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1. Introduction, definitions and notation

In this paper, our focus is solely on groups of finite order. We define a group G

to be covered by proper subgroups H1, H2, . . . ,Hn if

G = H1 ∪H2 ∪ · · · ∪Hn. (1)

Each subgroup Hi in this coverage is referred to as a component. It is evident that

a group is covered by proper subgroups if and only if it is not cyclic. The cover

(1) is called irredundant if every proper subset of the set {H1, . . . ,Hn} does not

cover G. In this paper, we look at irredundant covering of G by proper subgroups

of equal orders, i.e.,

G = H1 ∪H2 ∪ · · · ∪Hn, |H1| = |H2| = · · · = |Hn|. (2)

Such a covering is called an equal covering.

In certain instances, the components Hi in the equal covering (2) may possess

specific properties. Some of these properties are outlined below, with the variable

p representing a prime number.

(a) Equal covering (2) is termed an equal partition of G if Hi∩Hj = 1 for every

i ̸= j. Isaacs [15] established that the noncyclic p-groups of exponent p are

the only groups having an equal partition.

(b) Let S be a subgroup of G. Equal covering (2) is termed an equal strict

S-partition (ES-partition) of G if Hi ∩Hj = S for every i ̸= j. Atanasov,
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Foguel and Penland [1] investigated the ES-partitions of finite p-groups,

particularly when His are maximal in G.

(c) In equal covering (2), if His are proper isomorphic abelian subgroups of G,

then G is called a CIA-group. Foguel and Ragland [10] conducted a study

on CIA-groups.

When we are dealing with an equal covering (2), its components will face some

restrictions. It is easy to see from (2) that

|G| ≤ n|Hi| − (n− 1) < n|Hi|,

and hence

1 < |G : Hi| < n, for i = 1, 2, . . . , n, (3)

(see also [3, Remark 1.1] and [8, Theorem 1]). A special case is when n = 3, which

forces |G : Hi| = 2 for i = 1, 2, 3. In particular, it is shown in [23] (see also [6,14])

that G/(H1∩H2∩H3) ∼= Z2×Z2. Furthermore, our calculations with GAP [12] show

that the similar situation with |G : Hi| = n−1 occurs for n ∈ {4, 5, 6, 8, 9, 10, 12, 14}
among the groups of order at most 200.

The paper is organized as follows. In Section 2, we derive some auxiliary results.

In Section 3, we investigate the conditions under which the nth Cartesian power

Gn of a group G has an equal covering. In Section 4, we prove that simple groups

have no equal covering (Theorem 4.2).

Before continuing, we need some additional notation. Given a natural number

n, we denote by π(n) the set of prime divisors of n and for a group G we put

π(G) = π(|G|). Throughout, we use An and Sn, to denote the alternating and

the symmetric group of degree n, respectively, and write Zn for a cyclic group of

order n. Recall that the commutator subgroup of a group G is the subgroup G′

generated by all commutators [x, y] = x−1y−1xy, with x, y ∈ G. For X ⊆ G, we

write X# = X \ {1}. The order of an element g of a group G is denoted by |g|,
and by the exponent of G, denoted exp(G), we mean the least common multiple

of the orders of the elements of G, in other words, the exponent of G is the least

positive integer n, such that gn = 1 for all g ∈ G. For definitions of standard group

theoretic terminology and notation not defined here, the reader is referred to [9,16].

2. Auxiliary results

We begin by establishing some preliminary facts about the groups having an

equal covering.

Lemma 2.1. [24] If G has an equal covering Π = {H1, . . . ,Hn}, then exp(G)

divides |Hi| for all Hi ∈ Π. In particular, we have π(Hi) = π(G) for all Hi ∈ Π.
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Proof. Suppose G is a group with equal covering Π = {H1, . . . ,Hn}. If g ∈ G, then

g ∈ Hi for someHi ∈ Π and so |g| divides |Hi|. Since Π is an equal covering of G, |g|
divides the order of all members of Π. On the other hand, since g can be any element

of G and exp(G) is divisible by |g| for all g ∈ G, exp(G) divides |Hi| for all Hi ∈ Π.

The second statement follows from the first because π(exp(G)) = π(G). □

Lemma 2.2. Let G be a group having an equal covering. Then G has at least two

nonconjugate maximal subgroups M1 and M2 with π(M1) = π(M2) = π(G).

Proof. Let Π = {H1, . . . ,Hn} be an equal covering of G. Let Mi be a maximal

subgroup of G containing Hi, for each i. Then Ψ = {M1, . . . ,Mn} is a covering

of G. It follows from Lemma 2.1 that π(Mi) ⊇ π(Hi) = π(G) which implies that

π(Mi) = π(G), for each i. Finally, since Ψ is a covering of G, the Mis cannot all

be conjugate, and the proof is complete. □

The spectrum ω(G) of a finite group G is the set of orders of elements in G. Two

groups are said to be isospectral if their spectra coincide. The set ω(G) determines

the Grüenberg-Kegel graph (or prime graph) GK(G) of G whose vertex set is π(G),

and two vertices p and q are adjacent if and only if pq ∈ ω(G).

Lemma 2.3. Let G be a group having a covering Π = {H1, . . . ,Hn} by isomorphic

subgroups. Then for each Hi ∈ Π, Hi is isospectral to G, that is ω(Hi) = ω(G). In

particular, exp(Hi) = exp(G) and GK(Hi) = GK(G).

Proof. Clearly, ω(Hi) ⊆ ω(G). We shall argue that ω(G) ⊆ ω(Hi). If g ∈ G, then

there exists Hj ∈ Π such that g ∈ Hj , and so |g| ∈ ω(Hj). Since the subgroups

H1, . . . ,Hn are isomorphic, they are isospectral groups and so each of them contains

an element of order |g|. Hence, |g| ∈ ω(Hi), and thus ω(G) ⊆ ω(Hi), as required.

The last assertions are now obvious from the definition. □

Corollary 2.4. Let G be a group having an equal covering {H1, . . . ,Hn} for which

Hi ≤ Mi, for each i, where the Mis are isomorphic proper subgroups of G. Then, for

each i, we have ω(Mi) = ω(G). In particular, exp(Mi) = exp(G) and GK(Mi) =

GK(G).

Proof. Note that the collection {M1, . . . ,Mn} forms a covering of G by isomorphic

subgroups and the result is now immediate from Lemma 2.3. □

Lemma 2.5. [24] If H ⊴G and G/H has an equal covering, then G has an equal

covering.

Proof. This is immediate, since if G/H has an equal covering, say

Π = {N1/H,N2/H, . . . , Nk/H},
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then it follows by correspondence theorem that Ψ = {N1, N2, . . . , Nk} is an equal

covering of G. □

The following is a useful special case of Lemma 2.5.

Corollary 2.6. [24] If G = H ⋊K (in particular, if G = H ×K) and K has an

equal covering, then G has an equal covering.

We also have the following related result:

Corollary 2.7. Let P ∈ Sylp(G) where G is a supersolvable group and p is the

smallest prime divisor of |G| and assume that P is noncyclic. Then, G has an

equal covering.

Proof. In view of [22, 5.4.8], it follows that the Sylow p-subgroup P of G has a

normal p′-complement in G, say Q, and so G = Q⋊P . The result is now immediate

from Corollary 2.6. □

Note that the noncyclic p-groups of exponent p possess an equal partition (we

can simply take the subgroups of order p), and thus possess an equal covering.

It is proved in [2, Remark 3.5] (see also [3, Lemma 2.1] and [24, Theorem 15])

that every noncyclic p-group has an equal covering by maximal subgroups. The

following lemma considers a more general case, when we deal with a noncyclic

nilpotent group.

Lemma 2.8. [24] If G is a noncyclic nilpotent group, then G has an equal covering.

In particular, if G is a noncyclic abelian group, then G has an equal covering.

Proof. Let G be a noncyclic nilpotent group. Since G is the direct product of its

Sylow p-subgroups, we see that at least one of these Sylow p-subgroups is noncyclic.

The result now follows from the fact that a noncyclic p-group always has an equal

covering together with Corollary 2.6. □

Using the fact that G/G′ is always abelian and Lemma 2.5, the following is then

an immediate consequence of Lemma 2.8.

Corollary 2.9. If G/G′ is a noncyclic group, then G has an equal covering.

We define a group to possess a maximal equal covering if it has an equal cov-

ering composed of maximal subgroups. For example, as mentioned earlier, every

noncyclic p-group exhibits a maximal equal covering. It is worth noting that while

a group G may have an equal covering, it is not necessarily guaranteed to have a

maximal equal covering. For instance, utilizing GAP [12], we observe that the group

G = Z3×S4 = SmallGroup(72, 42) possesses an equal covering but lacks a maximal

equal covering (being the smallest group with this property). Conversely, we find
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that for noncyclic nilpotent groups and noncyclic groups with orders less than 31,

the existence of a maximal equal covering holds true.

Lemma 2.10. If G is a group with exp(G) = |G|/p where p is the smallest prime

dividing |G|, then every equal covering of G is a maximal equal covering of G which

contains proper normal subgroups of index p. Moreover, in this situation, G has a

maximal equal covering consists of p+ 1 proper normal subgroups of index p.

Proof. Suppose that Π = {H1, H2, . . . ,Hn} is an equal covering of G. Then, since

exp(G) = |G|/p divides |Hi| for all Hi ∈ Π (by Lemma 2.1), and that p is the

smallest prime dividing |G|, we conclude that |G : Hi| = p for each 1 ≤ i ≤ n.

Hence, according to [17] the subgroups Hi are normal in G, and so Π is a maximal

equal covering ofG by proper normal subgroups of index p. Furthermore, for any i, j

with 1 ≤ i, j ≤ n, G/Hi
∼= G/Hj

∼= Zp, which implies that G/(Hi ∩Hj) ∼= Zp×Zp.

Now we may conclude from Theorem 4 in [4] that G has a maximal equal covering

consists of p+ 1 proper normal subgroups of index p. □

Additionally, it is noteworthy that certain groups G of even order with exp(G) =

|G|/2 may not possess an equal covering. For example, when G is either the alter-

nating group A5 or the symmetric group S5, both having exp(G) = |G|/2, these
groups do not exhibit an equal covering.

3. The Cartesian powers of a group

In this section, our focus turns to the Cartesian product of groups, with particular

emphasis on the nth Cartesian power Gn of a group G. We start with the following

Definition and Theorem.1

Definition 3.1. Let G be a group and Gn = G×G× · · · ×G the direct product

of n-copies of G (the nth Cartesian power of G). An element x = (x1, x2, . . . , xn)

in Gn is called an ij-pair diagonal for i ̸= j if xi = xj .

Theorem 3.2. Let G be a group and let n ≥ |G| + 1 be an integer. Then the nth

Cartesian power Gn has an equal covering.

Proof. Let n ≥ |G| + 1. We observe, first of all, that every element of the nth

Cartesian power Gn is an ij-pair diagonal for some i and j. For 1 ≤ i < j ≤ n, we

now define Hi,j to be the set of all ij-pair diagonals in Gn. It is routine to check

that Hi,j is a proper subgroup of Gn, and the collection Π = {Hi,j : 1 ≤ i < j ≤ n}
is an equal covering of Gn and the proof is complete. □

1Stephen M. Gagola Jr. of Kent State University brought attention to this definition and proposed

Theorem 3.2 during the Zassenhaus meeting in 2022.
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Definition 3.3. Given a group G, we denote by ξ(G) the smallest integer n ≥ 1

for which the nth Cartesian power Gn has an equal covering.

Recall that a group G is called perfect if it equals its commutator subgroup G′;

otherwise it is called a nonperfect group.

Theorem 3.4. If G is a nonperfect group, then ξ(G) ≤ 2.

Proof. Suppose G is a nonperfect group and ξ(G) ̸= 1. It follows by Lemma 2.5

that ξ(G/G′) ̸= 1, and so G/G′ is a nonidentity cyclic group. The isomorphism

G×G

G′ ×G′
∼=

G

G′ ×
G

G′ ,

shows that (G×G)/(G′ ×G′) is a noncyclic abelian group and by Lemma 2.8 has

an equal covering. But now Lemma 2.5 implies that the 2nd Cartesian power G2

has an equal covering, and so ξ(G) = 2. □

Remark 3.5. Using GAP [12], we determined that

ξ(A5) = ξ(PSL2(4)) = ξ(PSL2(5)) = 2,

ξ(A6) = ξ(PSL2(7)) = ξ(PSL2(8)) = 3

and

ξ(PSL2(11)) = ξ(PSL2(13)) = 4,

while if S is one of the following simple groups:

A7, PSL2(q), q = 16, 17, 19 or 23, PSL3(3), PSU3(3),

then ξ(S) > 3.

A question which arises naturally is to find or estimate an upper bound on ξ(G).

Question 3.6. Is there a natural number n such that for all groups G, ξ(G) ≤ n?

In the sequel, we will enhance Theorem 3.2 (see Theorem 3.8). However, it is

crucial to note that the extent of improvement remains contingent upon the specific

characteristics of the group G.

Definition 3.7. Let G be a group, Aut(G), the automorphism group of G, and

End(G), the set of all endomorphisms of G. Let x = (x1, x2, . . . , xn) be an element

in the nth Cartesian power Gn.

(a) The element x is called an ij-automorphic pair diagonal for i ̸= j, if xj =

σ(xi) for some σ ∈ Aut(G).

(b) The element x is called an ij-endomorphic pair diagonal for i ̸= j, if xj =

σ(xi) for some σ ∈ End(G).2

2For simple groups, the only endomorphism which is not an automorphism maps the group into

its center, that is to the identity.
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We denote by

gAut(G) = {σ(g) : σ ∈ Aut(G)}, g ∈ G,

the orbit of g under the natural action Aut(G) on G, and call it the automorphic

class of g. Let n(G) denote the number of automorphic classes in G. Similarly, we

define the endomorphic relator of g ∈ G# by

R(g)End(G) = {σ(g) : σ ∈ End(G)}.

Note that for a nonabelian simple group S and g ∈ S#, we have

R(g)End(S) = gAut(S) ∪ {1}, and ∪g∈S# R(g)End(S) = S,

and so the number of nontrivial endomorphic relators is equal to n(S)− 1.

Theorem 3.8. Let G be a group and let n ≥ n(G) + 1 be an integer. Then the

nth Cartesian power Gn has an equal covering. Furthermore, if S is a nonabelian

simple group, then Sn(S) has an equal covering, too.

Proof. Let A = Aut(G). Since n > n(G), by the pigeonhole principle it follows

that every n-tuple in Gn is an ij-automorphic pair diagonal for some i ̸= j. Now

fix i ̸= j, i, j ∈ {1, 2, . . . , n} and let σ be an element of A. We define Hi,j,σ to be

the set of all n-tuples, which are ij-automorphic pair diagonals with xj = σ(xi).

Note that Hi,j,σ is a proper subgroup of Gn. Let

Π = {Hi,j,σ : 1 ≤ i, j ≤ n, i ̸= j, σ ∈ A}.

It is routine to check that Π gives an equal covering of Gn.

Now suppose that S is a nonabelian simple group and let E = End(S). Write

n = n(S). As in the preceding case, we observe that every n-tuple (x1, x2, . . . , xn)

in Sn is an ij-endomorphic pair diagonal for some i ̸= j, because n > n(S) − 1.

Now fix i ̸= j, i, j ∈ {1, 2, . . . , n} and let σ be an element of E. We define Hi,j,σ to

be the set of all n-tuples, which are ij-endomorphic pair diagonals with xj = σ(xi),

which is a proper subgroup of Sn. Now, the collection

Π = {Hi,j,σ : 1 ≤ i, j ≤ n, i ̸= j, σ ∈ E},

forms an equal covering of Sn, and the proof is complete. □

As an immediate consequence of Theorem 3.8, we have the following result.

Corollary 3.9. Let G be a group. Then ξ(G) ≤ n(G) + 1 and, in particular,

ξ(S) ≤ n(S) in the case that S is a nonabelian simple group.

For instance, we have ξ(A5) = 2 < 4 = n(A5).
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Corollary 3.10. If G is a perfect group, then we have

ξ(G) ≤ min {ξ (G/N) : N is a maximal normal subgroup of G}

≤ min {n (G/N) : N is a maximal normal subgroup of G} .

Proof. It follows immediately from Lemma 2.5 and Theorem 3.8. □

Remark 3.11. Note that there are perfect groups G with

ξ(G) < min {n (G/N) : N is a maximal normal subgroup of G} .

For example, using GAP [12] we found out that Perfect-10752-1 = PSL2(7) extended

downwards by a module 23 × 23, has an equal cover while ξ(PSL2(7)) = 3. Also,

using GAP [12] we found that SmallGroup(288, 409) = (Z3 : Z4) × SL2(3) is equal

covered by its subgroups of order 12, but neither of its direct factors is equal covered

by proper subgroups.

In the forthcoming lemmas, we will examine specific scenarios where Cartesian

products of groups result in a group with an equal covering.

Lemma 3.12. If G and H are nilpotent groups with π(G)∩π(H) ̸= ∅, then G×H

has an equal covering.

Proof. Since G×H is a noncyclic nilpotent group, the assertion is immediate from

Lemma 2.8. □

Lemma 3.13. If G and H are supersolvable groups and p is the smallest prime

divisor of both |G| and |H|, then G×H has an equal covering.

Proof. This is immediate from Lemma 2.7 and the fact that G × H is a super-

solvable group with a noncyclic Sylow p-subgroup, where p is the smallest prime

divisor of |G|. □

Note that Lemma 3.13 cannot be improved, because the supersolvable group

Z3 × S3 of order 18 has a noncyclic Sylow 3-subgroup, but does not have an equal

covering.

4. The finite simple groups

In this section, we establish that finite simple groups do not possess an equal

covering. Since the only abelian simple groups are the cyclic groups of prime order,

they inherently lack any form of covering, including an equal covering. As a result,

our attention will be directed solely towards nonabelian simple groups in the ensuing

discourse. According to the classification of finite simple groups, each nonabelian

finite simple group falls into one of the following categories: alternating groups,

sporadic groups, classical groups, or exceptional groups of Lie type.
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Theorem 4.1. The alternating and symmetric groups, An and Sn, have no equal

covering.

Proof. Using GAP [12], we may assume that n ≥ 7. Note first of all that if H is a

subgroup of Sn, then |H ∩ An| = |H| or |H|/2. Therefore, if |H| is divisible by 4,

then π(H) = π(H ∩An). We also notice that by [18] all the maximal subgroups of

Sn for n ≥ 7 have order divisible by 4. Now, if n ≥ 7 and K < Sn is maximal with

π(K) = π(Sn), then by Table 1 in [21], K ∩An ≤ M , where M ≤ Sk × Sn−k, since

π(K) = π(K ∩ An) = π(An). Thus, K must be a group of type (a) as in [18]. On

the other hand, it follows from [18] that if G ∈ {An,Sn}, then the only maximal

subgroups M of G with π(M) = π(G) are

Ak ⊴ M ≤ Sk × Sn−k,

where 1 < k < n and p ≤ k for every prime number p ≤ n, which are intransitive.

Thus, such maximal subgroups M of G do not contain an n-cycle. Also, according

to [18], when n = 2k the subgroup (Sk × Sk) ∩G is not maximal.

Now suppose G ∈ {An,Sn} has an equal covering Π = {Hi}. Then G has a

covering Ψ = {Mi} with Hi ≤ Mi and for each i, Ak ⊴ Mi ≤ Sk×Sn−k with k < n.

We shall treat the cases n odd and n even, separately.

(a) First assume that n is odd. In this case, we see that Ψ can not cover G,

because there is an n-cycle in G which is an even permutation, while each

Mi is an intransitive subgroup of G, a contradiction.

(b) Next assume that n = 2k is even. Again, in this case Ψ can not cover G,

because a permutation σ which is the product of two disjoint k-cycles lies

in G, while σ cannot belong to any Mi, a contradiction.

Thus, in both cases, we arrive at contradictions, and so G has no equal covering. □

Theorem 4.2. A nonabelian simple group has no equal covering.

Proof. Suppose a nonabelian simple group S has an equal covering, say

Π = {H1, H2, . . . ,Hn}, with |H1| = |H2| = · · · = |Hn|.

Then by Lemma 2.1, we have π(Hi) = π(S) for all Hi ∈ Π. Since every proper

subgroup lies in a maximal subgroup, we may assume that for each i, Hi ≤ Mi,

where Mi is a maximal subgroup of S. Clearly, π(Mi) = π(S). Table 1 below

contains a list of all the possible pairs (S,M), where M is a maximal subgroup of

the simple group S with π(M) = π(S) [19] (see also [20, Lemma 3] and [7, Table 2]).
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S Type of M Remarks

An An ∩ (Sk × Sn−k) p prime, p ≤ n =⇒ p ≤ k

Sp2m(q) O−
2m(q) m, q even

Ω2m+1(q) O−
2m(q) m even, q odd

PΩ+
2m(q) O2m−1(q) m even, q odd

PΩ+
2m(q) Sp2m−2(q) m, q even

PSp4(q) Sp2(q
2)

A6 L2(5)

L6(2) P1, P5

U3(3) L2(7)

U3(5) A7

U4(2) P2,Sp4(2)

U4(3) L3(4),A7

U5(2) L2(11)

U6(2) M22

PSp4(7) A7

Sp6(2) O+
6 (2)

Ω+
8 (2) P1, P3, P4,A9

G2(3) L2(13)
2F 4(2)

′ L2(25)

M11 L2(11)

M12 M11,L2(11)

M24 M23

HS M22

McL M22

Co2 M23

Co3 M23

Table 1: Pairs (S,M) with π(M) = π(S).

However, applying the results that we have so far established and using ATLAS
[9], GAP [12] and MAGMA [5], we can exclude “most” finite simple groups in Table 1.

More precisely, observe that

(a) Using Theorem 4.1, we can eliminate the alternating groups.

(b) Using the results in Table 3 of [24], we can eliminate the following simple

groups:

M11, M12, U3(3) and U4(2).
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(c) Using Lemma 2.2 and ATLAS [9], we can eliminate the following simple

groups:
2F 4(2)

′, HS, M24, Co2 and Co3.

(d) Using Corollary 2.4 and [21, Theorem], we can eliminate the following sim-

ple groups:

U3(5), U5(2), U6(2), Sp6(2), G2(3) and McL.

Note that in view of [21] non of these groups have a maximal subgroup with

the same exponent as the group.

(e) Using GAP [12] and MAGMA [5], we can eliminate the following groups:

L6(2), U4(3), U6(2), Sp6(2), PSp4(7) and PΩ+
8 (2).

Therefore, in order to complete our analysis of simple groups in Table 1, we will

examine the remaining simple groups S, which are listed below:

S Type of M Remarks

Sp2m(q) O−
2m(q) m, q even

Ω2m+1(q) O−
2m(q) m even, q odd

PΩ+
2m(q) O2m−1(q) m even, q odd

PΩ+
2m(q) Sp2m−2(q) m, q even

PSp4(q) Sp2(q
2)

From now on, we assume that S is one of these simple groups. Since for each i,

Mi is a maximal subgroup of S with π(Mi) = π(S), it follows that all of the Mi are

isomorphic. On the other hand, by Lemma 2.3, for each i, Mi is isospectral to S.

In particular, the prime graphs GK(M) and GK(S) coincide, and in view of [20,

Theorem] (see also [7, Table 1]) we observe that the pair (S,M) of a simple group

with a maximal subgroup that have the same prime graph must be in the following

table:

S M Conditions Equal-covering?

Sp8(q) O−
8 (q) q even No, Lemma 2.2

Ω+
8 (q) Sp6(q) q even No, Lemma 2.2

PΩ+
8 (q) Ω7(q) q odd No, Corollary 2.4

Sp4(q) O−
4 (q) q > 2 even No, diagonal element

The case of S = Sp8(q) for q = 2f is handled by Lemma 2.2, since S has only one

conjugacy class of maximal subgroups M with π(M) = π(S), namely M ∼= O−
8 (q).



CONCERNING EQUALLY COVERED GROUPS 363

Similarly, the case of S = Ω+
8 (q) for q > 2 even is handled by Lemma 2.2, since S

has only one conjugacy class of maximal subgroups M with π(M) = π(S), namely

M ∼= Sp6(q). (For q = 2, there are multiple classes and isomorphism classes, but

this was handled earlier in (e).)

The case of PΩ+
8 (q) for q > 3 odd is handled by Corollary 2.4 and [13, Theorem

9]. Though this group has more than one conjugacy class of maximal subgroups M

with π(M) = π(S), all such M are isomorphic to O7(q), but these subgroups are

not isospectral with S by [13, Theorem 9 (ii)].

The case of S = Sp4(q) for q > 4 even can be handled by exhibiting an element

g not contained in any maximal subgroup Mi with π(Mi) = π(S). There are two

conjugacy classes of Mi. The first is of type C8 and is the natural copy of M8 =

SO−
4 (q) ≤ Sp4(q), for q even. The second is of type C3, the so-called ‘semilinear’ case

with M3 ≤ ΓSp2(q
2); most relevant for us is that M3 has an index 2 subgroup M ′

3

isomorphic to Sp2(q
2), and the action of M ′

3 on the natural module V of dimension

4 is induced by the natural action on a 2-dimensional vector space over GF(q2); the

Galois field with q2 elements.

For any element ω ̸= 0, 1 of GF(q); the Galois field with q elements, the element

g = h1(ω) · h2(ω
3) ∈ S, which is equal to the diagonal matrix:

g =


ω

ω2

ω−2

ω−1

 ,

with respect to a standard representation of S with respect to the anti-diagonal

symplectic form, is diagonalizable with no eigenvalues equal to 1. By [11, Theorem

3.1.7], this element is not GL4(q)-conjugate to any element in SOi
4(q). Thus, g is

not contained in the union of the M8s. For any ω not contained in a subfield of 4

elements, ω3 ̸= 1, so the element g has four distinct eigenvalues over GF(q). Since

an element of Sp2(q
2) can only have 2 distinct eigenvalues, g cannot be contained

in [M3,M3] ∼= Sp2(q
2). Since M3/[M3,M3] is cyclic of order 2, for any h ∈ M3,

h2 ∈ [M3,M3], but since g2 is also diagonalizable with four distinct eigenvalues

(raising to the 2nd power is an automorphism of the group of nonzero elements of

GF(q)), no conjugate of g2 is in [M3,M3], and so no conjugate of g is in M3.

In particular, for any even q > 4 and any ω in GF(q), but not in any subfield of

order 4, the element g in the previous paragraph is not contained in any conjugate of

M8 or M3, so S = Sp4(q) is not the union of its subgroups Hi with π(Hi) = π(S),

and so S has no equal covering. The group Sp4(4) can be handled by a quick

calculation in GAP or Magma (two conjugacy classes of S are missed by the union

of the conjugates of M3 and M8). The proof is complete. □
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