ψg?(F ,G ), (1.5)

where, ψ is an arbitrary scalar function. In Refs. [31, 19, 20, 21, 2, 39, 40], several Z -tensor attributes were highlighted. From (1.5), the
scalar z∗ one can get

z∗ = τ + m̃ψ. (1.6)

In light of the works mentioned above, we propose in our study to investigate several geometric aspects of an L P-Sasakian spacetime
admitting a CERYS. Now, we recall the following new definition with the help of 1.5 that will be use in the next sections.
A Riemannian manifold (Ωm̃,g?) admit

(i) generalized Z -η-Ricci soliton (briefly, GZ(ERS) if

(Lξ g?)(F ,G )+2ψ
[
η
](F )η](G )+2λ

[g(F ,G )+2Z (F ,G ) = 0, (1.7)

(ii) generalized Z conformal η-Ricci soliton (briefly, GZ(CERS) if

(Lξ g?)(F ,G )+2Z (F ,G )+

[
2µ

?−
(

p̃+
2
m̃

)]
g(F ,G )+2ψ

[
η
](F )η](G ) = 0, (1.8)

(iii) generalized Z conformal η-Ricci-Yamabe soliton (briefly, GZ(CERYS) if

(Lξ g?)(F ,G )+2ψ
[
η
](F )η](G )+2ρ

?Z (F ,G )+

[
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
]

g?(F ,G ) = 0, (1.9)

(iv) gradient generalized Z conformal η-Ricci-Yamabe soliton (briefly, gradient GZ(CERYS) if

Hess( f )+ψ
[
η
](F )η](G )+ρ

?Z (F ,G )+

[
µ
?− 1

2

(
p̃+

2
m̃

)
− ρ?z∗

2

]
g?(F ,G ) = 0, (1.10)

where, Hess( f ) is the Hessian of the smooth function f .

2. Preliminaries

Let Ωm̃ be a manifold with a (1,1)-tensor field φ , a contravariant vector field ξ , a covariant vector field η] and a Lorentzian metric g? of
type (0,2) such that for each point p ∈Ωm̃ the tensor g?p : TpΩ×TpΩ→ℜ is an inner product of signature (−,+,+, .....,+), where TpΩ

is the tangent space of Ωm̃ at p and ℜ is the real number space which satisfies

φ
2(F ) = F +η

](F )ξ , η
](ξ ) =−1, (2.1)

g?(F ,ξ ) = η
](F ), g?(φF ,φG ) = g?(F ,G )+η

](F )η](G ), (2.2)

∀ F , G on Ωm̃. Then Ωm̃ with the structure (φ ,ξ ,η],g?) is called the Lorentzian almost paracontact manifold (briefly, (LAPCM)m̃) [22].
Also we have

φξ = 0, η
](φF ) = 0, Ω

[(F ,G ) = Ω
[(F ,G ), (2.3)

where Ω[(F ,G ) = g?(F ,φG ) [22]. If the (LAPCM)m̃ satisfies

(∇H Ω
[)(F ,G ) = α[{g?(F ,H )+η

](F )η](H )}η](G )+{g?(G ,H )+η
](G )η](H )}η](F )], (2.4)

Ω
[(F ,G ) =

1
α
(∇F η

])(G ), (2.5)

for all vector fields F , G , H on (Ωm̃,g?), where α is a non-zero scalar function, then (Ωm̃,g?) is called an L P-Sasakian manifold with
the coefficient α [8]. Also a vector field V satisfies

∇F V = αF +A (F )V , (2.6)
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where V is referred to as a torse-forming vector field (briefly, TFVF) and A is a non-zero 1-form [32].
Particularly, if ξ is a unit TFVF on (Ωm̃,g?), then we have

∇F ξ = αF +A (F )ξ . (2.7)

Moreover, g?(ξ ,ξ ) =−1, which means that g?(∇F ξ ,ξ ) = 0. So, from (2.7), we yield

A (F ) = αη
](F ), (2.8)

and

(∇F η
])(G ) = ∇F η

](G )−η
](∇F G ) = g?(G ,∇F ξ ). (2.9)

In light of (2.7)-(2.8), we obtain

(∇F η
])(G ) = α[g?(F ,G )+η

](F )η](G )]. (2.10)

Especially, if η] satisfies

(∇F η
])(G ) = ε {g?(F ,G )+η

](F )η](G )}, ε
2 = 1, (2.11)

then (Ωm̃,g?) is called an L S P-Sasakian manifold [8]. In particular, if α satisfies (2.10) and along with

∇F α = dα(F ) = ση
](F ), (2.12)

where σ is a smooth function then ξ is called a CVF. Also on Ωm̃(φ ,ξ ,η],g?) with a coefficient α [16], we have

η
](R(F ,G )H ) = (α2−σ)[g?(G ,H )η](F )−g?(F ,H )η](G )], (2.13)

S (F ,ξ ) = (m̃−1)(α2−σ)η](F ), (2.14)

R(F ,G )ξ = (α2−σ)[η](G )F −η
](F )G ], (2.15)

R(ξ ,G )F = (α2−σ)[g(F ,G )ξ −η
](F )G ], (2.16)

(∇F φ)(G ) = α[g?(F ,G )ξ +2η
](F )η](G )ξ +η

](G )F ], (2.17)

S (φF ,φG ) = S (F ,G )+(m̃−1)(α2−σ)g?(F ,G ), (2.18)

∀F , G , H on (Ωm̃,g?).
The author of [23] talked about how semi-Riemannian geometry is used in the theory of relativity. Kaigorodov studies the curvature structure
of spacetime [15]. Raychaudhary et al. elaborate on these concepts from the general theory of spacetime [26]. Chaki and Roy [6] investigated
the covariant constant EMT in spacetime. There are many authors analyzed the features of PFST with different types of solitons in this
sequel [1, 9, 40, 41, 14, 34, 35, 36].
A vector field F on (Ωm̃,g?) is refered to as infinitesimal transformation (briefly, IT) if there exists a function υ , which obeys [3]

(LF η
])(G ) = υη

](G ). (2.19)

Specifically, F is known as a strict infinitesimal transformation (briefly, SIT) on (Ωm̃,g?) if υ=0.
A vector field K on (Ωm̃,g?) is said to be a conformal vector field (briefly, CVF) if

LK g?(F ,G ) = 2ψg?(F ,G ),

where ψ is a smooth function [33]. Thus for the CVF, K on (Ωm̃,g?) we have

(LK S )(F ,G ) =−(m̃−2)g?(∇F D [
ψ,G )+(4[

ψ)g?(F ,G ), (2.20)

LK τ =−2ψr+2(m̃−1)4[
ψ, (2.21)

∀F , G on (Ωm̃,g?), where D [ and4[ denote the gradient operator and the Laplacian operator [33], respectively .
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3. Generalized Z conformal η-Ricci-Yamabe soliton on L P-Sasakian manifold

A generalized Z conformal η-Ricci-Yamabe soliton on (Ωm̃,g?) are discuss in this section and deduce the remarkable results. From (1.5)
and (1.9), we have

Lξ g?(F ,G )+2ψ
[
η
](F )η](G )+2ρ

?[S (F ,G )+ψg?(F ,G )]+

[
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
]

g?(F ,G ) = 0. (3.1)

With reference to (2.7) and (2.8), equation (3.1) reduces

S (F ,G ) =

[
− (α +ψρ?)

ρ?
− 1

2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}]

g?(F ,G )− 1
ρ?

(α +ψ
[)η](F )η](G ), (3.2)

and

S (F ,ξ ) =

[
− (α +ψρ?)

ρ?
− 1

2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}]

η
](F )+

1
ρ?

(α +ψ
[)η](F ). (3.3)

As per equation (3.3), we can easily get

S (ξ ,ξ ) =

[
ψ +

ψ[

ρ?
+

1
2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}]

, (3.4)

Q̃F =

[
− (α +ψρ?)

ρ?
− 1

2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}]

F − 1
ρ?

(α +ψ
[)η](F )ξ , (3.5)

G̃ ξ =

[
−ψ +

ψ[

ρ?
− 1

2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}]

ξ , (3.6)

τ =

[
− m̃(α +ψρ?)

ρ?
− m̃

2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}
+

1
ρ?

(α +ψ
[)

]
, (3.7)

µ
?+ψ

[ =−
[

ψρ
?+ρ

?(m̃−1)(α2−σ)− 1
2

(
p̃+

2
m̃

)
+

ρ?z∗

2

]
, (3.8)

where τ is the scalar curvature of (Ωm̃,g?) and α2−σ 6= 0. As per above result, We assert that:

Theorem 3.1. Let (Ωm̃,g?) admit a GZ(CERY)m̃-soliton, where ξ is a unit TFVF then the soliton factor µ? and ψ[ are given by the equation
(3.8).

Also, we exhibit the following results.

Theorem 3.2. Let (Ωm̃,g?) admit a symmetric and a skew-symmetric tensor Ψ[ and φ of type (0,2) respectively. If Ψ[ is parallel with
respect to ∇ on (Ωm̃,g?), then the structure (φ ,ξ ,η],g?) possesses a GZ(CERY)m̃-soliton.

Proof We think about the following

Ψ
[(F ,G ) = (Lξ g?)(F ,G )+2ρ

?Z (F ,G ). (3.9)

In view of (1.5) and (1.9), equation (3.9) reduces

Ψ
[(F ,G ) =−

[
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
]

g?(F ,G )−2ψ
[
η
](F )η](G ) (3.10)

For fix F = G = ξ in (3.10), we yield

Ψ
[(ξ ,ξ ) = 2

[
µ
?− 1

2

(
p̃+

2
m̃

)
− ρ?z∗

2
−ψ

[

]
. (3.11)

Using (3.8) in (3.11), we get

Ψ
[(ξ ,ξ ) =−

[
4ψ

[+2ρ
?
ψ +2ρ

?(m̃−1)(α2−σ)
]
6= 0. (3.12)

Thus, the Theorem 3.2 is derive from the results (see Theorem 2.1, p-384) in [27]), as well as the preceding results (3.12). So proof is
completed.

Theorem 3.3. Let Ωm̃(φ ,ξ ,η],g?), m̃ > 1, with coefficient α admit a GZ(CERY)m̃-soliton, then soliton will be (i) shrinking if, α2 > σ , (ii)
expanding if, α2 < σ .

For the case α = 1, we get from (3.12) that µ? < 0, for m̃ > 1. We conclude that

Theorem 3.4. A GZ(CERY)m̃-soliton on an L P-Sasakian manifold (Ωm̃,g?), m̃ > 1, is always shrinking.
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4. Generalized Z conformal η-Ricci-Yamabe soliton on L P-Sasakian spacetimes

Let (Ω4,g?) is an L P-Sasakian manifold with a constant coefficient α . Since α is a constant, we get from (2.12) that σ=0 and so from
(2.14), we have

S (F ,ξ ) = 3α
2
η
](F ). (4.1)

If `2 is the square of length of the Ricci tensor, then

`2 =
m̃

∑
i=1

S (Q~ei,~ei), (4.2)

Now taking, F = G =~ei, 1≤ i≤ m̃, in (3.2), we get

τ = 4a∗1 +b∗1, (4.3)

where, a∗1 =
[
− (α+ψρ?)

ρ? − 1
2ρ?

{
2µ?−

(
p̃+ 2

m̃

)
−ρ?z∗

}]
and b∗1 =- 1

ρ? (α +ψ[).
With the help of (3.2) and (4.1), we obtain

S (ξ ,ξ ) = b∗1−a∗1 =

[
ψ +

ψ[

ρ?
+

1
2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}]

=−3α
2, (4.4)

which implies that

µ
? =

[
1
2

(
p̃+

2
m̃

)
+

ρ?z∗

2
−ψ

[−ψρ
?−3α

2
]
. (4.5)

In view of (3.2), (4.2) and (4.4), we yield

`2 = 36α
2. (4.6)

Thus, `2 is a constant so LF `2 = 0, that is, (Ω4,g?) is an Einstein spacetime [33]. So we infer that:

Theorem 4.1. If (Ω4,g?) coupled with GZ(CERY)4-soliton admits an infinitesimal non-isometric conformal transformation, then (Ω4,g?)
reduces to an Einstein spacetime.

Again, from a result of Mantica et al. [17]. We get the following.

Corollary 4.2. An L P-Sasakian spacetime with a GZ(CERY)4-soliton satisfying an infinitesimal non-isometric conformal transformation
the spacetime is a GRW spacetime.

In light of (4.3) and the Theorem 4.1, we state the followings:

Theorem 4.3. An η-Einstein L P-Sasakian spacetime with an infinitesimal non-isometric conformal transformation does not admit a
proper GZ(CERY)4-soliton.

Corollary 4.4. An L P-Sasakian spacetime with a GZ(CERY)4-soliton possesses a constant scalar curvature.

Again, the Einstein’s field equations (EFEs) [23]:

S (F ,G )− τ

2
g?(F ,G )+π

[g?(F ,G ) = θ
[T (F ,G ), (4.7)

where θ [ is the gravitational constant and T is the EMT of type (0,2) is defined as

T (F ,G ) = (Ed f +Ip f )A (F )A (G )+Ip f g?(F ,G ),

where, Ed f is the energy density function, Ip f is the isotropic pressure function of the fluid and A is a non-zero 1-form such that
g?(F ,V )=A (G ) for all F , V being the flow vector field of the fluid [23].
In an L P-Sasakian spacetime, if ξ is the flow vector field of the fluid, then

T (F ,G ) = (Ed f +Ip f )η
](F )η](G )+Ip f g?(F ,G ). (4.8)

In view of (3.2), (4.3), (4.4) and (4.8), we get

T (F ,G ) =
1
θ [

[
− (α +ψρ?)

ρ?
− 1

2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}
− τ

2
+π

[

]
g?(F ,G )− 1

ρ?θ [
(α +ψ

[)η](F )η](G ). (4.9)

As per above, we assert the following:

Theorem 4.5. If (Ω4,g?) attached with GZ(CERY)4-soliton satisfies the EFEs with the cosmological term π[, then the EMT of the space is
given by (4.9).

Also, by virtue of (4.4), (4.7) and (4.9), we obtain

µ
? =

1
4

[
2(p̃+

2
m̃
)+2ρ

?z∗−6α
2
θ
[+ τθ

[+2θ
[
π
[

]
+

1
4

[
2(α +ψ[)

ρ?
− 2(α +ψρ?)

ρ?
− τ +2π

[

]
. (4.10)

Thus we have the followings:
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Theorem 4.6. If the (Ω4,g?) equipped with GZ(CERY)4-soliton satisfies the EFE with the cosmological term π[, then the soliton constant is
given by (4.10).

Theorem 4.7. If (Ω4,g?) attached with GZ(CERY)4-soliton satisfies the EFEs, then (Ω4,g) reduces to a quasi Einstein. Moreover, the
spacetime to be dust iff the Lie-derivative of the EMT with respect to ξ vanish.

Proof. In view of (4.8) and (4.9), we get

1
θ [

[
− (α +ψρ?)

ρ?
− 1

2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}
− τ

2
+π

[−Ip f

]
g?(F ,G ) = [Ed f +Ip f +

1
ρ?θ [

(α +ψ
[)]η](F )η](G ) (4.11)

If we put F = G = ξ in (4.11), we obtain

π
[ =

[
(α +ψρ?)

ρ?
+

1
2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}
+

τ

2

]
− 1

ρ?
(α +ψ

[)−θ
[Ed f (4.12)

Also, contracting (4.11), we have

π
[ =

[
− (α +ψρ?)

ρ?
− 1

2ρ?

{
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗
}
− τ

2

]
+

1
4ρ?

(α +ψ
[)+

θ [

4
(Ed f −3Ip f ). (4.13)

Adding (4.12) and (4.13), we get

Ed f +Ip f =
1
θ [

[
−8π[

3
− (α +ψ[)

ρ?

]
(4.14)

Using (4.8) and (4.14) in (4.7), we have

S (F ,G ) =
[

τ

2
+θ

[Ip f −π
[
]

g?(F ,G )−

[
8π[

3
+

(α +ψ[)

ρ?

]
η
](F )η](G ). (4.15)

Taking F = G = ei, 1≤ i≤ 4, in (4.15), we obtain

τ =

[
4π

[−4θ
[Ip f −

8π[

3
− (α +ψ[

ρ?

]
. (4.16)

In consequence of (4.15) and (4.16), we find

S (F ,G ) =

[
π
[−θ

[Ip f −
4π[

3
− (α +ψ[)

2ρ?

]
g?(F ,G )−

[
8π[

3
+

(α +ψ[)

ρ?

]
η
](F )η](G ), (4.17)

which means that (Ω4,g?) is a (QE)4 spacetime. So, the proof is finished.
Also from (4.8) and (4.14), we yield

T (F ,G ) = Ip f g?(F ,G )+
1
θ [

[
−8π[

3
− (α +ψ[

ρ?

]
η
](F )η](G ). (4.18)

After taking the Lie derivative of (4.18) along with ξ , we have

(Lξ T )(F ,G ) = Ip f (Lξ g?)(F ,G )− 1
θ [

[
8π[

3
+

(α +ψ[)

ρ?

]
(Lξ g?)(F ,ξ )g?(G ,ξ )

+ g?(F ,Lξ ξ )g?(G ,ξ )+g?(F ,ξ )(Lξ g?)(G ,ξ )

+ g?(F ,ξ )g?(G ,Lξ ξ )},

which implies that, if (Lξ g?)(F ,G ) = 2
θ [

[
− 8π[

3 −
(α+ψ[

ρ?

]
{g?(F ,G )+η](F )η](F )} and Lξ ξ =0, then it turn up

(Lξ T )(F ,G ) = Ip f (Lξ g?)(F ,G ). (4.19)

Since in general, g?(φF ,φG ) 6= 0 on (Ω4̃,g) and therefore Lξ g 6= 0. Thus from (4.19), we see that ( Lξ T )(F ,G )=0 if and only if Ip f = 0,
provided θ [ 6= 0. So, Theorem 4.7 is finished.

Theorem 4.8. If (Ω4,g?) attached with GZ(CERY)4-soliton satisfies the EFEs with the cosmological constant and the Lie-derivative of the
EMT with respect to ξ vanishes, then the acceleration vector and the expansion scalar of the fluid vanishes .

Proof. According to [23], for PFS

ξEd f =−(Ip f +Ed f )divξ ,

and

(Ip f +Ed f )∇ξ ξ =−grad Ip f − (ξIp f )ξ .

With the help of (4.14) and (4.19) along with above equation, we get divξ = 0 and ∇ξ ξ = 0. So the Theorem 4.8 is justified.
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Theorem 4.9. Let (Ω4,g?) attached with GZ(CERY)4-soliton satisfies the EFEs with a cosmological term and the Lie-derivative of the EMT
with respect to ξ vanishes, we have

(∇F S )(G ,H ) = θ
[(∇F T )(G ,H ).

Proof. Taking the covariant derivative of (4.15), we get

(∇F S )(G ,H ) =−α

[
8π[

3
+

(α +ψ[)

ρ?

]
[g?(F ,G )η](H )+g?(F ,H )η](G )+2η

](F )η](G )η](H )].

Also by the similar way from (4.18), we yield

(∇F T )(G ,H ) =− α

θ [

[
8π[

3
+

(α +ψ[

ρ?

]
[g?(F ,G )η](H )+g?(F ,H )η](G )+2η

](F )η](G )η](H )].

So from above two equations, one can easily get

(∇F S )(G ,H ) = θ
[(∇F T )(G ,H ). (4.20)

Therefore the proof is finished.
Next, using the definitions of cyclic parallel and Codazzi type Ricci tensor on (Ωm̃,g?) along with Theorem 4.9, we state the result:

Theorem 4.10. Let (Ω4,g?) admit a GZ(CERY)4-soliton satisfies the EFEs with a cosmological term. If the Lie-derivative of EMT with
respect to ξ vanishes, then the Ricci tensor is of Codazzi type iff the EMT is also Codazzi type.

Corollary 4.11. Let (Ω4,g?) attached with a GZ(CERY)4-soliton satisfies the EFEs with a cosmological term and the Lie-derivative of
EMT with respect to ξ vanishes, then the necessary and sufficient condition for the Ricci tensor is of cyclic parallel iff the EMT is also cyclic
parallel.

5. Existence of generalized Z conformal η-Ricci-Yamabe soliton on (Ω4,g?)

In this segment, we demonstrate the existence of GZ(CERY)4-soliton on (Ω4,g?) for K = ξ . Now we prove:

Theorem 5.1. There exists a GZ(CERY)4-soliton on an L P-Sasakian spacetime.

Proof. If possible, let (Ω4,g?) admit a GZ(CERY)4-soliton, then from (1.9), we have

1
2
(Lξ g?)(F ,G ) =−ψ

[
η
](F )η](G )−ρ

?Z (F ,G )−
[

µ
?− 1

2

(
p̃+

2
m̃

)
− ρ?z∗

2

]
g?(F ,G ). (5.1)

Using (2.7) and (2.8) in (5.1), we yield

α{g?(F ,G )+η
](F )η](G )}=−2ψ

[
η
](F )η](G )−2ρ

?Z (F ,G )−
[

2µ
?−
(

p̃+
2
m̃

)
−ρ

?z∗
]

g?(F ,G ). (5.2)

Putting F = G = ξ in (5.2), using (1.5) and (4.1), we get

µ
? = [

1
2
(p̃+

2
m̃
)− (3α

2 +ψ)ρ?+ψ
[+

ρ?z∗

2
]. (5.3)

In view of (5.1) and (5.3), we yield

(Lξ g?)(F ,G ) + 2ψ
[
η
](F )η](G )+2ρ

?Z (F ,G )

+ 2
[
ψ
[− (3α

2 +ψ)ρ?
]

g?(F ,G ) = 0. (5.4)

It indicates that (Ω4,g?) admit a GZ(CERY)4-soliton. Hence the Theorem 5.1 is proved.

Theorem 5.2. Any infinitesimal contact transformation which admit GZ(CERY)4-soliton on (Ωm̃,g?), is an infinitesimal strict contact
transformation.

Proof. Let (Ωm̃,g?) is a L P-Sasakian spacetime with constant coefficient α . Then from (4.16) the scalar curvature is constant. Thus from
(2.20) and (2.21) we have

(LK S )(G ,H ) =−(m̃−2)g?(∇G D [
κ,H )+(4[

κ)g?(G ,H ), (5.5)

and

ψ = κ−λ .

From (5.5), we find

(LK S )(G ,H ) = 0. (5.6)

Putting H = ξ in (5.6), we yield

(LK S )(G ,ξ ) = 0. (5.7)
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Also, we have

(LK S )(G ,ξ ) = LK (S (G ,ξ ))−S (LK G ,ξ )−S (G ,LK ξ ).

By the use of (2.19) and (4.1), the above equation reduces to

S (G ,LK ξ ) = 3α
2(LK η

])(G ) = 3α
2
υη

](G ). (5.8)

Again, putting G = ξ in (5.8), we have

S (ξ ,LK ξ ) =−3υα
2. (5.9)

Keeping in mind (4.1) and (5.9), we get

η
](LK ξ ) =−υ . (5.10)

Again (2.19) and (5.10) yield

(LK η
])(ξ ) = υ , (5.11)

which implies that

LK (η](ξ ))−η
](LK ξ ) = υ . (5.12)

In view of (5.10) and (5.12), we get υ = 0. Thus from (2.19) together with (5.12), the Theorem 5.2 is proved.

Next, let potential vector field K = βξ , where β is a smooth function. Then we obtain

∇F K = ∇F (βξ ) = (Fβ )ξ +αβφ
2(F ). (5.13)

In view of (2.1), (2.2), (2.7) and (5.13), we obtain

(LK g?)(F ,G ) = (Fβ )η](G )+(G β )η](F )+2αβ{g?(F ,G )+η
](F )η](G )}. (5.14)

Using (1.9) in (5.14), we yield

(Fβ )η](G )+(G β )η](F )+2αβ{g?(F ,G )+η
](F )η](G )} = −2ψ

[
η
](F )(η]G )−2ρ

?Z (F ,G )

−
[

2µ
?−
(

p̃+
2
m̃

)
−ρ

?z∗
]

g?(F ,G ). (5.15)

After, contracting (5.15) over F and G , it follows that

ξ β =−3αβ +ψ
[−ρ

?z∗−2
[

2µ
?−
(

p̃+
2
m̃

)
−ρ

?z∗
]
. (5.16)

Putting G = ξ in (5.15) and using (5.16), it implies

−Fβ =

[
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗+ψ
[+ρ

?z∗−2ρ
?(3α

2 +ψ)+3αβ

]
η
](F ). (5.17)

Again replacing F = ξ in (5.17), we find

ξ β =

[
2µ

?−
(

p̃+
2
m̃

)
−ρ

?z∗+ψ
[+ρz∗−2ρ

?(3α
2 +ψ)+3αβ

]
. (5.18)

In view of (5.16) and (5.18), we get

µ
? =

[(
p̃+

2
m̃

)
−ρ

?z∗− ρ?z∗

3
−αβ +

(3α2 +ψ)

3

]
. (5.19)

By using (5.19) in (5.17), we have

Fβ =

[
(4α2 +ψ)ρ?

3
−αβ − ρ?z∗

3

]
η
](F ),

which implies that

g(Dβ ,F ) =

[
(4α2 +ψ)ρ?

3
−αβ − ρ?z∗

3

]
g?(F ,ξ ),

that is,

Dβ =

[
(4α2 +ψ)ρ?

3
−αK − ρ?z∗

3

]
.

Thus we state:

Theorem 5.3. If (Ω4,g?) admits a GZ(CERY)4-soliton, then the potential vector field K and the gradient of function β are linearly
dependent.

Theorem 5.4. Let (Ω4,g?) admit a GZ(CERY)4-soliton and the potential vector field K is point-wise collinear with ξ , then (Ω4,g?) is a
space of constant curvature.

Moreover, as per [25], we state the finding.

Corollary 5.5. An L P-Sasakian spacetime attached with GZ(CERY)4-soliton, where the pneotential vector field K is point-wise collianear
with ξ , then (Ω4,g?) is of Petrov type O.
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6. Physical significance of conformal pressure on L P-Sasakian spacetimes

According to [10] and Eq. (4.10), we state the followings:

Theorem 6.1. If an L P-Sasakian spacetime admits the GZ(CERY)4-soliton and satisfies the EFEs with cosmologocal constant π[, then
the conformal pressure is

p̃ =
1
2

[
4µ

?−2ρ
?z∗+2(3α

2−π
[)θ [+ τ(1−θ

[)+
2

ρ?
(ψ[(ρ?−1))− (2π

[+1)
]
.

Theorem 6.2. If an L P-Sasakian spacetime satisfies the EFEs with cosmologocal constant π[ admits GZ(CERY)4-soliton then the metric
g? is an equilibrium point or Einstein iff

4µ
?−2ρ

?z∗+2(3α
2−π

[)θ [+ τ(1−θ
[)+

2
ρ?

(ψ[(ρ?−1)) = (2π
[+1).

Likewise, we turn th following corollary in view of dynamical system.

Corollary 6.3. If an L P-Sasakian spacetime satisfies the EFEs with cosmologocal constant π[ admits GZ(CERY)4-soliton then the metric
g? is an equilibrium point and acts as a nonlinear restoring force.

7. Modified Liouville equation on L P-Sasakian spacetimes

Let (Ω4,g?) is an L P-Sasakian spacetime admit GZ(CERY)4-soliton. Then from (1.9), (1.5) and (4.17), we have

1
2
[g?(∇F ξ ,G ) + g?(F ,∇G ξ )]

+

[
µ
?+ρ

?(π[+ψ
[)−ρ

?
θ
[Ip f −

4π[ρ?

3
− α +ψ[

3
− 1

2
(p̃+

1
2
)− σ?z?

2

]
g(F ,G )

− (α +
8π[ρ?

3
)η](F )η](G ) = 0, (7.1)

for any F ,G ∈ χ(Ω4). On contracting (7.1), we get

Div(ξ ) = −

[
4µ

?+4ρ
?(π[+ψ

[)−4ρ
?
θ
[Ip f −

16π[ρ?

3
− 4(α +ψ[)

3
−2(p̃+

1
2
)−2σ

?z?
]
− (α +

8π[ρ?

3
), (7.2)

Remark: In particular, for Φ? ∈C∞(Ω), then for the vector field ξ , we have

Div(Φ?
ξ ) = ξ (dΦ

?)+Φ
?Div(ξ ),

which implies that, Φ? ∈C∞(Ω) is a last multiplier of ξ with respect to g? if Div(Φ?ξ )=0. So it gives

ξ (d lnΦ
?) =−Div(ξ ),

is called the Liouville’s equation of the vector field ξ with respect to g?[24]. So, utilizing this fact and from (7.2), we sate the outcome:

Theorem 7.1. Let (Ω4,g) admit a GZ(CERY)4-soliton with a unit time-like vector field ξ and Φ? is the last multiplier of ξ and if η] be the
g?-dual 1-form of ξ , then the modified Liouville equation satisfying by Φ? and ξ is

ξ (d lnΦ
?) =

[
4µ

?+4ρ
?(π[+ψ

[)−4ρ
?
θ
[Ip f −

16π[ρ?

3
− 4(α +ψ[)

3
−2(p̃+

1
2
)−2σ

?z?
]

+ (α +
8π[ρ?

3
) (7.3)

8. Gradient generalized Z conformal η-Ricci-Yamabe soliton on L P-Sasakian spacetimes

Let the soliton vector F = D f , where f is a smooth function and D stands for gradient operator of g? on (Ω4,g?). So from (1.5) and (1.10)
we have

ρ
?S +Hess f +[ρ?

ψ +µ
?− 1

2
(p̃+

1
2
)]g+ψ

[
η
]⊗η

] = 0, (8.1)

which is equivalent to,

∇D f =−[ρ?
ψ +µ

?− 1
2
(p̃+

1
2
)− σ?z?

2
]I−ρ

?Q−ψ
[
η⊗ξ . (8.2)

After contracting (8.2) and using (4.1), we yield

4 f =−ρ
?
ψ−4µ

?+2(p̃+
1
2
)+2ρ

?z?−12α
2
ρ
?+ψ

[. (8.3)

So, we the outcome
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Theorem 8.1. Let (Ω4,g) be a L P-Sasakian spacetime admit a gradient GZ(CERY)4-soliton, then the potential function f satisfies the
Poisson’s equation

4 f =−ρ
?
ψ−4µ

?+2(p̃+
1
2
)+2ρ

?z?−12α
2
ρ
?+ψ

[.

Further, if the conformal pressure p̃ = 1
2 [−4(µ?+ρ?ψ)+2σ?z?−12ρ?α2− (1+ψ[)], then4 f = 0, i.e., the Laplace equation.

Corollary 8.2. Let (Ω4,g) admit a gradient GZ(CERY)4-soliton. If the conformal pressure of a perfect fluid matter is p̃ = 1
2 [−4(µ?+

ρ?ψ)+2σ?z?−12ρ?α2− (1+ψ[)], then the potential function f satisfies the Laplace equation.

Also, from the Theorem 8.1, we state that the following:

Corollary 8.3. If the potential function f of a gradient GZ(CERY)4-soliton on (Ω4,g) satisfies the Laplace equation then the soliton is
expanding, stable, or declining according to
(i) (p̃+ 1

2 )>
1
2 [ρ

?(ψ−2z?+12α2)−ψ[],
(ii) (p̃+ 1

2 ) =
1
2 [ρ

?(ψ−2z?+12α2)−ψ[],
(iii) (p̃+ 1

2 )<
1
2 [ρ

?(ψ−2z?+12α2)−ψ[], respectively.

Theorem 8.4. Let (Ω4,g) admit a gradient GZ(CERY)4-soliton with potential function f . Then f is harmonic, subharmonic and superhar-
monic if the conformal pressure is
(i) p̃ = 1

2 [−4(µ?+ρ?ψ)+2σ?z?−12ρ?α2− (1+ψ[)],

(i) p̃≥ 1
2 [−4(µ?+ρ?ψ)+2σ?z?−12ρ?α2− (1+ψ[)],

(i) p̃≤ 1
2 [−4(µ?+ρ?ψ)+2σ?z?−12ρ?α2− (1+ψ[)].

9. Harmonic aspect of generalized Z conformal η-Ricci-Yamabe soliton on L P-Sasakian space-
times

Let η] is a g?-dual 1-form of ξ , such that g?(F ,ξ ) = η](F ) and g?(ξ ,ξ ) =−1. Then, ξ is called a solution of the Schrödinger-Ricci
equation (briefly, SRE) if it satisfies

Div(Lξ g?) = 0. (9.1)

According to [7], we have

Div(Lξ g?) = (Γ+S )(ξ )+d(Div(ξ )), (9.2)

where Γ is the Laplace-Hodge operator with respect to the metric g? and S is the Ricci tensor. Now, form (1.9), we yield

(Lξ g?)(F ,G )+2ψ
[
η
](F )η](G )+2ρ

?Z (F ,G )+

[
2µ

?−
(

p̃+
1

2̃

)
−ρ

?z∗
]

g?(F ,G ) = 0. (9.3)

Taking trace of (9.3), we get

Div(ξ )+(ρ?−2σ
?)z?+4µ

?−2(p̃+
1
2
)+ψ

[|ξ |2 = 0. (9.4)

On the other hand, we reflect

Div(η]⊗η
]) = Div(ξ )η]+∇ξ η

]. (9.5)

From (9.3) and (9.5), we have

Div(Lξ g?)+2ρ
?d(τ +4ψ)+2ψ

[[div(ξ )η]+∇ξ η
]] = 0. (9.6)

Also, for Schrödinger-Ricci solution, 1-form π satisfies

(Γ+S )(π)+d(Div(π)) = 0. (9.7)

Thus we state:

Theorem 9.1. Let (Ω4,g?) attached with a GZ(CERY)4-soliton and η] being the g?-dual of ξ , then η] is a solution of the Schrödinger-Ricci
equation iff,

d(τ +4ψ) =
ψ[

ρ?
[{(ρ?−2σ

?)z?+4µ
?−2(p̃+

1
2
)+ψ

[|ξ |2}η]−∇ξ η
]] (9.8)

Proof. In view of (2.8),(9.3), (9.4), (9.5) and the formula 2Div(Z ) = d(z?), it implies that η] is a solution of SRE iff (9.6) holds.

Again, If 1-form π is a Schrödinger-Ricci harmonic form [4], then

(Γ+S )(π) = 0. (9.9)

Moreover, if ψ[ = 0, then (Ω4,g?) has genelaized conformal Z -RYS, or

∇ξ η
] = {(ρ?−2σ

?)z?+4µ
?−2(p̃+

1
2
)}η],

where ψ[ = (ρ?−2σ?)z?+4µ?−2(p̃+ 1
2 ). Now we claim that
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Corollary 9.2. If a GZ(CERY)4-soliton on (Ω4,g?) with η] being the g?-dual of the time-like vector field ξ , then η] is the Schrödinger-Ricci
harmonic form if and only if ψ[=0, which produces GZ(CRY)4-soliton or,

∇ξ η
] = {(ρ?−2σ

?)z?+4µ
?−2(p̃+

1
2
)}η],

where, ψ[ = (ρ?−2σ?)z?+4µ?−2(p̃+ 1
2 ) .

10. An Example

Let us consider a 4-dimensional differentiable manifold Ω4 = {(u,v,w, t) ∈ℜ4 : (u,v,w, t) 6= 0}, where (u,v,w, t) is the standard coordinate
in ℜ4 and~e1,~e2,~e3 and e4 on (Ω4,g?) given by

~e1 = eu−at ∂

∂u
, ~e2 = ev−at ∂

∂v
, ~e3 = ew−at ∂

∂w
, ~e4 =

∂

∂ t
,

where a 6= 0. Let the metric g? on (Ω4,g?) is defined as

g?i j = g?(~ei,~e j) =


0, i 6= j
−1, i = j = 4

1, elsewhere.
.

Let η] be the 1-form coupled to the metric as

η
](F ) = g?(F ,~e4)

for any F ∈ Γ(T Ω). The (1,1)-tensor field φ is defined by

φ (~e1) =~e1, φ (~e2) =~e2, φ (~e3) =~e3, φ (~e4) = 0,

Using the linearity properties of φ and g, we yield

η
](~e4) =−1, φ

2(F ) = F +η
](F )~e4, g?(φF ,φG ) = g?(F ,G )+ η

](F )η](G ),

for any F , G ∈ Γ(T Ω).
Thus for ~e4 = ξ , the structure (φ ,ξ ,η],g?) leads to the (LPCM)4 of dimension 4 (or four dimensional spacetime.) Now, the existing
components of the Lie bracket are as

[~e1,~e4] = a~e1, [~e2,~e4] = a~e2, [~e3,~e4] = a~e3.

Also for~e4 = ξ , the Koszul’s formula gives

∇~e1~e1 = a~e4, ∇~e1~e2 = 0, ∇~e1~e3 = 0, ∇~e1~e4 = a~e1,

∇~e2~e1 = 0, ∇~e2~e2 = a~e4, ∇~e2~e3 = 0, ∇~e2~e4 = a~e2,

∇~e3~e1 = 0, ∇~e3~e2 = 0, ∇~e3~e3 = a~e4, ∇~e3~e4 = a~e3,

∇~e4~e1 = 0, ∇~e4~e2 = 0, ∇~e4~e3 = 0, ∇~e4~e4 = 0.

If F ∈ χ(Ω4), then we write it as F=a1~e1 + a2~e2 + a3~e3 + a4~e4, where ai ∈ ℜ, i = 1,2,3,4. Then one can notice that ∇F~e4=a{F +
η](F )~e4} holds for each F ∈ χ(Ω4). So the (LPCM)4 is an L P-Sasakian manifold of dimension 4 with a 6= 0.
Using above relations, the existing components of the curvature tensor

R(~e1,~e2)~e1 =−a2~e2, R(~e1,~e3)~e1 =−a2~e3, R(~e1,~e4)~e1 =−a2~e4,

R(~e1,~e2)~e2 = a2~e1, R(~e2,~e3)~e2 =−a2~e3, R(~e2,~e4)~e2 =−a2~e4,

R(~e1,~e3)~e3 = a2~e1, R(~e2,~e3)~e3 = a2~e2, R(~e3,~e4)~e3 =−a2~e4,

R(~e1,~e4)~e4 =−a2~e1, R(~e2,~e4)~e4 =−a2~e2, R(~e3,~e4)~e4 =−a2~e3.

Also, S (F ,G ) = ∑
4
i=1 εi g?(R(~ei,F )G ,~ei), where εi = g?(~ei,~ei), i, j = 1,2,3,4. So we have

S (~ei,~e j) =


3a2 0 0 0
0 3a2 0 0
0 0 3a2 0
0 0 0 −3a2

 .
Also from (3.2), we yield

S (~ei,~ei) =

[
− (α +ψρ?)

ρ?
− 1

2ρ?

{
2µ

?−
(

p̃+
1
2

)
−ρ

?z∗
}]

g?(~ei,~ei)−
1

ρ?
(α +ψ

[)η](~ei)η
](~ei), (10.1)

for all i ∈ {1,2,3,4.}. Hence we acquire

S (~ei,~ei) =

[
− (α +ψρ?)

ρ?
− 1

2ρ?

{
2µ

?−
(

p̃+
1
2

)
−ρ

?z∗
}]

g?(~ei,~ei)−
1

ρ?
(α +ψ

[)δi4, (10.2)
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for all i ∈ {1,2,3,4.}. Thus from above, we can easily get

µ
? = (α2 +α +ψ)ρ?− 1

2

(
p̃− 1

2

)
− ρ?z∗

2
, ψ

[ = (3α
2 +ψ)ρ?+µ

?− 1
2

(
p̃+

1
2

)
− ρ?z∗

2
. (10.3)

So the data (g?,ξ ,µ?,ψ[) is a GZ(CERYS)4 on (Ω4,g?), which is expanding if (p̃ + 1
2 ) > 2(α + α2 + ψ)ρ? − ρ?z?, shrinking if

(p̃+ 1
2 )< 2(α +α2 +ψ)ρ?−ρ?z?, or steady if (p̃+ 1

2 ) = 2(α +α2 +ψ)ρ?−ρ?z?. Thus the Theorem 5.1 is verified.

Also, τ = ∑
4
i=1 S(ei,e j) = 6a2, which means that (Ω4,g?) possesses a constant scalar curvature and hence the Corollary 4.4 is verified.

So, we conclude that
(i) If ρ?=1 and ρ?=0, then (Ω4,g?) admits Ricci flow, which is expanding if (p̃− 1

2 )> 2(α +α2+ψ), shrinking if (p̃− 1
2̃
)< 2(α +α2+ψ)

or, steady if (p̃− 1
2 ) = 2(α +α2 +ψ).

(ii) For ρ?=0 and ρ?=1, then (Ω4,g?) admits Yamabe flow, which is expanding if p̃ < 1
2̃

, shrinking if p̃ > 1
2̃

or, steady if p̃ = 1
2̃
.

(iii) If ρ? = 1 and ρ? = −1, then (Ω4,g?) admits Einstein flow, which is expanding if (p̃− 1
2 ) > 2(α +α2 +ψ) + z?, shrinking if

(p̃− 1
2̃
)< 2(α +α2 +ψ)+ z? or, steady if (p̃− 1

2 ) = 2(α +α2 +ψ)+ z?.

11. Conclusions

A symmetric Z -tensor in pseudo-Riemannian manifolds and spacetimes explores their geometric and general behavior. In addition to
improving our understanding of geometric structures with finite symmetries, this study of such manifolds has applications in physics and other
disciplines. For instance, in [18] defined Z -tensor and studied its applications in physics. Thereafter many authors study various properties
of these tensors [19, 20, 21]. Inspired by these works we light up some geometric and physical aspect of perfect fluid L P-Sasakian
spacetimes whose metrics are the (CERY)4- soliton admitting the Z -tensor.
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