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Abstract
This study presents a mathematical model that incorporates multiple time delays and a distinct
compartment for antibody-protected immune individuals to analyze the transmission dynamics of
infectious diseases. We ensure through analytical results that our model produced positive and
bounded solutions, which is essential for realistic predictions. Parameter estimation is performed
using real-time data to accurately determine the time delays associated with the system. In the absence
of time delays, the analysis demonstrates that the disease transmission rate (β) plays a critical role in
determining the system’s behavior. When β exceeds a threshold value (βc), a forward bifurcation occurs.
The study further investigates the impact of time delays on the stability of disease-free and endemic
equilibria and identifies conditions under which the system undergoes a Hopf bifurcation, resulting
in periodic oscillations. Numerical simulations are conducted to validate the theoretical findings,
providing insights into the influence of immunity delays on disease persistence and intervention
strategies.
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1 Introduction

The global public health landscape continues to face formidable challenges posed by infectious
diseases, necessitating the development of effective control strategies. Mathematical models are
essential tools to understand the dynamics of disease transmission and to evaluate interventions.
During the spread of epidemics, mathematical models have played a crucial role in making
important public health decisions, like implementing curfews, especially when information about
the disease or virus is limited. The models, such as Susceptible-Exposed-Infected-Recovered
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(SEIR) or Susceptible-Infected-Recovered (SIR) types, take into account the factors like how long
people are exposed to the disease and the impact of vaccination [1–16]. Researchers use these
models to study the spread of deadly infectious diseases. For example, the authors in [4] proposed
an epidemiological model and examined the role of asymptomatic testing and infection in the
spread of the new coronavirus, highlighting the importance of asymptomatic carriers in disease
transmission. In [17], the authors have proposed an epidemic model that incorporates a novel
vaccination strategy by introducing a delay in the time it takes for vaccination to begin working
effectively. This study mainly focused on exploring the influence of vaccination on disease control
and the implementation of effective measures to mitigate disease spread, with particular emphasis
on the basic reproduction ratio. The authors of [18] presented a new mathematical model to
investigate the transmission dynamics of tuberculosis by taking vaccination into account and the
time delay imposed by the latent phase of tuberculosis. In a similar manner, the authors in [19]
developed a mathematical model by incorporating the time required for the vaccine to provide
complete protection against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)
through a set of delay differential equations.
The aforementioned research widely acknowledges the traditional emphasis in mathematical
models on compartments representing susceptible, infected, and recovered individuals, assuming
that the individuals possess complete immunity after recovery. For mathematical convenience,
this assumption, known as "homogeneous immunity," has been utilized so far. The shortcomings
of this presumption, however, have been highlighted by recent studies, underscoring the need for
more realistic and multifaceted representations of immunity dynamics [20–23]. This becomes par-
ticularly important considering research suggesting that immunity may not last forever, regardless
of how it was obtained - through vaccination or involuntary infection. Waning immunity poses
significant implications for disease control and prevention strategies, necessitating a dynamic
approach to modeling immunity [20–23]. For instance, empirical studies have documented the
decrease in antibody levels over time, raising questions about the durability of immunity and the
potential for reinfection [24–31]. Traditional models have focused on susceptible, infected, and
recovered individuals, assuming that recovery provides complete and lasting immunity [26–36].
However, with new antibody-based interventions like monoclonal antibodies and vaccinations,
it’s crucial to account for varying levels and durations of protection provided by antibodies [37, 38].
In the realm of antibody-mediated immunity, a time delay emerges in the period required for
immune individuals to become susceptible once again, often linked to the waning of antibody
levels or the emergence of new pathogen strains. For instance, the authors in [20] provided a
survey of "how long antibody responses last after COVID-19 infection?" and the gradual decrease
of the antibodies over time. Incorporating these insights, our study introduces a unique contribu-
tion by explicitly accounting for the non-permanence of the immune class (A), reflecting a more
realistic and dynamic understanding of immunity. This assumption is supported by a growing
body of medical research indicating that antibody-mediated immunity may wane, necessitating
the consideration of time delays in the susceptibility period for immune individuals. Such an
approach allows for a more accurate modeling of disease transmission dynamics, especially in the
context of ongoing epidemic diseases such as COVID-19, influenza [37, 38].
Among the various factors garnering increased attention, the presence of an antibody-protected
immune subpopulation in the context of infectious diseases stands out as crucial. This subpop-
ulation comprises individuals who have acquired passive immunity through the presence of
antibodies, either via vaccination or natural infection. These individuals enjoy temporary pro-
tection against reinfection due to the presence of specific antibodies targeting the pathogen. By
incorporating this antibody-protected compartment within mathematical models, one can capture
the intricate dynamics of disease transmission and the effects of antibody-based interventions.
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Also, the inclusion of time delays in disease modeling is essential for accurate understanding of
diseases behaviour [39–44]. However, in the existing literature, there are no other articles that take
into account the delay in the "period of susceptibility" for immune individuals, which refers to the
time it takes for individuals with immunity to become susceptible to the disease again.
Building on the preceding discussions, our study introduces a distinctive contribution to the
existing body of research by incorporating two pivotal factors: the presence of antibody-protected
immune individuals and the consideration of a time delay, necessary for these immune individu-
als to revert to susceptibility. This, in fact, enables us to understand how the overall dynamics
of the epidemic are influenced by antibody protection and the associated temporal time delay.
Additionally, we have also included two more time lags: the time required for infectiousness to be
detected and the duration it takes for an individual to receive the entire recommended dosage of
vaccination. Furthermore, we have calibrated system parameters, including time delays, utilizing
real-time COVID-19 data, thereby enhancing the realism of our results. Consequently, our re-
search represents a noteworthy advancement in the mathematical modeling of infectious diseases,
particularly within the context of COVID-19, offering a novel perspective on the dynamics of
antibody-protected individuals and the temporal dynamics of their susceptibility.
The main objectives of this study are as follows:

• Investigating the robustness of immunity in the context of epidemic prevalence.
• Understanding the essential factors influencing disease behavior in the absence of time delays.
• Assessing how variations in delay parameters impact the spread of the disease.
• Exploring the influence of the delay in the period of susceptibility on the prevalence of the

disease.

The subsequent sections of the article are structured as follows: In Section 2, we present a detailed
description of the model, along with the associated biological assumptions to effectively validate
its structure. The positivity and boundedness of the solutions are outlined in Section 3. In
Section 3 (model equilibria and the basic reproduction number), we compute the model equilibria
and determine the basic reproduction number. Section 3 (data fitting and calibration of model
parameters) deals with data fitting and calibration of model parameters using real-time COVID-19
data. In Section 3 (time delay-free system dynamics: exploring parameter influences), we discuss
"How the system behaves without delays?", and in Section 3 (System dynamics with time delays),
we explore the system’s dynamics in the presence of delays. In Section 4, we provide numerically
simulated results that verify our theoretical analysis and demonstrate the application of the model
to the COVID-19 pandemic under various scenarios. Finally, a concise discussion in Section 5
serves to conclude the manuscript.

2 Model formulation

The time-delayed model explored in this work is described as follows:

dS(t)
dt

= (1 − q)p −
βS(t − τ1)I(t − τ1)

N
− µS(t − τ2) + r1 A(t − τ3)− ρS(t),

dI(t)
dt

=
βS(t − τ1)I(t − τ1)

N
− (c + ρ0)I(t),

dV(t)
dt

= qp + µS(t − τ2)− (k + ρ)V(t), (1)

dR(t)
dt

= cI(t)− (r2 + ρ)R(t),

dA(t)
dt

= kV(t)− r1 A(t − τ3) + r2R(t)− ρA(t).
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Figure 1. A schematic flow chart of the proposed model (1) is created in which the human host population is
divided into 5 states namely Susceptible (S), Infected (I), Vaccinated (V), Recovered (R) and Immune (A). The
transition of individuals between the population states and the direction of transmission are indicated by arrows

Here, the total human population (N) is divided into five compartments: Susceptible (S), Infected
(I), Vaccinated (V), Recovered (R) and antibody-protected immune individuals as depicted in
Figure 1. The description of the state variables are: S(t) represents the proportion of individuals,
who are susceptible or in a healthy state at time t, encompassing both healthy and non-vaccinated
individuals; I(t) represents the proportion of symptomatic infected individuals at time t; V(t)
represents the proportion of individuals, who have completed all the required doses of vaccination
for the specific epidemic at time t, as numerous epidemics require multiple doses of vaccination to
induce the full production of antibodies against infection [45–47]; R(t) represents the proportion
of individuals, who have recovered from the disease at time t; A(t) represents the proportion of
individuals, who acquires antibodies due to either by vaccination or recovery from a past infection.
Our hypotheses regarding the transition of individuals from one state to another are outlined
below. It is crucial to emphasize that, within the Eq. (1), we introduce a modified epidemic model
that differs from the one outlined in [48] in the following manner:

• In the realm of epidemiology, the latent period refers to the duration during which the virus
or pathogen replicates within the host and reaches a sufficient level for the individual to
become capable of transmitting the disease to others. While a separate latent compartment
may be suitable in some cases, a time delay parameter often adequately captures the essential
characteristics of the latent period. This approach aligns with empirical observations and the
biological understanding of infectious disease dynamics [2, 49]. Based on this, we introduce
the parameter τ1 as the time delay associated with the latent period, representing the duration
between an individual’s exposure to the infectious agent and the onset of infectiousness.

• In the work conducted by Cai et al. [48], it was asserted that individuals who had recovered
from the disease were assumed to be susceptible to it once again. This proposition was further
extended by Zhang et al. [29], who introduced a time delay associated with temporary immunity.
The hypothesis posited that individuals with a history of recovery could regain susceptibility
to the disease after a certain period due to partial or temporary immunity. Both models
presented in [48] and [29] are formulated under the assumption that vaccinated individuals
may be infected through direct exposure to infected individuals at a reduced rate compared to
unvaccinated individuals. Additionally, research findings suggest that vaccines for numerous
epidemics may necessitate repeated doses or booster shots to ensure extended protection [45–
48, 50]. However, it is noteworthy that vaccines typically do not confer lifelong immunity. The
levels of protection may naturally diminish over time or be compromised due to factors such
as medical conditions, medications, or aging, during which the immune system may function
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less effectively [51]. To address these considerations, we make the assumption that individuals
who have not completed their vaccination regimen, including those who have received only a
single dose, are considered susceptible to the disease. Furthermore, we introduce time delays τ2
and τ3 to account for the delay in completing vaccination and the period of susceptibility for
antibody-protected immune individuals.

• Consequently, the susceptibility of recovered individuals in [29] has been generalized by in-
corporating the term r1 A(t − τ3) to signify the susceptibility of antibody-protected immune
individuals who have gained immunity through both recovery and complete vaccination.

• We have also incorporated a mortality rate specific to the disease for infected individuals,
diverging from the approach in [29, 48] where the mortality rate remains constant across all
individual compartments.

The study is based on the following key assumptions:

• Instead of introducing a separate latent compartment, a time delay parameter (τ1) is incorpo-
rated to represent the duration between exposure and the onset of infectiousness. This approach
aligns with empirical observations of infectious disease dynamics.

• Individuals who recover from the disease are assumed to regain susceptibility after a certain
period due to partial or temporary immunity. This is modeled using a time delay parameter
(τ3).

• Individuals who have not completed their full vaccination regimen, including those who have
received only one dose, are considered susceptible to infection.

• Vaccinated individuals may still contract the disease, but at a reduced rate compared to unvacci-
nated individuals.

• Immunity from vaccination or natural infection is not lifelong and can diminish over time.
• Time delays (τ2 and τ3) are introduced to account for delays in completing vaccination and the

period of susceptibility for antibody-protected individuals.
• A distinct mortality rate for infected individuals is considered, differing from models that

assume a constant mortality rate across all compartments.
• The susceptibility of recovered individuals is generalized by incorporating a term that accounts

for the transition of antibody-protected immune individuals back to the susceptible state.

The system parameters are described as follows:
p: Recruitment rate of susceptibles, q: Proportion of newborn individuals taking vaccination,
µ: Complete vaccination rate of susceptibles, c: Recovery (cure) rate of infected individuals, k:
Antibody development rate of fully vaccinated individuals, r1: Rate of susceptibility of immune
individuals, r2: Antibody development rate of recovered individuals, ρ: Natural death rate of
susceptibles, vaccinated, recovered and immune compartments, ρ0: Disease mortality rate of
infected individuals.

3 Dynamical characteristics of the model

Positivity and boundedness of solutions

Let τ=max{τ1, τ2, τ3} and consider R5
+ = {(x1, x2, x3, x4, x5)/xi ≥ 0, i = 1, 2, 3, 4, 5}. The initial

conditions for the system (1) are given by

S(θ) = ϑ1(θ), I(θ) = ϑ2(θ), V(θ) = ϑ3(θ), R(θ) = ϑ4(θ), A(θ) = ϑ5(θ), (2)

with ϑi(θ) ≥ 0, ϑi(0) > 0, i = 1, 2, 3, 4, 5; θ ∈ [−τ, 0] and (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5) ∈ C([−τ, 0], R5
+).

Where, C([−τ, 0], R5
+) denotes the Banach space of continuous functions from the domain [−τ, 0]
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to R5
+ under Supremum norm. Then, it is obvious that the model equations in (1) with given

initial history functions (2) has a unique solution.

Theorem 1 If, (S(t), I(t), V(t), R(t), A(t)) is the solution of the model (1) with initial conditions (2)
then, the compact set Φ =

{
(S(t), I(t), V(t), R(t), A(t)) ∈ R5

+, N ≤ p
ρ

}
is positively invariant and

attracts all solutions in R5
+.

Proof First, we establish the non-negativity of solutions for system (1). If τ1 < τ2 < τ3, for
t ∈ [0, τ1], all delayed terms S(t − τ1), I(t − τ1), S(t − τ2), and A(t − τ3) refer to the initial
conditions, which are non-negative. Hence, the derivatives of S(t), I(t), V(t), R(t), and A(t) are
non-negative whenever the respective function is zero, ensuring non-negativity in this interval.
Extending this argument to t ∈ [τ1, τ2], t ∈ [τ2, τ3], and t ≥ τ3 follows from the continuous
dependence of solutions on initial conditions and the non-negative nature of the right-hand side
functions in Eq. (1).
The total population N(t) = S(t) + I(t) + V(t) + R(t) + A(t) satisfies:

dN(t)
dt

≤ p − ρ̂N(t), (3)

where, ρ̂ = min {ρ, ρ0}. The Eq. (3) implies that N(t) is bounded above by p
ρ̂ as t → ∞, ensuring

the set Φ is positively invariant and attracts all solutions in R5
+.

Model equilibria and the basic reproduction number

To explore the scenario where no infection persists, we enforce I = 0, leading to the identification
of the disease-free equilibrium expressed as E0 =

(
pϕ3
ϕ1

, 0, pη5(µ(1−q)+qη1)
ϕ1

, 0, pk(µ(1−q)+qη1)
ϕ1

)
, where

ϕ1 = η1η3η5 − kµr1, ϕ2 = η2η4η5 − cr1r2, ϕ3 = kqr1 + (1 − q)η3η5, η1 = µ + ρ, η2 = c + ρ0,
η3 = k + ρ, η4 = r2 + ρ, and η5 = r1 + ρ.
Before exploring the calculation of the endemic equilibrium for our model (1), we first define a
key threshold parameter, essential for assessing the model’s qualitative dynamics.
The basic reproduction number, R0, for model (1) is derived using the next-generation matrix
approach as outlined in [52] and [53]. The next generation matrix, K is defined as FV−1. Here, F
represents the rate of appearance of new infections in each compartment, and V accounts for the
transitions out of infectious compartments due to recovery or death. The next generation matrix
acts as a linear transformation that determines how infections propagate across generations. The
spectral radius of K, denoted by ρ̂(K), is the largest eigenvalue in magnitude, which characterizes
the long-term growth rate of infections. If ρ̂(K) > 1, each infected individual generates more than
one secondary infection on average, leading to an epidemic outbreak. Conversely, if ρ̂(K) < 1, the
infection chain eventually dies out. The Perron-Frobenius theorem [54, 55] guarantees that for a
non-negative, irreducible matrix K, there is a unique largest eigenvalue ρ̂(K). This eigenvalue is
real and positive. In epidemiology, the largest eigenvalue governs the long-term behavior of the
infection spread. The theorem also states that there exists a non-negative eigenvector associated
with ρ̂(K). This eigenvector represents the stable proportion of infections in each compartment
over time. Geometrically, applying K iteratively to an initial infected population vector results
in exponential growth proportional to ρ̂(K). Thus, the spectral radius determines whether the
epidemic grows or declines, making it the natural choice for R0. From the given system of
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Figure 2. The trajectory of infected population, I(t) of model (1), is fitted to real-time records of COVID-19 cases,
during the third wave of COVID-19 in India, ensuring accurate alignment

equations in (1), the equation governing the infected population I(t) is

dI
dt

=
βS(t − τ1)I(t − τ1)

N
− (c + ρ0)I(t).

In this equation, βS(t−τ1)I(t−τ1)
N represents the new infections caused by interaction between sus-

ceptible S(t) and infected I(t) individuals, with transmission rate β. Here (c + ρ0)I(t) represents
removal from the infected class due to recovery (with recovery rate c) and death (with infected
death rate ρ0). For the disease to be eradicated, dI

dt < 0. Here, linearizing at the disease-free steady
state E0, we get F = βS0

N0
, and V = (c + ρ0). Hence K = FV−1 = βS0

N0(c+ρ0)
. Thus, by substituting

the value of S0, we get the basic reproduction number for the model (1) as follows

R0 =
βp((k + ρ)(r1 + ρ)(1 − q) + kqr1)

N0(c + ρ0)(µ(k + ρ) + ρ(r1(µ + ρ) + k(r1 + ρ) + ρ))
=

βpϕ3

N0ϕ1η2
.

We deduce the endemic equilibrium of our model (1) as E1 = (S1, I1, V1, R1, A1) where,

S1 =
R0ϕ1

pϕ3
, I1 =

N∗η2η4ϕ1(R0 − 1)
βϕ2η3

, V1 =
N∗µη2 + βpq

βη3
, R1 =

N∗η2ϕ1c(R0 − 1)
βη3ϕ2

,

A1 =
βp(cη3r2(1 − q) + kqη2η4) + N∗η2(kµη2η4 − cη1η3r2)

βη3ϕ2
. (4)

It is clear from (4) that a unique positive endemic equilibrium only exists if R0 > 1. If R0 lies
below 1, only the disease-free equilibrium is viable, and no biologically feasible endemic state
exists. Consequently, we posit the following hypotheses based on Eq. (4):

H1. In the case where R0 < 1, the only equilibrium point that exists is the infection-free equilibrium.
H2. If R0 > 1, the system (1) admits two biologically feasible equilibrium points: The infection-free

equilibrium E0 and the endemic equilibrium E1.
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Table 1. Representation of parameters in model (1)

Parameters Values Source
τ1 5.235 Estimated
τ2 64.707193 Estimated
τ3 60.61919 Estimated
q 0.174298 Estimated
β 2.09099 Estimated
µ 0.01076363 Estimated
r1 0.024261 Estimated
c 0.93476 Estimated
k 0.0383658 Estimated
r2 0.229543 Estimated
ρ 1

70×365 [58]
p N(0)× ρ -

ρ0 0.09 Estimated
N(0) 1390537387 [58]

Data fitting and calibration of model parameters

This section presents a case study investigating the spread of COVID-19 in India, focusing on
the daily increase in infected individuals. It utilizes the least squares curve fitting method to
estimate parameters and validates theoretical findings with statistical data from India, sourced
from references [56–58]. Our model (1) is fitted to daily data on COVID-19 cases in India from
November 2021 to March 2022, which includes periods with numerous reinfection cases. Parameter
estimation employs two approaches: initial net inflow rate and natural death rate sourced from
reliable data [58], followed by determination of unknown parameters such as time-delay, disease
mortality rate of infected individuals, and initial conditions through minimization of the sum
of squared errors using collected data. The natural mortality rate is based on the average life
expectancy of the Indian population (70 years), translating to a daily mortality rate of 1

70×365 .
The daily birth rate is calculated as the product of the initial total population and mortality rate,
denoted as p = N0 × ρ. Remaining model parameters in (1) are derived from daily infected
case data using statistical procedures in the R programming language’s PBSddesolve package.
Optimization employs the Optim() function to minimize the sum of squared errors, where the
cost function is defined as Err =

∑n
j=1(X (tj)− Y(tj))

2, with Y(tj) representing daily reported
cases and X (tj) denoting the model solution (1) at time tj. The estimated mortality rate of
COVID-19-infected individuals exceeds the natural death rate of other compartments, consistent
with real-world observations. Model fit to data Figure 2 demonstrates good alignment, with
demographic parameters and initial values summarized in Table 1. The initial fully vaccinated
population is set at 517,558,003 (as of November 13, 2021). Utilizing estimated parameters, the
basic reproduction number R0 is determined to be 1.29661, exceeding the critical threshold of 1.
Reference [49] notes an incubation period of 3 to 7 days, while [20] reports waning COVID-19
antibodies in 8 to 9 weeks. Achieving full vaccination in India typically requires 4 to 16 weeks,
depending on vaccine types [50]. Consequently, our model estimates latent, vaccination, and
susceptibility periods as approximately 5.235, 64.707193, and 60.61919 days, respectively, closely
resembling real-world scenarios.

Time delay-free system dynamics: exploring parameter influences

To gain insights into the influence of system parameters apart from time delay, we analyze the
dynamics of the system without any time delays. This approach enables us to study the effects of
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various factors on the behavior of the system, excluding the influence of time delay.

Parameter sensitivity analysis
In existing studies, sensitivity analysis has been employed to determine the importance of various
factors that influence disease transmission and prevalence. To mitigate disease spread, it is crucial
to manage variations in the parameters of the proposed model to ensure R0 < 1. The sensitivity
index of a variable relative to a parameter represents the ratio of their relative changes, calculated
as shown in references [59, 60], S[h] = h

R0
× ∂R0

∂h . This process involves the computation of
normalized sensitivity indices for parameters identified previously. The sensitivity indices for
parameters are presented in Table 2. These findings indicate that the disease transmission rate, β,
emerges as the most sensitive parameter. Following β, the parameter r1, which is the susceptibility
rate of immune individuals, shows significant sensitivity. In contrast, the natural mortality rate, ρ,
is identified as the least sensitive parameter within the system under study.

Table 2. Sensitivity indices of R0 with respect to system parameters

Parameters Sensitivity Index Parameters Sensitivity Index
ρ -0.999616 µ -0.419536
ρ0 -0.0878254 r1 0.256718
q -0.000458286 c -0.912175
p 0 k 0.162434
β 1 r2 0

Local stability analysis of the infection-free equilibrium
Theorem 2 When we consider system (1) with no time-delay, the system’s infection-free steady state E0
exhibits local asymptotic stable behaviour (instability) if R0 < 1 (R0 > 1).

Proof
We first derive the following linearized matrix evaluated at any arbitrary equilibrium point, E∗,
for model (1) without time-delays

J =


−η1 −

βI∗
N∗ −

βS∗

N∗ 0 0 r1
βI∗
N∗ −η2 +

βS∗

N∗ 0 0 0
µ 0 −η3 0 0
0 c 0 −η4 0
0 0 k r2 −η5

 . (5)

The above matrix, when evaluated at the infection-free equilibrium (E0), possesses the following
characteristic equation

(βS0 − λN0 − N0η2)(η4 + λ)(λ3 + λ2(η1 + η3 + η5) + λ(η1η3 + η1η5 + η3η5) + ϕ1) = 0.

The above polynomial possess the eigenvalues λ1 = −η1, λ2 = η2(R0 − 1) and the remaining are
the roots of the following cubic polynomial

λ3 + λ2(η1 + η3 + η5) + λ(η1η3 + η1η5 + η3η5) + ϕ1 = 0. (6)
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Figure 3. Figure (a) shows the occurrence of forward bifurcation with respect to β. The solid red line indicates E0
is stable for β < βc, whereas in the region β > βc, E0 becomes unstable (red-dashed lines) and E1 exists and is
stable (green solid line). Figure (b) represents the plot of the real part of eigenvalues associated with the steady
state E1 and the bifurcation parameter, β

As per the Routh-Hurwitz criteria for the polynomial λ3 + a1λ2 + a2λ2 + a3 = 0, the Eq. (6)
possess roots with negative real parts, since a1 = η1 + η3 + η5 > 0, a2 = η1η3+η1η5+η3η5 > 0,
a3 = ϕ1 > 0 and a1a2 − a3 = η2

1(η3 + η5) + η2
3(η1 + η5) + η2

5(η1 + η3) + 2η1η3η5 + kµr1 > 0. Thus,
the infection-free steady state state is locally asymptotically stable for R0 < 1 and it becomes
unstable for R0 > 1 since both depends on the sign of λ2 = η2(R0 − 1). □

Local stability analysis of endemic equilibrium
Due to the complex nature of the eigenvalues associated with the Jacobian matrix evaluated at
the endemic steady state E1, they are not explicitly presented. Instead, we have computed the
eigenvalues for the steady state E1, and their respective stability regions are depicted in Figure 3a
and Figure 3b. In the absence of delays, we identify the disease transmission rate linked to primary
infections (β) as the bifurcation parameter, given its pivotal role in infection dynamics.
It is observed that at higher values of β (for β > βc), the endemic equilibrium exhibits stability,
while the infection-free equilibrium becomes unstable. This indicates that an increase in the
disease transmission rate prolongs the persistence of the disease in the human population, making
eradication unachievable. These scenarios are illustrated in Figure 3a and Figure 3b, respectively.
Figure 3a clearly demonstrates that when R0 > 1 (β > βc), the infection-free equilibrium loses
stability, giving rise to a stable endemic equilibrium. This reflects a forward bifurcation in the
system, as the steady state E1 exists only when R0 > 1, bifurcating from E0 at R0 = 1 (β = βc).
The critical value for the bifurcation parameter β is approximately 1.61266. To further elucidate
the stable nature of the endemic steady state, we have plotted the real parts of all eigenvalues
concerning the bifurcation parameter β in Figure 3b. As evident from Figure 3b, the real parts
of all characteristic values associated with E1 lie below the line Re(λ) = 0 (as each eigenvalue
possesses a negative real part), indicating the stable nature of the endemic steady state E1 in the
β > βc regime.

System dynamics with time delays

In this section, we learn more about how time de lays affect a system’s behavior and changes over
time. The investigation of delay-induced bifurcations carries significant implications in the field
of epidemiology, enabling the prediction of intervention effectiveness and enhancing our under-
standing of the circumstances that lead to disease eradication or sustained endemicity. Within
this section, we conduct an analysis to determine the stability of equilibria and the conditions
necessary for the occurrence of Hopf bifurcation, by employing time delay as the parameter for
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bifurcation.
The objective is to examine the stability of the developed model and analyze the occurrence
of Hopf bifurcation. Let E∗(S∗, I∗, V∗, R∗, A∗) denote an arbitrary steady state of the model (1).
Subsequently, we derive the linearized matrix evaluated at E∗ for the delayed model (1) as follows.

Jτ =


−ρ −

βI∗e−λτ1

N∗ − µe−λτ2 −
βS∗e−λτ1

N∗ 0 0 r1e−λτ3

βI∗e−λτ1

N∗ −η2 +
βS∗e−λτ1

N∗ 0 0 0
µe−λτ2 0 −η3 0 0

0 c 0 −η4 0
0 0 k r2 −ρ − r1e−λτ3

 . (7)

The above matrix (7) has the following characteristic equation

λ5 + A11λ4 + A12λ3 + A13λ2 + A14λ + A15 + e−λτ1
(

B11λ4 + B12λ3 + B13λ2 + B14λ + B15
)

+e−λ2
(
E11λ4 + E12λ3 + E13λ2 + E14λ + E15

)
+ e−λτ3

(
F11λ4 + F12λ3 + F13λ2 + F14λ + F15

)
+e−λ(τ1+τ2)

(
G11λ3 + G12λ2 + G13λ + G14

)
+ e−λ(τ1+τ3)

(
H11λ3 + H12λ2 + H13λ + H14

)
+e−λ(τ2+τ3)

(
K11λ3 + K12λ2 + K13λ + K14

)
+ e−λ(τ1+τ2+τ3)

(
L11λ2 + L12λ + L13

)
 = 0,

(8)

where, A1i, B1i, E1i, F1i, G1j, H1j, K1j for i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4 and L1l for l = 1, 2, 3 are given
in Appendix A.

Theorem 3 For any arbitrary steady state E∗(S∗, I∗, V∗, R∗, A∗) of model (1), we have the following
results

(a) In the case of system (1), where τ1 > 0 and τ2 = τ3 = 0, the equilibrium of (1) exhibits local asymptotic
stability within the interval (0,τ10). Additionally, a Hopf bifurcation arises specifically when τ1=τ10.

(b) In the case of system (1), where τ2 > 0 and τ1 = τ3 = 0, the equilibrium of (1) exhibits local asymptotic
stability within the range of τ2 ∈ (0, τ20). Additionally, a Hopf bifurcation arises when τ2 = τ20.

(c) In the case of system (1), where τ3 > 0 and τ1 = τ2 = 0, the equilibrium of (1) is locally asymptotically
stable within the range of τ3 ∈ (0, τ30) where τ30 = min

{
τ
(0)
3i

}
, i = 1, 2, . . . 5. Further the system

(1), undergoes a Hopf bifurcation when τ3 = τ30.
(d) The equilibrium E∗ of system (1) exhibits local asymptotic stability within the parameter ranges (0, τ∗

1 ),
(0, τ20), and (0, τ30). Additionally, when τ1=τ∗

1 , the system (1) undergoes a Hopf bifurcation at E∗.
(e) The equilibrium E∗ of system (1) exhibits local asymptotic stability within the parameter ranges (0, τ10),

(0, τ∗
2 ), and (0, τ30). Additionally, when τ2=τ∗

2 , the system (1) undergoes a Hopf bifurcation at E∗.
(f) The equilibrium state E∗ of system (1) exhibits local asymptotic stability within the parameter ranges (0,

τ10), (0, τ20), and (0, τ∗
3 ). Additionally, when τ3=τ∗

3 , the system (1) undergoes a Hopf bifurcation at E∗.

Remark 1 For the proof of Theorem 3(a)− ( f ), the readers may refer to Appendix B.

4 Numerical results and analysis: insights from estimated parameters

Based on the variables calibrated, the estimated basic reproduction ratio is approximately 1.29661,
signifying that the population was persistently in an endemic state throughout the observed
period. Subsequent calculations lead us to the disease equilibrium
E1(621.985, 7.45156, 174.478, 29.9892, 559.152)× 106 for system (1).
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Comprehensive analysis under various scenarios

Understanding disease control with latency period
The initial scenario contemplates a population receiving a single vaccine dose, with previously
protected individuals becoming susceptible again instantaneously. Additionally, a latency period
precedes the manifestation of infectiousness in infected individuals. This scenario is modeled
by setting τ2 and τ3 to zero and assigning a positive value to τ1 in differential Eq. (1). Utilizing
MATLAB for this analysis, we calculate a unique positive root θ10 in Eq. (B.3), identified as
m10 = 0.001615. The values of θ10 and τ10 are found to be 0.041305 and 29.437, respectively.
Verifying Υ11Υ13 + Υ12Υ14 = 0.00003855 > 0 confirms that the necessary conditions for a Hopf
bifurcation are met. Numerical simulations illustrated in Figure 4 depict the endemic equilibrium
E1 behavior for varying τ1. Selecting τ1 = 29 results in a locally asymptotically stable endemic
equilibrium as shown in Figure 4b, suggesting effective disease control under this scenario.
However, setting τ1 = 30 destabilizes the endemic equilibrium, triggering a periodic behavior as
shown in Figure 4a. Notably, we find that the disease cannot be controlled only in the presence
of a latent period delay, specifically, when the average latency period of an individual exceeds
approximately thirty days.
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Figure 4. For case (a) of Theorem 3, Figure (a) shows the periodic oscillations of solution trajectories for
τ1 = 30 > τ10 in which the steady state E1 is unstable. Conversely Figure (b) shows that the steady state E1 is
stable for τ1 = 29 < τ10

Exploring scenarios with immediate symptoms and vaccination delay
Another scenario examined involves immediate symptom onset and infectiousness post-infection
and instant susceptibility reinstatement post-antibody protection. This scenario introduces a
delay in administering the required vaccine doses, represented by setting τ1 and τ3 to zero, while
τ2 is assigned a value greater than zero. Employing similar analytical methods, we determine
the critical value τ20 to be 14.2345. Numerical simulations for varying τ2 values as shown in
Figure 5 reveal that the disease equilibrium E1 remains locally asymptotically stable for τ2 = 14.
However, for τ2 > 14.2345 as shown in Figure 5a, the equilibrium becomes unstable with solutions
deviating from the steady state E1. This scenario reflects the practical challenges of adhering
to tight vaccination schedules, emphasizing the significance of considering realistic vaccination
delays in disease control strategies.
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Figure 5. For case (b) of Theorem 3, Figure (a) shows the periodic oscillations of solution trajectories for
τ2 = 14.39 > τ20 in which the steady state E1 is unstable. Conversely Figure (b) shows that the steady state E1 is
stable for τ2 = 14 < τ20
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Figure 6. For case (c) of Theorem 3, Figure (a) shows the periodic oscillations of solution trajectories for
τ3 = 54 > τ30 in which the steady state E1 is unstable. Conversely Figure (b) shows that the steady state E1 is
stable for τ3 = 52 < τ30

Investigating the role of susceptibility period on disease control and immunity
In a different scenario, individuals are immunized against the disease, but there is a period before
they become susceptible again, and the time periods associated with latency and achieving full
vaccination are nonexistent. The duration of antibody protection, or the susceptibility period,
is pivotal for understanding disease dynamics. Figure 6 plots solution trajectories for various
τ3 values, identifying a critical threshold of approximately 53.386 for τ3. When this average
delay in losing antibodies exceeds approximately 53 days, a significant change occurs in the
disease dynamics. This change is marked by the deviation from the endemic equilibrium and the
occurrence of a Hopf bifurcation, which is clearly shown in Figure 6a and Figure 6b. The Hopf
bifurcation observed in our simulations indicates that, beyond the critical value of τ3, the disease
tends to exhibit periodic resurgences in the population. This means that after a specific time period,
infected individuals become susceptible again due to the loss of antibodies, leading to a revival of
the disease. These periodic fluctuations in the disease prevalence can have significant implications
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Figure 7. For case (d) of Theorem 3, Figure (a) shows the periodic oscillations of solution trajectories for
τ1 = 40 > τ∗

1 in which the steady state E1 is unstable. Conversely Figure (b) shows that the steady state E1 is
stable for τ1 = 38 < τ∗
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Figure 8. For case (e) of Theorem 3, Figure (a) shows the periodic oscillations of solution trajectories for
τ2 = 12 > τ∗

2 in which the steady state E1 is unstable. Conversely Figure (b) shows that the steady state E1 is
stable for τ2 = 10 < τ∗

2

for public health and disease control strategies. The findings from our simulations suggest that
the duration of antibody protection (susceptibility period) is crucial for understanding disease
dynamics. Suppose the average time period for antibodies to vanish exceeds the critical value,
there is a risk of periodic outbreaks, which may lead to challenges in disease control and require
appropriate public health responses.

System dynamics with multiple time-delays
Lastly, we consider a situation with all three delays: the latent period delay, the vaccination delay,
and the susceptibility period delay. By performing simulations under different conditions, we
identify critical values for each delay. We perform numerical simulations and predict the dynamics
under the following situations
Initially, our focus shifts to a configuration where the vaccination delay is set to 10 days, comple-
mented by a susceptibility period delay of 51 days, both calibrated within their respective ranges
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Figure 9. For case (f) of Theorem 3, Figure (a) shows the periodic oscillations of solution trajectories for
τ3 = 51 > τ∗

3 in which the steady state E1 is unstable. Conversely Figure (b) shows that the steady state E1 is
stable for τ3 = 49 < τ∗

3

conducive to stability. The critical discovery in this setup is the identification of the vital latency
period threshold, calculated to be approximately 39.2385 days. This threshold delineates a fine
balance; should the actual latency period be shorter, say less than a month, the disease’s presence
in the population remains steady and stable. Conversely, extending this period to around 40 days
disrupts this equilibrium, resulting in a heightened risk of outbreak escalations. The simulations,
as depicted in Figure 7a and Figure 7b, visually articulate these findings.
Expanding our exploration, two additional scenarios were meticulously analyzed. In the first,
the latency period was adjusted to 25 days (positioned safely within its stability realm) and the
susceptibility period to 51 days (again, within a stable domain), while introducing a non-zero
vaccination delay. This analysis unearthed a critical vaccination delay threshold of approximately
11.2893 days. The second scenario maintained the latency period at 25 days and the vaccination
delay at a manageable 10 days, aiming to pinpoint the critical threshold for the susceptibility
period delay, which was found to be roughly 50.1086 days. The graphical representations of these
results are visually captured in Figure 8a, Figure 8b and Figure 9a, Figure 9b.
Furthermore, the phase portrait diagram corresponding to each case as presented in Theorem 3
and depicted in Figure 10, Figure 11 and Figure 12, offers a visual representation of the unstable
equilibrium of the system in these circumstances.

5 Results and discussion

This article presents an epidemic model incorporating multiple time delays and emphasizes
several key concepts:

• We have created a separate compartment for individuals with immunity, either post-recovery or
through vaccination, with a significant time delay (τ3) representing the susceptibility period
for these immune individuals. This acknowledges that disease persistence can occur when
immunity fades or when there are variations in the time delay of susceptibility.

• The model guarantees that all solutions remain positive and constrained within biologically
feasible limits, ensuring the validity of the system in representing real-world epidemiological
dynamics. Additionally, the solutions of the considered model are proven to be bounded,
confirming the applicability of the model over the long term.

• The disease-free equilibrium (DFE) is determined, representing a state where the infection
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Figure 10. In Figure (a), the phase portrait diagram illustrates the unstable phase for Case (a) as outlined in
Theorem 3, where τ1 = 30 > τ10. In Figure (b), the diagram presents the unstable phase for Case (d) from
Theorem 3, where τ1 = 40 > τ∗

1 , while τ2 and τ3 remain below τ20 and τ30, respectively
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Figure 11. In Figure (a), the phase portrait diagram illustrates the unstable phase for Case (b) as outlined in
Theorem 3, where τ2 = 14.39 > τ20. In Figure (b), the diagram presents the unstable phase for Case (e) from
Theorem 3, where τ2 = 12 > τ∗
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Figure 12. In Figure (a), the phase portrait diagram illustrates the unstable phase for Case (c) as outlined in
Theorem 3, where τ3=54 > τ30. In Figure (b), the diagram presents the unstable phase for Case (e) from Theorem 3,
where τ3 = 51 > τ∗

3 , while τ1 and τ2 remain below τ10 and τ20, respectively

is eliminated over time. Additionally, the endemic equilibrium is derived, corresponding
to a scenario in which the disease remains within the population. The basic reproduction
number (R0) is calculated using the next-generation matrix method, and it serves as a threshold
parameter that determines whether the infection will persist or decline.

• Sensitivity analysis is conducted to evaluate the impact of system parameters on the basic
reproduction number (R0). The results indicate that the disease transmission rate (β) exhibits
the highest sensitivity, followed by the susceptibility rate of immune individuals (r1). In
contrast, the mortality rate (ρ0) has a negligible effect on disease transmission, suggesting that
intervention strategies should prioritize reducing β rather than modifying natural death rates.

• For R0 < 1, the disease-free equilibrium is locally stable, which indicates that the infection
will diminish over time. Conversely, when R0 > 1, the disease-free equilibrium loses its
stability, and leads to the existence of a stable endemic equilibrium, which denotes disease per-
sistence. The stability conditions are further verified by plotting the real parts of the eigenvalues
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corresponding to the linearized matrix evaluated at the steady state E1.
• The system exhibits forward bifurcation, indicating a continuous transition from a disease-

free equilibrium to an endemic state as the transmission rate (β) exceeds a critical threshold.
The Hopf bifurcation analysis demonstrates that time delays associated with immunity loss
and reinfection can induce periodic outbreaks, resulting in oscillatory fluctuations in disease
prevalence.

• Numerical simulations support the theoretical findings by demonstrating the effects of time
delays, vaccination rates, and immunity loss on disease transmission dynamics. The results
indicate that minimizing time delays and enhancing immunity through vaccination can effec-
tively reduce the risk of outbreaks. The parameters of the model are calibrated using real-time
COVID-19 data to ensure consistency with observed epidemiological trends. Furthermore,
the identification of critical delay thresholds provides valuable insights into the transmission
dynamics of the disease.

• The findings of this study demonstrate that a shorter duration of immunity in individuals
increases the likelihood of periodic outbreaks, highlighting the importance of implementing
booster vaccination programs. Furthermore, timely interventions in vaccination and reinfection
prevention are essential for mitigating the risk of recurring disease resurgences.

• One potential limitation of the current study is that the mathematical model has been analyzed in
the integer-order case with constant time delays. While this approach provides valuable insights
into the stability and bifurcation analysis of the considered system, there are opportunities
for further refinement. A promising direction for future research is to extend the model to a
fractional-order model, which can account for the long-term memory and hereditary properties
of immune responses. Additionally, incorporating time-varying parameters and delays would
provide a more realistic representation of immunity dynamics due to factors such as waning
antibody protection, evolving pathogen characteristics, or interventions.

Appendix A

A11 = 2ρ + η2 + η3 + η4, A12 = ρ2 + (2η2 + 2η3 + 2η4)d + η2(η3 + η4) + η3η4,

A13 = (η2 + η3 + η4)ρ
2 + 2ρ(η2(η3 + η4) + η3η4) + η2η3η4, A14 = ρ(2η2η3η4 + ρ(η3η4 + η2(η3 + η4))),

A15 = ρ2η2η3η4, B11 =
1

N∗ β(I∗ − S∗), B12 =
1

N∗ (β(ρ + η2 + η3 + η4)I∗ − βS∗(2ρ + η3 + η4)),

B13 =
1

N∗ (βI∗(η2η4 + η3(η2 + η4) + ρ(η2 + η3 + η4))− βS∗(ρ2 + (2η3 + 2η4)ρ + η3η4)),

B14 =
1

N∗ β(I∗η2η3η4 + ρ(I∗η2η4 + η3(I∗η2 − η4(2S∗ − I∗)))− ρ2S∗(η3 + η4)), B15 =
1

N∗ βρη3η4(η2 I∗ − ρS∗),

E11 = µ, E12 = µ(ρ + η2 + η3 + η4), E13 = µ(ρη4 + η3(ρ + η4) + η2(ρ + η3 + η4)),

E14 = µ(ρη3η4 + η2(ρη4 + η3(ρ + η4))), E15 = ρµη2η3η4, F11 = r1, F12 = r1(ρ + η2 + η3 + η4),

F13 = r1(ρη4 + η3(ρ + η4) + η2(ρ + η3 + η4)), F14 = r1(ρη3η4 + η2(ρη4 + η3(ρ + η4))), F15 = ρη2η3η4r1,

G11 = −
1

N∗ βµS∗, G12 = −
1

N∗ βµS∗(ρ + η3 + η4), G13 = −
1

N∗ βµS∗(ρη4 + η3(ρ + η4)),

G14 = −
1

N∗ βρµS∗η3η4, H11 =
1

N∗ β(I∗ − S∗r1), H12 =
1

N∗ βr1(I∗(η2 + η3 + η4)− S∗(ρ + η3 + η4)),

H13 = −
1

N∗ β((((S∗ − I∗)η4 + ρS∗ − I∗η2)η3 + η4(ρS∗ − η2 I∗))r1 + cI∗r2),

H14 =
1

N∗ βη3r1(η2η4 I∗ − cI∗r2 − ρS∗η4), K11 = µr1, K12 = −µ((η2 + η3 + η4)r1 − k),

K13 = µr1(η4(η3 − k) + η2(η3 + η4 − k)), K14 = µη2η4r1(η3 − k), L11 = −
1

N∗ βµS∗r1,

L12 =
1

N∗ βµS∗r1(k − η3 − η4), L13 =
1

N∗ βµS∗η4r1(k − η3).
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Appendix B
Proof of Theorem 3(a) Suppose τ1 > 0, τ2 = τ3 = 0, the characteristic Eq. (8) becomes

λ5 + B̃1λ4 + B̃2λ3 + B̃3λ2 + B̃4λ + B̃5 + e−λτ1 (B̃6λ4 + B̃7λ3 + B̃8λ2 + B̃9λ + B̃0) = 0, (B.1)

where B̃1 = A11 + E11 + F11, B̃2 = A12 + E12 + F12 + K11, B̃3 = A13 + E13 + F13 + k12, B̃4 = A14 + E14 + F14 +
k13, B̃5 = A15 + E15 + F15 + k14, B̃6 = B11, B̃7 = B12 + G11 + H11, B̃8 = B13 + G12 + H12 + L11,
B̃9 = B14 + G13 + H13 + L12, B̃0 = B15 + G14 + H14 + L13. Let λ = iθ1 (θ1 > 0) be root of Eq. (B.1) then,
we have N11(θ1) cos τ1θ1 + N12(θ1) sin τ1θ1 = N13(θ1), and N12(θ1) cos τ1θ1 − N11(θ1) sin τ1θ1 = N14(θ1), where,
N11(θ1) = B̃6θ4

1 − B̃8θ2
1 + B̃0, N12(θ1) = B̃9θ1 − B̃7θ3

1 , N13(θ1) = B̃3θ2
1 − B̃5 − B̃1θ4

1 , N14(θ1) = B̃2θ3
1 − B̃4θ1 − θ5

1 .
Here, N2

13(θ1) + N2
14(θ1) = N2

11(θ1) + N2
12(θ1) from which, we get the following

θ10
1 + σ11θ8

1 + σ12θ6
1 + σ13θ4

1 + σ14θ2
1 + σ15 = 0, (B.2)

where σ11 = B̃2
1 − B̃2

6 − 2B̃2, σ12 = −2B̃1B̃3 + B̃2
2 + 2B̃6B̃8 − B̃2

7 + 2B̃4, σ13 = −2B̃0B̃6 + 2B̃1B̃5 − 2B̃2B̃4 + B̃2
3 +

2B̃7B̃9 − B̃2
8 , σ14 = 2B̃0B̃8 − 2B̃3B̃5 + B̃2

4 − B̃2
9 , σ15 = B̃2

5 − B̃2
0 . Letting θ2

1 = m1 in (B.2), we get

m5
1 + σ11m4

1 + σ12m3
1 + σ13m2

1 + σ14m1 + σ15 = 0. (B.3)

Assume that the above equation has n (1 ≤ n ≤ 5) positive roots, given by m11, m12,. . . m1n. Then, (B.2) has

(1≤ n ≤ 5) positive roots θ1i =
√

m1i (1 ≤ i ≤ n). For θ1i, τ
(r)
1i = 1

θ1i
arccos

[
N11(θ1)N13(θ1)+N12(θ1)N14(θ1)

N2
11(θ1)+N2

12(θ1)
+ 2rπ

]
, i =

1 . . . n; r = 0, 1, 2 . . . . Let us denote τ10 = min
{

τ
(0)
1i

}
, i = 1, 2, . . . n. From Eq. (B.1), we have

[
dλ
dτ1

]−1
=

5λ4+4B̃1λ3+3B̃2λ2+2B̃3λ+B̃4+e−λτ1 (4B̃6λ3+3B̃7λ2+2B̃8λ+B̃9)
e−λτ1 (B̃6λ5+B̃7λ4+B̃8λ3+B̃9λ2+B̃0λ)

− τ1
λ . Upon substituting λ = iθ10, we get, Re

[
dλ
dτ1

]−1

τ1=τ10
=

Υ11Υ13+Υ12Υ14
Υ2

11+Υ2
12

with Υ11 = θ4
10B̃6 − θ2

10B̃8 + B̃0, Υ12 = θ10B̃9 − θ3
10B̃7, Υ13 = cos τ10θ10(2B̃3 − 4B̃1θ2

10)− sin τ10θ10(−5θ3
10 +

3B̃2θ10 − B̃4/θ10) + 2B̃8 − 4θ2
10B̃6, Υ14 = sin τ10θ10(2B̃3 − 4B̃1θ2

10) + cos τ10θ10(3B̃2θ10 − 5θ3
10 − B̃4/θ10) + B̃9 −

3B̃7θ10. Thus, if Υ11Υ13+Υ12Υ14 ̸=0, then Re[dλ/dτ]−1
τ1=τ10

̸= 0. Hence, based on Hopf bifurcation theorem in [28], we
have proof of Theorem 3(a).

Proof of Theorem 3(b) τ2 > 0, τ1 = 0, and τ3 = 0: In this case Eq. (8) becomes

λ5 + Ẽ1λ4 + Ẽ2λ3 + Ẽ3λ2 + Ẽ4λ + Ẽ5 + e−λτ1 (Ẽ6λ4 + Ẽ7λ3 + Ẽ8λ2 + Ẽ9λ + Ẽ0) = 0, (B.4)

where Ẽ1 = A11 + B11 + F11, Ẽ2 = A12 + B12 + F12 + H11, Ẽ3 = A13 + B13 + F13 + H12, Ẽ4 = A14 + B14 + F14 +
H13, Ẽ5 = A15 + B15 + F15 + H14, Ẽ6 = E11, Ẽ7 = E12 + G11 + K11, Ẽ8 = E13 + G12 + K12 + L11,
Ẽ9 = E14 + G13 + K13 + L12, Ẽ0 = E15 + G14 + K14 + L13. Let λ = iθ2 (θ2 > 0) be root of Eq. (B.4) then,
N21(θ2) cos τ2θ2 + N22(θ2) sin τ2θ2 = N23(θ2), and N22(θ2) cos τ2θ2 −N21(θ2) sin τ2θ2 = N24(θ2) where, N21(θ2) =
Ẽ6θ4

2 − Ẽ8θ2
2 + Ẽ0, N22(θ2) = Ẽ9θ2 − Ẽ7θ3

2 , N23(θ2) = Ẽ3θ2
2 − Ẽ5 − Ẽ1θ4

2 , N24(θ2) = Ẽ2θ3
2 − Ẽ4θ2 − θ5

2 . This implies
the following equation

θ10
2 + σ21θ8

2 + σ22θ6
2 + σ23θ4

2 + σ24θ2
2 + σ25 = 0, (B.5)

where σ21 = Ẽ2
1 − Ẽ2

6 − 2Ẽ2, σ22 = −2Ẽ1Ẽ3 + Ẽ2
2 + 2Ẽ6Ẽ8 − Ẽ 2

7 + 2Ẽ4, σ23 = −2Ẽ0Ẽ6 + 2Ẽ1Ẽ5 − 2Ẽ2Ẽ4 + Ẽ 2
3 +

2Ẽ7Ẽ9 − Ẽ 2
8 , σ24 = 2Ẽ0Ẽ8 − 2Ẽ3Ẽ5 + Ẽ 2

4 − Ẽ 2
9 , σ25 = Ẽ 2

5 − Ẽ2
0 . Let θ2

2 = m2, then we get m5
2 + σ21m4

2 + σ22m3
2 +

σ23m2
2 + σ24m2 + σ25 = 0. Assume that the Eq. (5) has n (1 ≤ n ≤ 5) positive roots, denoted by m21, m22,. . . m2n. Then,

(B.5) has (1≤ n ≤ 5) positive roots θ2i =
√

m2i (1 ≤ i ≤ n). For θ2i, τ
(r)
2i = 1

θ2i
arccos

[
N21(θ2)N23(θ2)+N22(θ2)N24(θ2)

N2
21(θ2)+N2

22(θ2)
+ 2rπ

]
. i =

1 . . . n; r = 0, 1, 2 . . . . Let τ20 = min
{

τ
(0)
2i

}
, i = 1, 2, . . . n For Eq. (B.4), we have the corresponding roots as

±iθ20 when τ2 = τ20. From (B.4), we obtain
[

dλ
dτ2

]−1
=

5λ4+4Ẽ1λ3+3Ẽ2λ2+2Ẽ3λ+Ẽ4+e−λτ1 (4Ẽ6λ3+3Ẽ7λ2+2Ẽ8λ+Ẽ9)
e−λτ2 (Ẽ6λ5+Ẽ7λ4+Ẽ8λ3+Ẽ9λ2+Ẽ0λ)

− τ2
λ .

Then, Re
[

dλ
dτ2

]−1

τ2=τ20
= Υ21Υ23+Υ22Υ24

Υ2
21+Υ2

22
with Υ21 = θ4

20Ẽ6 − θ2
20Ẽ8 + Ẽ0, Υ22 = θ20Ẽ9 − θ3

20Ẽ7, Υ23 = cos τ20θ20(2Ẽ3 −

4Ẽ1θ2
20)− sin τ20θ20(−5θ3

20 + 3Ẽ2θ20 − Ẽ4/θ20)+ 2Ẽ8 − 4θ2
20Ẽ6, Υ24 = sin τ20θ20(2Ẽ3 − 4Ẽ1θ2

20)+ cos τ20θ20(3Ẽ2θ20 −

5θ3
20 − Ẽ4/θ20)+ Ẽ9 − 3Ẽ7θ20. Thus, if Υ21Υ23+Υ22Υ24 ̸=0, then Re[dλ/dτ]−1

τ2=τ20
̸= 0. Hence, we have the Theorem 3(b).

Proof of Theorem 3(c) τ3 > 0, τ1 = 0, and τ2 = 0.
For τ3 > 0, τ1 = 0 and τ2 = 0, Eq. (8) is modified as follows

λ5 + F̃1λ4 + F̃2λ3 + F̃3λ2 + F̃4λ + F̃5 + e−λτ3 (F̃6λ4 + F̃7λ3 + F̃8λ2 + F̃9λ + F̃0) = 0,
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where F̃1 = A11 + B11 + E11, F̃2 = A12 + B12 + E12 + G11, F̃3 = A13 + B13 + E13 + G12, F̃4 = A14 + B14 +
E14 + G13, F̃5 = A15 + B15 + E15 + G14, F̃6 = F11, F̃7 = F12 + H11 + K11, F̃8 = F13 + H12 + K12 + L11,
F̃9 = F14 + H13 + K13 + L12, F̃0 = F15 + H14 + K14 + L13. Proceeding in the same manner as the above cases,

we get τ
(r)
3i = 1

θ3i
arccos

[
N31(θ3)N33(θ3)+N32(θ3)N34(θ3)

N2
31(θ3)+N2

32(θ3)
+ 2rπ

]
. i = 1 . . . 5; r = 0, 1, 2 . . . . where, N31(θ3) = F̃6θ4

3 −

F̃8θ2
3 + F̃0, N32(θ3) = F̃9θ3 − F̃7θ3

3 , N33(θ3) = F̃3θ2
3 − F̃5 − F̃1θ4

3 , N34(θ3) = F̃2θ3
3 − F̃4θ3 − θ5

3 . and θ3i =
√

m3i,
(1 ≤ i ≤ 5) in which m3i, i = 1, . . . 5 are the positive roots of equation m5

3 + σ31m4
3 + σ32m3

3 + σ33m2
3 + σ34m3 + σ35 = 0

with σ31 = F̃ 2
1 − F̃ 2

6 − 2F̃2, σ32 = −2F̃1F̃3 + F̃ 2
2 + 2F̃6F̃8 − F̃ 2

7 + 2F̃4, σ33 = −2F̃0F̃6 + 2F̃1F̃5 − 2F̃2F̃4 + F̃ 2
3 +

2F̃7F̃9 − F̃ 2
8 , σ34 = 2F̃0F̃8 − 2F̃3F̃5 + F̃ 2

4 − F̃ 2
9 , σ35 = F̃ 2

5 − F̃ 2
0 . Thus, we have Theorem 3(c).

Proof of Theorem 3(d) τ1 > 0, τ2 ∈ (0, τ20), and τ3 ∈ (0, τ30)
Letting λ = iθ∗1 in Eq. (8) and equating the real and imaginary parts, we get the following

N41(θ
∗
1) cos τ1θ∗1 + N42(θ

∗
1) sin τ1θ∗1 = N43(θ

∗
1), and N42(θ

∗
1) cos τ1θ∗1 − N41(θ

∗
1) sin τ1θ∗1 = N44(θ

∗
1),

with

N41(θ
∗
1) = (L13 − L11θ∗1

2) cos(τ2 + τ3)θ
∗
1 + L12θ∗1 sin(τ2 + τ3)θ

∗
1 + (G14 − G12θ∗1

2) cos τ2θ∗1

+ (G13θ∗1 − G11θ∗1
3) sin τ2θ∗1 + (H14 − H12θ∗1

2) cos τ3θ∗1 + (H13θ∗1 − H11θ∗1
3) sin τ3θ∗1 + B15

− B13θ∗1
2 + B11θ∗1

4,

N42(θ
∗
1) = (L11θ∗1

2 − L13) sin(τ2 + τ3)θ
∗
1 + L12θ∗1 cos(τ2 + τ3)θ

∗
1 + (G12θ∗1

2 − G14) sin τ2θ∗1

+ (G13θ∗1 − G11θ∗1
3) cos τ2θ∗1 + (H12θ∗1

2 − H14) sin τ3θ∗1 + (H13θ∗1 − H11θ∗1
3) cos τ3θ∗1

+ B14θ∗1 − B12θ∗1
3,

N43(θ
∗
1) = A13θ∗1

2 − A11θ∗1
4 − A15 + (K12θ∗1

2 − K14) cos(τ2 + τ3)θ
∗
1 + (K11θ∗1

3 − K13θ∗1) sin(τ2 + τ3)θ
∗
1

+ (E13θ∗1
2 − E15 − E11θ∗1

4) cos τ2θ∗1 + (E12θ∗1
3 − E14θ∗1) sin τ2θ∗1 + (F13θ∗1

2 − F15 − F11θ∗1
4) cos τ3θ∗1

+ (F12θ∗1
3 − F14θ∗1) sin τ3θ∗1 ,

N44(θ
∗
1) = A12θ∗1

3 − A14θ∗1 + (K14 − K12θ∗1
2) sin(τ2 + τ3)θ

∗
1 + (K11θ∗1

3 − K13θ∗1) cos(τ2 + τ3)θ
∗
1

+ (E11θ∗1
4 − E13θ∗1

2 + E15) sin τ2θ∗1 + (E12θ∗1
3 − E14θ∗1) cos τ2θ∗1 + (F11θ∗1

4 − F13θ∗1
2 + F15) sin τ3θ∗1

+ (F12θ∗1
3 − F14θ∗1) cos τ3θ∗1 .

It can be seen that, N2
43(θ

∗
1) + N2

44(θ
∗
1) = N2

41(θ
∗
1) + N2

42(θ
∗
1). Let us assume that θ∗11, θ∗12,. . . θ∗1n are the finite pos-

itive roots of the above equation. Then for θ∗1i, we have τ∗
1i = 1

θ∗1i
arccos

[
N41(θ

∗
1 )N43(θ

∗
1 )+N42(θ

∗
1 )N44(θ

∗
1 )

N2
41(θ

∗
1 )+N2

42(θ
∗
1 )

+ 2rπ

]
.i =

1 . . . n; r = 0, 1, 2 . . . . Let τ∗
1 = min

{
τ
(0)
1i

}
, i = 1, 2, . . . n.

Hence, for τ1 = τ∗
1 , from Eq. (8), we have

[
dλ
dτ1

]−1
= Γ1(λ)

Γ2(λ)
where

Γ1(λ) = 5 λ4 + 4 A11λ3 + 3 A12λ2 + 2 A13λ + A14 − τ1e−λ τ1
(

λ4B11 + λ3B12 + λ2B13 + λ B14 + B15

)
+ e−λ τ1

(
4 λ3B11 + 3 λ2B12 + 2 λ B13 + B14

)
− τ2e−λ τ2

(
λ4E11 + λ3E12 + λ2E13 + λ E14 + E15

)
+ e−λ τ2

(
4 λ3E11 + 3 λ2E12 + 2 λ E13 + E14

)
− τ3e−λ τ3

(
λ4F11 + λ3F12 + λ2F13 + λ F14 + F15

)
+ e−λ τ3

(
4 λ3F11 + 3 λ2F12 + 2 λ F13 + F14

)
+ (−τ1 − τ2) e−λ (τ1+τ2)

(
λ3G11 + λ2G12 + λ G13 + G14

)
+ e−λ (τ1+τ2)

(
3 λ2G11 + 2 λ G12 + G13

)
+ (−τ1 − τ3) e−λ (τ1+τ3)

(
λ3 H11 + λ2 H12 + λ H13 + H14

)
+ e−λ (τ1+τ3)

(
3 λ2 H11 + 2 λ H12 + H13

)
+ (−τ2 − τ3) e−λ (τ2+τ3)

(
λ3K11 + λ2K12 + λ K13 + K14

)
+ e−λ (τ2+τ3)

(
3 λ2K11 + 2 λ K12 + K13

)
+ (−τ1 − τ2 − τ3) e−λ (τ1+τ2+τ3)

(
λ2L11 + λ L12 + L13

)
+ e−λ (τ1+τ2+τ3) (2 λ L11 + L12) ,

Γ2(λ) = λ e−λ τ1
(

λ4B11 + λ3B12 + λ2B13 + λ B14 + B15

)
+ λ e−λ (τ1+τ2)

(
λ3G11 + λ2G12 + λ G13 + G14

)
+ λ e−λ (τ1+τ3)

(
λ3 H11 + λ2 H12 + λ H13 + H14

)
+ λ e−λ (τ1+τ2+τ3)

(
λ2L11 + λ L12 + L13

)
.
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Then, we get Re
[

dλ
dτ1

]−1

τ1=τ∗1
= Υ41Υ43+Υ42Υ44

Υ2
41+Υ2

42
. Here,

Υ41 = θ∗1 sin (θ∗1 τ∗
1 )

(
θ∗1

4B11 − θ∗1
2B13 + B15

)
− θ∗1 cos (θ∗1 τ∗

1 )
(

B14θ∗1 − B12θ∗1
3
)
+ θ∗1 sin (θ∗1 τ∗

1 + θ∗1 τ2)
(

G14 − θ∗1
2G12

)
− θ∗1 cos (θ∗1 τ∗

1 + θ∗1 τ2)
(
−G11θ∗1

3 + G13θ∗1

)
+ θ∗1 sin (θ∗1 τ∗

1 + θ∗1 τ3)
(
−θ∗1

2 H12 + H14

)
− θ∗1 cos (θ∗1 τ∗

1 + θ∗1 τ3)
(
−H11θ∗1

3 + H13θ∗1

)
+ θ∗1 sin (θ∗1 τ∗

1 + θ∗1 τ2 + θ∗1 τ3)
(
−θ∗1

2L11 + L13

)
− θ∗1

2 cos (θ∗1 τ∗
1 + θ∗1 τ2 + θ∗1 τ3) L12,

Υ42 = θ∗1 cos (θ∗1 τ∗
1 )

(
θ∗1

4B11 − θ∗1
2B13 + B15

)
+ θ∗1 sin (θ∗1 τ∗

1 )
(
−B12θ∗1

3 + B14θ∗1

)
+ θ∗1 cos (θ∗1 τ∗

1 + θ∗1 τ2)
(
−θ∗1

2G12 + G14

)
+ θ∗1 sin (θ∗1 τ∗

1 + θ∗1 τ2)
(
−G11θ∗1

3 + G13θ∗1

)
+ θ∗1 cos (θ∗1 τ∗

1 + θ∗1 τ3)
(
−θ∗1

2 H12 + H14

)
+ θ∗1 sin (θ∗1 τ∗

1 + θ∗1 τ3)
(
−H11θ∗1

3
)

+ θ∗1 cos (θ∗1 τ∗
1 + θ∗1 τ2 + θ∗1 τ3)

(
−θ∗1

2L11 + L13

)
+ θ∗1

2 sin (θ∗1 τ∗
1 + θ∗1 τ2 + θ∗1 τ3) L12,

Υ43 =
(

L11 (τ
∗
1 + τ2 + τ3) θ∗1

2 − L13τ∗
1 − L13τ2 − L13τ3 + L12

)
cos (θ∗1 (τ

∗
1 + τ2 + τ3))

+ 2 θ∗1 (−1/2 L12τ∗
1 − 1/2 L12τ2 − 1/2 L12τ3 + L11) sin (θ∗1 (τ

∗
1 + τ2 + τ3))

+
(
(G12τ∗

1 + G12τ2 − 3 G11) θ∗1
2 − G14τ∗

1 − G14τ2 + G13

)
cos (θ∗1 (τ

∗
1 + τ2))

+
(
(H12τ∗

1 + H12τ3 − 3 H11) θ∗1
2 − H14τ∗

1 − H14τ3 + H13

)
cos (θ∗1 (τ

∗
1 + τ3))

+
(
(K12τ2 + K12τ3 − 3 K11) θ∗1

2 − K14τ2 − K14τ3 + K13

)
cos (θ∗1 (τ2 + τ3))

+
(

G11 (τ
∗
1 + τ2) θ∗1

2 − G13τ∗
1 − G13τ2 + 2 G12

)
θ∗1 sin (θ∗1 (τ

∗
1 + τ2))

+ θ∗1

(
H11 (τ

∗
1 + τ3) θ∗1

2 − H13τ∗
1 − H13τ3 + 2 H12

)
sin (θ∗1 (τ

∗
1 + τ3))

+ θ∗1

(
K11 (τ2 + τ3) θ∗1

2 − K13τ2 − K13τ3 + 2 K12

)
sin (θ∗1 (τ2 + τ3))

+
(
−B11τ∗

1 θ∗1
4 + (B13τ∗

1 − 3 B12) θ∗1
2 − B15τ∗

1 + B14

)
cos (θ∗1 τ∗

1 )

+
(
−E11τ2θ∗1

4 + (E13τ2 − 3 E12) θ∗1
2 − E15τ2 + E14

)
cos (θ∗1 τ2)

+
(
−F11τ3θ∗1

4 + (F13τ3 − 3 F12) θ∗1
2 − F15τ3 + F14

)
cos (θ∗1 τ3)

− 4 θ∗1

(
(−1/4 τ∗

1 B12 + B11) θ∗1
2 + 1/4 τ∗

1 B14 − 1/2 B13

)
sin (θ∗1 τ∗

1 )

+ 2 θ∗1

(
(1/2 τ2E12 − 2 E11) θ∗1

2 − 1/2 E14τ2 + E13

)
sin (θ∗1 τ2)

− 4 θ∗1

(
(−1/4 F12τ3 + F11) θ∗1

2 + 1/4 F14τ3 − 1/2 F13

)
sin (θ∗1 τ3) + 5 θ∗1

4 − 3 A12θ∗1
2 + A14,

Υ44 =
(
−L11 (τ

∗
1 + τ2 + τ3) θ∗1

2 + L13τ∗
1 + L13τ2 + L13τ3 − L12

)
sin (θ∗1 (τ

∗
1 + τ2 + τ3))

+ 2 (−1/2 L12τ∗
1 − 1/2 L12τ2 − 1/2 L12τ3 + L11) θ∗1 cos (θ∗1 (τ

∗
1 + τ2 + τ3))

+
(
(−G12τ∗

1 − G12τ2 + 3 G11) θ∗1
2 + G14τ∗

1 + G14τ2 − G13

)
sin (θ∗1 (τ

∗
1 + τ2))

+
(
(−H12τ∗

1 − H12τ3 + 3 H11) θ∗1
2 + H14τ∗

1 + H14τ3 − H13

)
sin (θ∗1 (τ

∗
1 + τ3))

+
(
(−K12τ2 − K12τ3 + 3 K11) θ∗1

2 + K14τ2 + K14τ3 − K13

)
sin (θ∗1 (τ2 + τ3))

+ θ∗1

(
G11 (τ

∗
1 + τ2) θ∗1

2 − G13τ∗
1 − G13τ2 + 2 G12

)
cos (θ∗1 (τ

∗
1 + τ2))

+ θ∗1

(
H11 (τ

∗
1 + τ3) θ∗1

2 − H13τ∗
1 − H13τ3 + 2 H12

)
cos (θ∗1 (τ

∗
1 + τ3))

+ θ∗1

(
K11 (τ2 + τ3) θ∗1

2 − K13τ2 − K13τ3 + 2 K12

)
cos (θ∗1 (τ2 + τ3))

+
(

B11τ∗
1 θ∗1

4 + (−B13τ∗
1 + 3 B12) θ∗1

2 + B15τ∗
1 − B14

)
sin (τ∗

1 θ∗1)

+
(

E11τ2θ∗1
4 + (−E13τ2 + 3 E12) θ∗1

2 + E15τ2 − E14

)
sin (τ2θ∗1)

+
(

F11τ3θ∗1
4 + (−F13τ3 + 3 F12) θ∗1

2 + F15τ3 − F14

)
sin (τ3θ∗1)

− 4 θ∗1 (
(
(−1/4 τ∗

1 B12 + B11) θ∗1
2 + 1/4 τ∗

1 B14 − 1/2 B13

)
cos (τ∗

1 θ∗1)

+
(
(E11 − 1/4 τ2E12) θ∗1

2 + 1/4 E14τ2 − 1/2 E13

)
cos (τ2θ∗1)
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+
(
(−1/4 F12τ3 + F11) θ∗1

2 + 1/4 F14τ3 − 1/2 F13

)
cos (τ3θ∗1)− 1/2 A13 + A11θ∗1

2 ) .

Thus, if Υ41Υ43 + Υ42Υ44 ̸= 0, then Re[dλ/dτ1]
−1
τ1=τ∗1

̸= 0 and thus we have the Theorem 3(d)

Proof of Theorem 3(e) τ1 ∈ (0, τ10), τ2 > 0, and τ3 ∈ (0, τ30)
Putting λ = iθ∗2 into Eq. (8), we have N51(θ

∗
2) cos τ2θ∗2 + N52(θ

∗
2) sin τ2θ∗2 = N53(θ

∗
2), and N52(θ

∗
2) cos τ2θ∗2 −

N51(θ
∗
2) sin τ2θ∗2 = N54(θ

∗
2) with

N51(θ
∗
2) =

(
−L11θ∗2

2 − L13

)
cos (θ∗2 (τ1 + τ3)) + L12θ∗2 sin (θ∗2 (τ1 + τ3)) +

(
−G12θ∗2

2 + G14

)
cos (θ∗2 τ1)

+
(
−K12θ∗2

2 + K14

)
cos (θ∗2 τ3) +

(
−G11θ∗2

3 + G13θ∗2

)
sin (θ∗2 τ1) + θ∗2

(
−K11θ∗2

2 + K13

)
sin (θ∗2 τ3)

+ E11θ∗2
4 − E13θ∗2

2 + E15,

N52(θ
∗
2) =

(
L11θ∗2

2 − L13

)
sin (θ∗2 (τ1 + τ3))− L12θ∗2 cos (θ∗2 (τ1 + τ3)) +

(
−G11θ∗2

3 + G13θ∗2

)
cos (θ∗2 τ1)

+
(
−K11θ∗2

3 + K13θ∗2

)
cos (θ∗2 τ3) +

(
G12θ∗2

2 − G14

)
sin (θ∗2 τ1) +

(
K12θ∗2

2 − K14

)
sin (θ∗2 τ3)

− E12θ∗2
3 + E14θ∗2 ,

N53(θ
∗
2) =

(
H12θ∗2

2 − H14

)
cos (θ∗2 (τ1 + τ3)) + θ∗2

(
H11θ∗2

2 − H13

)
sin (θ∗2 (τ1 + τ3))

+
(
−B11θ∗2

4 + B13θ∗2
2 − B15

)
cos (θ∗2 τ1) +

(
−F11θ∗2

4 + F13θ∗2
2 − F15

)
cos (θ2τ3)

+ θ∗2

(
B12θ∗2

2 − B14

)
sin (θ∗2 τ1) + θ∗2

(
F12θ∗2

2 − F14

)
sin (θ∗2 τ3)− A11θ∗2

4 + A13θ∗2
2 − A15,

N54(θ
∗
2) = θ2 (H11θ2 − H13) cos (θ2 (τ1 + τ3)) +

(
−H12θ2

2 + H14

)
sin (θ2 (τ1 + τ3))

+ sin (θ2τ1)
(

B11θ2
4 − B13θ2

2 + B15

)
+ sin (θ2τ3)

(
F11θ2

4 − F13θ2
2 + F15

)
+ θ2

((
B12θ2

2 − B14

)
cos (θ2τ1) +

(
F12θ2

2 − F14

)
cos (θ2τ3)− θ2

4 + A12θ2
2 − A14

)
.

The characteristic equation with respect to θ∗2 is N2
53(θ

∗
2) + N2

54(θ
∗
2)− N2

51(θ
∗
2)− N2

52(θ
∗
2) = 0. If θ∗21, θ∗22,. . . ,θ∗2n are the

finite positive roots of the above equation. Then for θ∗2i, we have τ∗
2i =

1
θ∗2i

arccos
[

N51(θ
∗
2 )N53(θ

∗
2 )+N52(θ

∗
2 )N54(θ

∗
2 )

N2
51(θ

∗
2 )+N2

52(θ
∗
2 )

+ 2rπ

]
.

i = 1 . . . , n; r = 0, 1, 2 . . . . Let τ∗
2 = min

{
τ∗

2i
}

, i = 1, 2, . . . , n. Hence, for τ2 = τ∗
2 , from Eq. (8), we have

Re
[

dλ
dτ2

]−1

τ2=τ∗2
= Υ51Υ53+Υ52Υ54

Υ2
51+Υ2

52
, where

Υ51 = θ∗2 sin (θ∗2 τ∗
2 )

(
E11θ∗2

4 − E13θ∗2
2 + E15

)
− θ∗2 cos (θ∗2 τ∗

2 )
(
−E12θ∗2

3 + E14θ∗2

)
+ θ∗2 sin (θ∗2 τ1 + θ∗2 τ∗

2 )
(
−G12θ∗2

2 + G14

)
− θ∗2 cos (θ∗2 τ1 + θ∗2 τ∗

2 )
(
−G11θ∗2

3 + G13θ∗2

)
+ θ∗2 sin (θ∗2 τ∗

2 + θ∗2 τ3)
(
−K12θ∗2

2 + K14

)
− θ∗2 cos (θ∗2 τ∗

2 + θ∗2 τ3)
(
−K11θ∗2

3 + K13θ∗2

)
+ θ∗2 sin (θ∗2 τ1 + θ∗2 τ∗

2 + θ∗2 τ3)
(
−L11θ∗2

2 + L13

)
− θ∗2

2 cos (θ∗2 τ1 + θ∗2 τ∗
2 + θ∗2 τ3) L12,

Υ52 = θ∗2 cos (θ∗2 τ∗
2 )

(
E11θ∗2

4 − E13θ∗2
2 + E15

)
+ θ∗2 sin (θ∗2 τ∗

2 )
(
−E12θ∗2

3 + E14θ∗2

)
+ θ∗2 cos (θ∗2 τ1 + θ∗2 τ∗

2 )
(
−G12θ∗2

2 + G14

)
+ θ∗2 sin (θ∗2 τ1 + θ∗2 τ∗

2 )
(
−G11θ∗2

3 + G13θ∗2

)
+ θ∗2 cos (θ∗2 τ∗

2 + θ∗2 τ3)
(
−K12θ∗2

2 + K14

)
+ θ∗2 sin (θ∗2 τ∗

2 + θ∗2 τ3)
(
−K11θ∗2

3 + K13θ∗2

)
+ θ∗2 cos (θ∗2 τ1 + θ∗2 τ∗

2 + θ∗2 τ3)
(
−L11θ∗2

2 + L13

)
+ θ∗2

2 sin (θ∗2 τ1 + θ∗2 τ∗
2 + θ∗2 τ3) L12,

Υ53 =
(

L11 (τ1 + τ∗
2 + τ3) θ∗2

2 − L13τ1 − L13τ∗
2 − L13τ3 + L12

)
cos (θ∗2 (τ1 + τ∗

2 + τ3))

+ 2 (−1/2 L12τ1 − 1/2 L12τ∗
2 − 1/2 L12τ3 + L11) θ∗2 sin (θ∗2 (τ1 + τ∗

2 + τ3))

+
(
(G12τ1 + G12τ∗

2 − 3 G11) θ∗2
2 − G14τ1 − G14τ∗

2 + G13

)
cos (θ∗2 (τ1 + τ∗

2 ))

+
(
(H12τ1 + H12τ3 − 3 H11) θ∗2

2 − H14τ1 − H14τ3 + H13

)
cos (θ∗2 (τ1 + τ3))

+
(
(K12τ∗

2 + K12τ3 − 3 K11) θ∗2
2 − K14τ∗

2 − K14τ3 + K13

)
cos (θ∗2 (τ

∗
2 + τ3))

+
(

G11 (τ1 + τ∗
2 ) θ∗2

2 − G13τ1 − G13τ∗
2 + 2 G12

)
θ∗2 sin (θ∗2 (τ1 + τ∗

2 ))
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+
(

H11 (τ1 + τ3) θ∗2
2 − H13τ1 − H13τ3 + 2 H12

)
θ∗2 sin (θ∗2 (τ1 + τ3))

+ θ∗2

(
K11 (τ

∗
2 + τ3) θ∗2

2 − K13τ∗
2 − K13τ3 + 2 K12

)
sin (θ∗2 (τ

∗
2 + τ3))

+
(
−B11τ1θ∗2

4 + (B13τ1 − 3 B12) θ∗2
2 − B15τ1 + B14

)
cos (θ∗2 τ1)

+
(
−E11τ∗

2 θ∗2
4 + (E13τ∗

2 − 3 E12) θ∗2
2 − E15τ∗

2 + E14

)
cos (θ∗2 τ∗

2 )

+
(
−F11τ3θ∗2

4 + (F13τ3 − 3 F12) θ∗2
2 − F15τ3 + F14

)
cos (θ∗2 τ3)

− 4
(
(−1/4 τ1B12 + B11) θ∗2

2 + 1/4 τ1B14 − 1/2 B13

)
θ∗2 sin (θ∗2 τ1)

+ 2
(
(1/2 τ∗

2 E12 − 2 E11) θ∗2
2 − 1/2 E14τ∗

2 + E13

)
θ∗2 sin (θ∗2 τ∗

2 )

− 4 θ∗2

(
(−1/4 F12τ3 + F11) θ∗2

2 + 1/4 F14τ3 − 1/2 F13

)
sin (θ∗2 τ3) + 5 θ∗2

4 − 3 A12θ∗2
2 + A14,

Υ54 =
(
−L11 (τ1 + τ∗

2 + τ3) θ∗2
2 + L13τ1 + L13τ∗

2 + L13τ3 − L12

)
sin (θ∗2 (τ1 + τ∗

2 + τ3))

+ 2 θ∗2 (−1/2 L12τ1 − 1/2 L12τ∗
2 − 1/2 L12τ3 + L11) cos (θ∗2 (τ1 + τ∗

2 + τ3))

+
(
(−G12τ1 − G12τ∗

2 + 3 G11) θ∗2
2 + G14τ1 + G14τ∗

2 − G13

)
sin (θ∗2 (τ1 + τ∗

2 ))

+
(
(−H12τ1 − H12τ3 + 3 H11) θ∗2

2 + H14τ1 + H14τ3 − H13

)
sin (θ∗2 (τ1 + τ3))

+
(
(−K12τ∗

2 − K12τ3 + 3 K11) θ∗2
2 + K14τ∗

2 + K14τ3 − K13

)
sin (θ∗2 (τ

∗
2 + τ3))

+ θ∗2

(
G11 (τ1 + τ∗

2 ) θ∗2
2 − G13τ1 − G13τ∗

2 + 2 G12

)
cos (θ∗2 (τ1 + τ∗

2 ))

+
(

H11 (τ1 + τ3) θ∗2
2 − H13τ1 − H13τ3 + 2 H12

)
θ∗2 cos (θ∗2 (τ1 + τ3))

+ θ∗2

(
K11 (τ

∗
2 + τ3) θ∗2

2 − K13τ∗
2 − K13τ3 + 2 K12

)
cos (θ∗2 (τ

∗
2 + τ3))

+
(

B11τ1θ∗2
4 + (−B13τ1 + 3 B12) θ∗2

2 + B15τ1 − B14

)
sin (θ∗2 τ1)

+
(

E11τ∗
2 θ∗2

4 + (−E13τ∗
2 + 3 E12) θ∗2

2 + E15τ∗
2 − E14

)
sin (θ∗2 τ∗

2 )

+
(

F11τ3θ∗2
4 + (−F13τ3 + 3 F12) θ∗2

2 + F15τ3 − F14

)
sin (θ∗2 τ3)

− 4 θ∗2 (
(
(−1/4 τ1B12 + B11) θ∗2

2 + 1/4 τ1B14 − 1/2 B13

)
cos (θ∗2 τ1)

+
(
(E11 − 1/4 τ∗

2 E12) θ∗2
2 + 1/4 E14τ∗

2 − 1/2 E13

)
cos (θ∗2 τ∗

2 )

+
(
(−1/4 F12τ3 + F11) θ∗2

2 + 1/4 F14τ3 − 1/2 F13

)
cos (θ∗2 τ3)− 1/2 A13 + A11θ∗2

2 ) .

Similar to case 4, it can be concluded that if Υ51Υ53 + Υ52Υ54 ̸= 0 then, Re [dλ/dτ2]
−1
τ2=τ∗2

̸= 0. Thus, we have the
Theorem 3(e).

Proof of Theorem 3(f) τ1 ∈ (0, τ10), τ2 ∈ (0, τ20) and τ3 > 0: Let us assume λ = iθ∗3 be the root of Eq. (8),
then we have N61(θ

∗
3) cos τ3θ∗3 + N62(θ

∗
3) sin τ3θ∗3 = N63(θ

∗
3) and N62(θ

∗
3) cos τ3θ∗3 − N61(θ

∗
3) sin τ3θ∗3 = N64(θ

∗
3)

where

N61(θ
∗
3) =

(
−L11θ∗3

2 + L13

)
cos (θ∗3 (τ1 + τ2)) + L12θ∗3 sin (θ∗3 (τ1 + τ2)) +

(
−H12θ∗3

2 + H14

)
cos (θ∗3 τ1)

+
(
−K12θ∗3

2 + K14

)
cos (θ∗3 τ2) +

(
−H11θ∗3

3 + H13θ∗3

)
sin (θ∗3 τ1) + θ∗3

(
−K11θ∗3

2 + K13

)
sin (θ∗3 τ2)

+ F11θ∗3
4 − F13θ∗3

2 + F15,

N62(θ
∗
3) =

(
L11θ∗3

2 − L13

)
sin (θ∗3 (τ1 + τ2)) + L12θ∗3 cos (θ∗3 (τ1 + τ2)) +

(
−H11θ∗3

3 + H13θ∗3

)
cos (θ∗3 τ1)

+
(
−K11θ∗3

3 + K13θ∗3

)
cos (θ∗3 τ2) +

(
H12θ∗3

2 − H14

)
sin (θ∗3 τ1) +

(
K12θ∗3

2 − K14

)
sin (θ∗3 τ2)− F12θ∗3

3 + F14θ∗3 ,

N63(θ
∗
3) =

(
G12θ∗3

2 − G14

)
cos (θ∗3 (τ1 + τ2)) + θ∗3

(
G11θ∗3

2 − G13

)
sin (θ∗3 (τ1 + τ2)) +

(
−B11θ∗3

4 + B13θ∗3
2 − B15

)
cos (θ∗3 τ1)

+
(
−E11θ∗3

4 + E13θ∗3
2 − E15

)
cos (θ∗3 τ2) + θ∗3

(
B12θ∗3

2 − B14

)
sin (θ∗3 τ1) + θ∗3

(
E12θ∗3

2 − E14

)
sin (θ∗3 τ2)

− A11θ∗3
4 + A13θ∗3

2 − A15,
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N64(θ
∗
3) = θ∗3

(
G11θ∗3

2 − G13

)
cos (θ∗3 (τ1 + τ2)) +

(
−G12θ∗3

2 + G14

)
sin (θ∗3 (τ1 + τ2)) + sin (θ∗3 τ1)

(
B11θ∗3

4 − B13θ∗3
2 + B15

)
+ sin (θ∗3 τ2)

(
E11θ∗3

4 − E13θ∗3
2 + E15

)
+ θ∗3 (

(
B12θ∗3

2 − B14

)
cos (θ∗3 τ1) +

(
E12θ∗3

2 − E14

)
cos (θ∗3 τ2)

− θ∗3
4 + A12θ∗3

2 − A14 ) .

Then, we obtain N2
63(θ

∗
3) + N2

64(θ
∗
3)− N2

61(θ
∗
3)− N2

62(θ
∗
3) = 0. Similar to case e, we suppose that θ∗31, θ∗32,. . . θ∗3n are the

finite positive roots of the above equation. Then for θ∗3i, we have τ∗
3i =

1
θ∗3i

arccos
[

N61(θ
∗
3 )N63(θ

∗
3 )+N62(θ

∗
3 )N64(θ

∗
3 )

N2
61(θ

∗
3 )+N2

62(θ
∗
3 )

+ 2rπ

]
.

i = 1, . . . , n; r = 0, 1, 2 . . . . Proceeding in the same manner as the above case, we suppose that τ∗
3 = min

{
τ∗

3i
}

,

i = 1, 2, . . . , n. Hence, for τ3 = τ∗
3 , from Eq. (8), we have Re

[
dλ
dτ3

]−1

τ3=τ∗3
= Υ61Υ63+Υ62Υ64

Υ2
61+Υ2

62
where

Υ61 = θ∗3 (
(
−L11θ∗3

2 + L13

)
sin (θ∗3 (τ1 + τ2 + τ∗

3 ))− cos (θ∗3 (τ1 + τ2 + τ∗
3 )) L12θ∗3 + θ∗3

(
θ∗3

2 H11 − H13

)
cos (θ3 (τ1 + τ∗

3 ))

+ θ∗3

(
K11θ∗3

2 − K13

)
cos (θ∗3 (τ2 + τ∗

3 )) +
(
−H12θ∗3

2 + H14

)
sin (θ∗3 (τ1 + τ∗

3 )) +
(
−K12θ∗3

2 + K14

)
sin (θ∗3 (τ2 + τ∗

3 ))

+ sin (θ∗3 τ∗
3 )

(
F11θ∗3

4 − F13θ∗3
2 + F15

)
+ θ∗3 cos (θ∗3 τ∗

3 )
(

θ∗3
2F12 − F14

)
) ,

Υ62 = (
(
−L11θ∗3

2 + L13

)
cos (θ∗3 (τ1 + τ2 + τ∗

3 )) + sin (θ∗3 (τ1 + τ2 + τ∗
3 )) L12θ∗3 +

(
−H12θ∗3

2 + H14

)
cos (θ∗3 (τ1 + τ∗

3 ))

+
(
−K12θ∗3

2 + K14

)
cos (θ∗3 (τ2 + τ∗

3 )) +
(
−H11θ∗3

3 + H13θ∗3

)
sin (θ∗3 (τ1 + τ∗

3 )) +
(
−K11θ∗3

3 + K13θ∗3

)
sin (θ∗3 (τ2 + τ∗

3 ))

+ cos (θ∗3 τ∗
3 )

(
F11θ∗3

4 − F13θ∗3
2 + F15

)
− θ∗3 sin (θ∗3 τ∗

3 )
(

θ∗3
2F12 − F14

)
) θ∗3 ,

Υ63 =
(

L11 (τ1 + τ2 + τ∗
3 ) θ∗3

2 − L13τ1 − L13τ2 − L13τ∗
3 + L12

)
cos (θ∗3 (τ1 + τ2 + τ∗

3 ))

+ 2 θ∗3 (−1/2 L12τ1 − 1/2 L12τ2 − 1/2 L12τ∗
3 + L11) sin (θ∗3 (τ1 + τ2 + τ∗

3 ))

+
(
(G12τ1 + G12τ2 − 3 G11) θ∗3

2 − G14τ1 − G14τ2 + G13

)
cos (θ∗3 (τ1 + τ2))

+
(
(H12τ1 + H12τ∗

3 − 3 H11) θ∗3
2 − H14τ1 − H14τ∗

3 + H13

)
cos (θ∗3 (τ1 + τ∗

3 ))

+
(
(K12τ2 + K12τ∗

3 − 3 K11) θ∗3
2 − K14τ2 − K14τ∗

3 + K13

)
cos (θ∗3 (τ2 + τ∗

3 ))

+ θ∗3

(
G11 (τ1 + τ2) θ∗3

2 − G13τ1 − G13τ2 + 2 G12

)
sin (θ∗3 (τ1 + τ2))

+ θ∗3

(
H11 (τ1 + τ∗

3 ) θ∗3
2 − H13τ1 − H13τ∗

3 + 2 H12

)
sin (θ∗3 (τ1 + τ∗

3 ))

+ θ∗3

(
K11 (τ2 + τ∗

3 ) θ∗3
2 − K13τ2 − K13τ∗

3 + 2 K12

)
sin (θ∗3 (τ2 + τ∗

3 ))

+
(
−B11τ1θ∗3

4 + (B13τ1 − 3 B12) θ∗3
2 − B15τ1 + B14

)
cos (θ∗3 τ1)

+
(
−E11τ2θ∗3

4 + (E13τ2 − 3 E12) θ∗3
2 − E15τ2 + E14

)
cos (θ∗3 τ2)

+
(
−F11τ∗

3 θ∗3
4 + (F13τ∗

3 − 3 F12) θ∗3
2 − F15τ∗

3 + F14

)
cos (θ∗3 τ∗

3 )

− 4
(
(−1/4 τ1B12 + B11) θ∗3

2 + 1/4 τ1B14 − 1/2 B13

)
θ∗3 sin (θ∗3 τ1)

+ 2
(
(1/2 τ2E12 − 2 E11) θ∗3

2 − 1/2 E14τ2 + E13

)
θ∗3 sin (θ∗3 τ2)

− 4 θ∗3

(
(−1/4 F12τ∗

3 + F11) θ∗3
2 + 1/4 F14τ3 − 1/2 F13

)
sin (θ∗3 τ∗

3 ) + 5 θ∗3
4 − 3 A12θ∗3

2 + A14,

Υ64 =
(
−L11 (τ1 + τ2 + τ∗

3 ) θ∗3
2 + L13τ1 + L13τ2 + L13τ∗

3 − L12

)
sin (θ∗3 (τ1 + τ2 + τ∗

3 ))

+ 2 θ∗3 (−1/2 L12τ1 − 1/2 L12τ2 − 1/2 L12τ∗
3 + L11) cos (θ∗3 (τ1 + τ2 + τ∗

3 ))

+
(
(−G12τ1 − G12τ2 + 3 G11) θ∗3

2 + G14τ1 + G14τ2 − G13

)
sin (θ∗3 (τ1 + τ2))

+
(
(−H12τ1 − H12τ∗

3 + 3 H11) θ∗3
2 + H14τ1 + H14τ∗

3 − H13

)
sin (θ∗3 (τ1 + τ∗

3 ))

+
(
(−K12τ2 − K12τ∗

3 + 3 K11) θ∗3
2 + K14τ2 + K14τ∗

3 − K13

)
sin (θ∗3 (τ2 + τ∗

3 ))

+ θ∗3

(
G11 (τ1 + τ2) θ∗3

2 − G13τ1 − G13τ2 + 2 G12

)
cos (θ∗3 (τ1 + τ2))



Krithika and Tamilalagan | 303

+ θ∗3

(
H11 (τ1 + τ∗

3 ) θ∗3
2 − H13τ1 − H13τ∗

3 + 2 H12

)
cos (θ∗3 (τ1 + τ∗

3 ))

+ θ∗3

(
K11 (τ2 + τ∗

3 ) θ∗3
2 − K13τ2 − K13τ∗

3 + 2 K12

)
cos (θ∗3 (τ2 + τ∗

3 ))

+
(

B11τ1θ∗3
4 + (−B13τ1 + 3 B12) θ∗3

2 + B15τ1 − B14

)
sin (θ∗3 τ1)

+
(

E11τ2θ∗3
4 + (−E13τ2 + 3 E12) θ∗3

2 + E15τ2 − E14

)
sin (θ∗3 τ2)

+
(

F11τ∗
3 θ∗3

4 + (−F13τ∗
3 + 3 F12) θ∗3

2 + F15τ∗
3 − F14

)
sin (θ∗3 τ∗

3 )

− 4 θ∗3 (
(
(−1/4 τ1B12 + B11) θ∗3

2 + 1/4 τ1B14 − 1/2 B13

)
cos (θ∗3 τ1)

+
(
(E11 − 1/4 τ2E12) θ∗3

2 + 1/4 E14τ2 − 1/2 E13

)
cos (θ∗3 τ2)

+
(
(−1/4 F12τ∗

3 + F11) θ∗3
2 + 1/4 F14τ∗

3 − 1/2 F13

)
cos (θ∗3 τ∗

3 )− 1/2 A13 + A11θ∗3
2 ) .

Clearly, when Υ61Υ63 + Υ62Υ64 ̸= 0 then, Re[dλ/dτ3]
−1
τ3=τ∗3

̸= 0. Thus, we have the Theorem 3(f).
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