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Abstract 

Immune checkpoints are regulators of the immune system that maintain immune 

homeostasis and prevent autoimmunity. Cancer cells often manipulate immune checkpoint 

mechanisms to escape anti-tumor immune response by overexpressing the immune checkpoint 

ligands. Thus, the interactions between the immune checkpoint receptors and ligands attracted 

attention and were proven to be effective targets in treating cancer. In this study, combining 

several computational approaches, we discovered small molecules that effectively bind to the 

ligand Programmed Cell Death Ligand 1 (PD-L1) and have the potential to hamper its interaction 

with the negative immune checkpoint receptor Programmed Cell Death Protein-1 (PD-1). 

Different pharmacophore models were constructed using triple and quadruple combinations of 

the interface residues on PD-1, which were used later for scanning the ZINC15 database. 12714 

small molecules were retrieved and virtually screened using molecular docking calculations. The 

complexes of promising small molecules with PD-L1 were further evaluated using energetic and 

structural analyses. Our results suggest that the three small molecules ZINC21075815, 

ZINC70692276, and ZINC64031730 retrieved from the ZINC15 database establish stable and 

energetically favorable interactions with PD-L1 at the hot region consisting of the residues Tyr 
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56, Glu 58, Arg 113, Met 115, and Tyr 123. These molecules can be used as a starting point to 

develop more effective and selective anti-PD-1/PD-L1 inhibitors. 

Keywords: Inhibitory T cell receptors, immunomodulation; PD-1 receptor; computer-aided 

drug design; Molecular docking; Molecular dynamic simulations. 

Moleküler Modelleme Yaklaşımları Kullanılarak Potansiyel PD-1 ve PD-L1 Etkileşim 

İnhibitörlerinin Keşfi  

Öz 

Bağışıklık kontrol noktaları, bağışıklık homeostazını sürdüren ve otoimmüniteyi önleyen 

bağışıklık sistemi düzenleyicileridir. Kanser hücreleri, anti-tümör bağışıklık yanıtından kaçmak 

için sıklıkla bağışıklık kontrol noktası ligandlarını aşırı ifade ederek bağışıklık kontrol noktası 

mekanizmalarını manipüle eder. Bu nedenle, bağışıklık kontrol noktası reseptörleri ve ligandları 

arasındaki etkileşimler araştırmacıların dikkatini çekmiş ve bu etkileşimin kanser tedavisinde 

etkili hedefler olduğu gösterilmiştir. Bu çalışmanın temel amacı, çeşitli hesaplamalı yaklaşımları 

birleştirilerek, ligand PD-L1'e etkili bir şekilde bağlanan ve negatif bağışıklık kontrol noktası 

reseptörü PD-1 ile etkileşimini engelleme potansiyeli taşıyan küçük moleküller keşfetmektir. Bu 

amaç doğrultusunda PD1/PD-L1 ara yüzünde PD-1 üzerindeki amino asitlerin üçlü ve dörtlü 

kombinasyonları kullanılarak farklı farmakofor modelleri oluşturuldu. Farmakofor modelleri 

kullanılarak ZINC15 veri tabanı tarandı. ZINC15 veri tabanından indirilen 12714 küçük molekül 

moleküller için moleküler kenetleme çalışmaları gerçekleştirildi. Moleküler kenetleme 

çalışmalarında öne çıkan küçük moleküllerin PD-L1 ile komplekslerinin moleküler dinamik 

simülasyonları gerçekleştirildi ve bu kompleksler enerjik ve yapısal analizler kullanılarak 

detaylıca incelendi. Bulgularımız, ZINC15 veri tabanından alınan ZINC21075815, 

ZINC70692276 ve ZINC64031730 adlı üç küçük molekülün, Tyr 56, Glu 58, Arg 113, Met 115 

ve Tyr 123 amino asitlerinden oluşan sıcak bölgede PD-L1 ile kararlı ve enerjik açıdan uygun 

etkileşimler kurduğunu göstermektedir. Bu moleküller, daha etkili ve seçici anti-PD-1/PD-L1 

inhibitörleri geliştirmek için bir başlangıç noktası olarak kullanılabilir. 

Anahtar Kelimeler: İnhibitör T hücre reseptörleri; İmmünomodülasyon; PD-1 reseptörü; 

Bilgisayar destekli ilaç tasarımı; Moleküler kenetleme; Moleküler dinamik simülasyonları. 

1. Introduction 

The immune system's role in controlling tumor growth and spread is now well established. 

However, tumor cells may evolve mechanisms to escape immune surveillance and suppress 

immune response. One of the frequently used mechanisms by tumor cells is the exploitation of 
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co-inhibitory immune checkpoints via overexpression of immune checkpoint ligands such as 

PDL-1[1], CD155[2], and CD112[3]. Revealing how immune checkpoints work has paved the 

way for new strategies to fight against cancer. The primary focus in the rapidly emerging field of 

cancer immunotherapy is to control and redirect the host immune response to recognize and 

eliminate cancer cells. Developing immune checkpoint inhibitors, mainly antibodies, has 

provided a remarkable advancement in this field. Those inhibitors exhibit their effects by 

interrupting co-inhibitory signals and reactivating antitumor immune responses. PD-1/PD-L1 and 

CTLA-4 inhibitors have shown promising effects among the immune checkpoint inhibitors.  

Some have been approved for treating different types of cancers, while clinical trials for others 

are ongoing [4–6]. PD-1 (CD279), one of the well-studied immune checkpoint receptors, delivers 

a co-inhibitory signal when it binds to one of its ligands, PD-L1 and PD-L2. Several monoclonal 

antibodies targeting PD-1/PD-L1 interaction have been approved for monotherapy or 

combinatorial therapy with other therapeutic agents, such as other immune checkpoint inhibitors, 

radiation, and chemotherapy against different cancer types [7, 8].  

Despite the success of monoclonal antibodies in immunotherapy against cancer, some of 

their disadvantages have led researchers to seek small-molecule or peptide alternatives [7, 9]. The 

production cost of monoclonal antibodies remains exceptionally high. While their high molecular 

weight prevents them from diffusing into the tumor, their high affinity for the target keeps them 

on the outer edge of the tumor. Additionally, their unintended interactions with various cell 

surface receptors prolong their retention in circulation and delay their arrival at the target site or 

excretion from the body [10, 11]. When administered as a monotherapy, monoclonal antibodies 

reported common side effects are fatigue, rash, diarrhea, colitis, endocrine and hepatic toxicities, 

pneumonitis, neurological syndromes, and ocular toxicities [12]. For the anti-PD-1 monoclonal 

antibodies, severe and sometimes fatal lung-related autoimmune adverse effects have been 

reported [13, 14]. This is partly due to PD-1 inhibition simultaneously disrupting the binding of 

both ligands, PD-L1 and PD-L2, which play an essential role in maintaining immune homeostasis 

in the lung. Targeting PD-L1 has some advantages over targeting PD-1[15]. When PD-L1 is 

targeted, PD-L2 remains active, reducing the risk of developing severe inflammatory toxicity in 

organs such as the lungs [16]. Moreover, targeting PD-L1 also disrupts the interaction of PD-L1 

with B7-1, the function of which is to inhibit T-cell activation and cytokine production [17, 18]. 

Small molecules have numerous key advantages, such as being cheap, being administered 

orally, having low immunogenic potential, and kinetic advantages over significant antibodies 

[19]. However, the discovery process for these molecules faces several difficulties, especially for 

protein-protein interaction inhibitors [20]. This is due to the lack of natural small-molecule 
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binders that can be used as starting points, the relatively large surface area buried by both protein 

partners, the flatness of the interfaces, and the absence of narrow, deep cavities at the interfaces. 

Fortunately, we also know that the small-molecule effectors do not need to cover the entire 

interface due to the small number of interface residues that contribute substantially to binding 

affinity [21]. Yet, the protein-protein interaction modulators have been reported to be larger on 

average than classical drug molecules and tend to be more hydrophobic and rigid. They have 

fewer hydrogen bonding groups than classical drug-like molecules [22]. PD-1/PD-L1 interaction 

forms a typical example of protein-protein interfaces. Zak et al. [23] reported that the relatively 

flat interface involves polar and nonpolar interactions and has a moderately large, buried surface 

area. Their structural analysis showed three major hotspots on PD-L1 that can be important for 

drug design. The first hotspot is a pocket of predominantly hydrophobic character that 

accommodates Ile 134 of PD-1. The second hotspot is a neighbor of the first one and 

accommodates Ile 126 of PD-1. Finally, the third hot spot is an extended groove where the PD-1 

residues Tyr 68, Gln 75, and Thr 76 of PD-1 bind.  

In this study, we combined several computational approaches to discover new small-

molecule candidates that target the PD-1/PD-L1 interaction. We scanned the ZINC15 database 

and retrieved 12714 small molecules that were further evaluated using molecular docking and 

molecular dynamic (MD) simulations. Detailed energetic and structural analyses suggested three 

molecules that form stable and energetically favorable interactions with PD-L1 at the region 

consisting of the residues Tyr 56, Glu 58, Arg 113, Met 115, and Tyr 123. 

2. Materials and Methods 

2.1. Generation of Small Molecule Set 

The atomic coordinates of the PD-1/PD-L1 complex were retrieved from the PDB databank 

with the PDB ID 4ZQK. PD-1 (chain B) was used to generate structure-based pharmacophore 

models, whereas PD-L1 (chain A) was used as the target protein in docking calculations.  

All possible triple combinations of the interfacial residues were generated. Then, the triple 

combinations with a distance larger than 7 Å between any of their two residues were eliminated, 

resulting in 63 triple combinations in total. These triple residue combinations were used to 

construct pharmacophores, which were used later to screen the ZINC15 database [24]. 12714 

small molecules were retrieved from the ZINC15 database using these pharmacophores. The 

pharmacophore models that resulted in a vast number of hits in the ZINC15 database were 

reconstructed by including another residue within 7 Å distance to the original residues. Thus, 8 

more pharmacophore models were constructed using quadruple combinations of interface 
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residues. PocketQuery was combined with ZINCPharmer to construct pharmacophore models and 

search the ZINC15 database [25]. 

2.2. Molecular Docking Calculations 

We carried out two sets of molecular docking simulations using the molecular docking 

software AutoDock 4.2 [26]. In the first set of calculations, we docked 12714 small molecules to 

the target protein PD-L1 using the standard Lamarckian genetic algorithm protocol, where the 

size of the initial population and the maximum number of energy evaluations were set to 300 and 

5 million, respectively. Afterward, we ranked the small molecules based on their free binding 

energies to PD-L1. The top 600 molecules were selected and evaluated further in the second set 

of docking calculations. In the second set of calculations, the maximum number of energy 

evaluations and the number of independent runs were increased gradually. Here, we aimed to 

generate a single densely populated cluster with low energy to achieve convergence in the results. 

The results are based on 100 independent runs, with a maximum of 30 million energy evaluations 

set for each run. 

The target protein PD-L1 and the small molecules were prepared for docking using the 

AutoDock Tools version 1.5.6 [26]. The torsions of the small molecules were determined by 

employing the AutoTors function of AutoDock Tools. Amide and ring torsions were kept rigid, 

while all other torsions were treated as flexible. Gasteiger atomic charges were assigned to both 

the protein and the small molecules. The non-polar hydrogen atoms were treated implicitly. Grid 

maps were generated with 0.375Å spacing by the AutoGrid program. The grid dimensions were 

chosen to ensure that all of the residues on PD-L1 at the PD-1/PD-L1 interface were included. 

Thus, the grid dimensions were 60Å x 80Å x 60Å. The initial position of the ligand was set 

randomly in both sets of docking calculations. 

We assumed that a docking calculation was converged when 20% of the 100 independent 

runs resulted in the same binding conformation. Subsequently, we ranked the molecules that fulfill 

the convergence criterion according to their binding free energies and selected the top 20 

molecules for further analysis. 

2.3. Parameterization of Small Molecules 

Topologies and parameters for the small molecules selected for molecular dynamic (MD) 

simulations were obtained using the Antechamber Python Parser Interface (ACPYPE) [27]. The 

spatial coordinates of each small molecule were obtained from the top-ranked conformation 

within the dominant cluster. The AM1-BCC charges were derived after the optimization of the 
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structure [28]. Force constants and equilibrium values for the bond lengths, angles, and dihedrals 

of the compounds were borrowed from the General Amber Force Field (GAFF) [29].  

2.4. Molecular Dynamics (MD) Simulations 

In this work, we performed 11 ns conventional MD simulations of 20 protein-ligand 

complexes solvated in explicit water, utilizing Gromacs version 5.1.2 [30]. For the MD simulation 

of each complex, we used the highest-ranking conformation within the dominant cluster derived 

from molecular docking runs as starting structures. The complex was inserted in a cubic box filled 

with TIP3P water molecules, and the whole system was neutralized by adding counterions. The 

Amber force field ff99sb-ildn [31] was utilized for modeling the interactions of protein and ions. 

The short-range non-bonded interactions were cut at 1.2 nm.  The electrostatic interactions were 

treated using the particle mesh Ewald method. A dispersion correction was implemented for 

pressure and energy, while periodic boundary conditions were enforced in every direction.  

Energy minimization was performed using a combination of algorithms, performing 1000 

steps of the conjugate gradient method, with one steepest descent step inserted every 10 steps. 

After minimization, we equilibrated each system by running 100 ps of molecular dynamics (MD) 

in the NVT ensemble. During equilibration, the non-hydrogen atoms of the protein were 

harmonically restrained with a force constant of 1000 kJ mol⁻¹ nm⁻². Solute and solvent atoms 

were independently coupled to temperature baths where the temperature was maintained at 300 

K with a coupling time of 0.5 ps. A leap-frog algorithm was used to integrate Newton’s motion 

equations, with a time step set to 2 fs. We used an NPT ensemble for the production phase without 

applying any restraints. The pressure was kept at 1 bar with the help of the Parrinello-Rahman 

barostat [32], setting the time constant to 0.5 ps.  To regulate the temperature, we employed the 

Nose-Hoover temperature coupling method [33, 34], setting the reference temperature to 300 K 

and the time constant to 0.5 ps. The generated trajectories were used for free energy calculations.  

2.5. Binding Free Energy Calculations 

The end-point MM(PB/GB)SA method integrates gas-phase and solvation energy 

contributions derived using an implicit solvent model for the ligand, receptor, and complex. 

Additionally, solute entropy contributions are included to refine the total free energy. 

In this work, we used the single trajectory approach to derive the binding free energies for 

the selected compounds. We treated the first 1 ns of each trajectory as the equilibrium phase. 

Before the free energy calculations, water molecules and ions were removed from the trajectory 

files. The computations were performed with the MMPBSA.py script of AmberTools18 [35]. For 
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the calculation of the gas phase free energy contributions, the Sander program in AmberTools18 

was utilized.  

The polar contribution of solvation-free energy was derived using the continuum solvent 

model GB-OBC introduced by Onufriev et al. [36]. The values 1.0, 0.8, and 4.85 were used for 

the parameters α, β, and γ. As Onufriev et al. [37] suggested, we utilized mbondi2 radii for 

effective Born radii. The LCPO method [38] was used to approximate the nonpolar components 

of solvation-free energy. Translational, rotational, and vibrational entropies were calculated 

individually and then summed to estimate the solute configurational entropy. 

We computed the translational and rotational entropies from their gas phase partition 

functions. Frequencies for the vibrational modes were derived by normal-mode analysis following 

energy minimization. The entropy was averaged using 200 equally spaced snapshots taken from 

the trajectory. 

To calculate the standard error of the binding free energy, we combined the standard errors 

for the effective energy from the MMGBSA method and the solute entropy using quadrature. The 

resulting standard error was then used to create a 95% Welch-Satterthwaite confidence interval 

for the binding free energy. 

As positive controls, two well-characterized PD-L1 dimerizers (BMS-202 [39] and A1D9R 

[40]) and two compounds that bind PD-L1 in its monomeric form (CA-170 [41] and the cyclic 

peptide, Peptide 104, [42]) were used. For BMS-202 (5J89, chain C) and A1D9R (9INU, chain 

A), docked models and available crystal structures were used as starting structures for the 

simulations. For Peptide 104, only the crystal structure (PDB ID: 7OUN) was used, as the number 

of torsions exceeded the maximum allowed for docking. In the case of CA-170, a representative 

docked conformation was obtained as explained in the Materials and Methods, as no crystal 

structure was available. 

3. Results and Discussion 

3.1. Generation of Small-molecule Dataset 

The interface residues of the PD-1/PD-L1 complex were retrieved from the PDBsum 

database. PD-1 and PD-L1 contribute to the interface with 17 residues, corresponding to an 

interface area of 1557 Å2 that forms 2 salt bridges, 11 hydrogen bonds, and many other non-

bonded close contacts. Using the interface residues on PD-1, 71 different pharmacophore models 

were constructed to be used later for scanning the ZINC15 database. Some of the pharmacophores 

did not match with any small molecules, while others resulted in millions of molecules. We 
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modified the pharmacophore models, which resulted in millions of molecules, including another 

nearby residue that fulfilled our distance criterion. More than 12000 small molecules were 

retrieved from the ZINC15 database using the pharmacophore models constructed from the PD-

1 interfacial residues. Based on the residue combinations used for pharmacophore modeling, the 

number of retrieved molecules ranges from 1 to 4367.  

3.2. Virtual Screening by Molecular Docking  

We selected the molecules based on their binding free energies in the first set of docking 

calculations. This calculation set resulted in 600 promising small molecules further evaluated in 

the second set of calculations, where a more extensive search was performed. The molecules were 

filtered based on the convergence criterion (see the Methods Section) and ranked according to 

their binding free energies. Table 1 lists the top 20 molecules together with some of their 

molecular properties and their binding free energies obtained from molecular docking. As seen in 

Table 1, the most promising 20 molecules have quite different molecular properties. Among those 

molecules, there exists one tripeptide (ZINC83308150) and 2 macrocycles (ZINC94303267 and 

ZINC94303139). The molecular weight, logP values, and the charges for those molecules range 

from 350.5 to 765, -6.9 to 7.1, and 0 to 5, respectively (see Table 1).  

We examined the docked conformations of the top 20 molecules and found that all of them, 

although they are of different molecular characters, were bound to the same site on PD-L1 (see 

Fig. 1b). This site covers two of the three hotspots reported before by Zak et al. (see Fig. 1a). 

Even though the grid box used in docking calculations spanned the whole interface on PD-L1, the 

site preference of the top 20 molecules suggests that the two hotspots (HS-1 and HS-2) may, in 

fact, be druggable. 

Table 1: The top 20 promising molecules came out of molecular docking calculations. The reported 

binding free energies were obtained from the second set of molecular docking calculations. The molecular 

weight and logP values were taken from the ZINC15 database.  

Molecule ID Molecular 

Weight 

LogP Charge Binding free energy 

(kcal/mol) 

ZINC77271764 539.6 -6.9 5 -17.3 

ZINC77271775 539.6 -6.9 5 -15.8 

ZINC67910521 666.8 1.8 0 -14.2 

ZINC83308150 426.6 -1.7 0 -12.1 

ZINC94303267 720.9 1.3 2  -11.9 

ZINC67903231 682.8 0.4 0 -11.7 

ZINC77257248 678.9 3.3 0 -11.4 

ZINC22048461 449.7 2.2 2 -11.2 

ZINC36047071 433.4 -1.8 0 -11.2 

ZINC39500620 412.5 1.2 1 -11.0 
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ZINC39362507 378.5 0.9 1 -10.8 

ZINC21075815 464.6 4.7 0 -10.6 

ZINC70692276 536.6 0.4 0 -10.5 

ZINC20832674 487.6 2.1 0 -10.5 

ZINC59676745 632.8 7.1 0 -10.4 

ZINC40173059 505.5 5.8 0 -10.3 

ZINC64031730 350.5 0.4 1 -10.3 

ZINC77257358 620.8 3.1 0 -10.2 

ZINC35456718 520.5 0.1 0 -10.1 

ZINC94303139 765 1.9 1  -10.1 

 

 

 
Figure 1: Site preference of the top 20 molecules on PD-L1.  a) The 3 hotspots (HS-1, HS-2, and HS-3) on 

PD-L1 reported by Zak et al. b) Docked top 20 molecules shown with stick representation. The PD-L1 

residues that contribute to the PD-1/PD-L1 interface are depicted in the yellow surface. 

 

3.3. Energetic and Structural Evaluation of PD-L1/Small-molecule Complexes 

We performed 11 ns MD simulations of 20 protein-ligand complexes derived from 

molecular docking calculations. For all analyses performed using MD simulation trajectories, the 

first 1 ns was treated as the equilibrium phase and discarded.  

Table 2 summarizes the energy contributions of each term obtained from MMGBSA and 

entropy calculations.  Free energy calculations put forward 6 molecules (ZINC77271775, 

ZINC67910521, ZINC67903231, ZINC21075815, ZINC70692276, and ZINC64031730) whose 

free energies of binding vary from -7.1 to -18.1 kcal/mol (see Table 2). Binding free energies for 

the other 14 molecules are higher than -5 kcal/mol, which indicates nonspecific binding or no 

binding. Therefore, we decided to further assess the complexes for the 6 promising small 

molecules using detailed structural analysis. 
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Table 2: MMGBSA and entropy contributions to the binding free energies for the top 20 molecules. VdW 

and EEL refer to the average Van der Waals and electrostatic interaction energies, respectively, while EGB 

and ESURF represent the average polar and nonpolar solvation-free energies. TOTAL indicates the 

MMGBSA effective energy, which includes the contribution of solute entropy. The values in parentheses 

represent the standard deviations, and the brackets indicate the 95% Welch-Satterthwaite confidence 

interval for the binding free energy. 

Molecule ID MMGBSA Entropy Binding free energy 

(kcal/mol) 
VdW EEL EGB ESURF TOTAL 

ZINC77271764 -16.1 -283.2 279.3 -3.1 -23.1 (3.9) -19.8 (3.6) -3.3 [-3.8, -2.8] 

ZINC77271775 -2.5 -392.0 360.8 -2.7 -36.4 (6.5) -18.3 (3.4) -18.1 [-18.7, -17.5] 

ZINC67910521 -32.9 -15.5 24.0 -4.1 -28.5 (3.9) -19.3 (3.0) -9.2 [-9.7, -8.7] 

ZINC83308150 -22.2 -10.2 21.9 -3.2 -13.7(4.1) -18.6 (3.9) 4.9 [4.3, 5.5] 

ZINC94303267 -12.6 -80.0 81.6 -2.2 -13.2 (5.4) -18.2 (3.1) 5.0 [4.5, 5.5] 

ZINC67903231 -34.5 -12.1 24.9 -4.5 -26.2 (3.8) -18.0 (3.4) -8.5 [-8.7, -7.7] 

ZINC77257248 -26.4 -16.6 22.1 -3.7 -24.6 (6.2) -20.1 (3.3) -4.5 [-5.0, -4.0] 

ZINC22048461 -12.1 -162.3 153.3 -2.5 -23.6 (6.5) -19.6 (3.7) -4.0 [-4.6, -3.4] 

ZINC36047071 -25.0 -36.7 45.1 -3.4 -20.0 (3.9) -19.5 (2.5) -0.5 [-0.9, -0.1] 

ZINC39500620 -25.5 -32.4 43.2 -3.1 -17.8 (3.8) -19.7 (2.9) 1.9 [1.5, 2.3] 

ZINC39362507 -16.4 -76.7 78.3 -2.2 -17.0 (4.3) -19.5 (3.4) 2.5 [2.0, 3.0] 

ZINC21075815 -25.1 -37.9 39.3 -3.8 -27.5 (4.0) -18.9 (3.0) -8.6 [-9.1, -8.1] 

ZINC70692276 -25.0 -40.4 43.9 -3.4 -24.9 (3.8) -17.8 (2.1) -7.1 [-7.4, -6.7] 

ZINC20832674 -30.8 -13.2 25.5 -4.4 -22.9 (4.9) -21.9 (4.2) -1.0 [-1.6, -0.4] 

ZINC59676745 -33.3 -8.9 21.4 -4.1 -24.9 (4.5) -22.6 (3.0) -2.3 [-2.8, -1.8] 

ZINC40173059 -26.7 -9.5 18.3 -3.1 -21.0 (3.4) -18.3 (2.2) -2.7 [-3.0, -2.4] 

ZINC64031730 -21.9 -75.0 72.6 -2.4 -26.7 (3.0) -18.8 (2.8) -7.9 [-8.3, -7.5] 

ZINC77257358 -34.2 -10.2 22.7 -4.5 -26.2 (4.2) -21.9 (3.2) -4.3 [-4.8, -3.8] 

ZINC35456718 -27.3 -20.3 29.3 -3.7 -22.0 (8.3) -21.9 (3.5) -0.1 [-0.7, 0.5] 

ZINC94303139 -22.0 -26.8 39.0 -3.1 -12.9 (2.9) -21.3 (3.5) 8.4 [7.9, 8.9] 

Peptide 104 -49.9 -144.0 158.2 -7.9 -43.6 (10.5) -31.0 (3.9) -12.6 [-13.4, -11.8] 

 

Table 3 depicts some structural properties of the complexes formed by PD-L1 and 6 small 

molecules. The root mean square deviation (RMSD) values were computed using the docked 
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conformations of the molecules as reference structures after aligning the protein conformations. 

While RMSD values show how the molecular conformations during the simulations differed from 

the docked conformations, the standard deviations show how stable the binding conformations 

were throughout the simulations (See Table 3). Fig. 2 shows how the RMSD values for the 

promising 6 small molecules change over time. The compounds ZINC77271775 and 

ZINC67910521 adopted conformations that were different from their docked conformations 

during the simulations. The compound ZINC67903231 did not adopt a stable conformation over 

time (see Fig. 2). However, ZINC21075815, ZINC70692276, and ZINC64031730 preserved 

conformations close to their docked conformations throughout the simulations (see Fig. 2). The 

average RMSD values were 2.4 Å, 2.5 Å, and 3.1 Å for ZINC21075815, ZINC70692276, and 

ZINC64031730, respectively (see Table 3). 

 
Figure 2: RMSD values for 6 promising molecules over time. The RMSD values were computed using the 

docked conformations of the molecules as reference structures after aligning the protein conformations. 

 

The buried solvent-accessible surface area (BSASA) was calculated as the sum of the 

solvent-accessible surface area of PD-L1 and the small molecule minus the solvent-accessible 

surface area of the complex. Note that we did not assume interface symmetry and did not divide 

the total buried solvent accessible surface area by two. Hence, the values in Table 3 involve the 

surface contributions of both binding partners. The smallest (ZINC64031730) and the largest 

(ZINC77271775) BSASA values given in Table 3 account for 43% and 63% of the solvent-

accessible surface area buried upon complexation of PD-1 and PD-L2 (1557 Å²). Except for 
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ZINC77271775, our small molecules tend to form fewer hydrogen-bonding contacts than average 

drug-like molecules. The average BSASA values and the number of hydrogen-bonding contacts 

the molecules formed are comparable to those previously reported for TIMBAL molecules [22]. 

Table 3: Structural properties of 6 promising molecules and their complexes. The docked conformations 

of the molecules served as the reference points for RMSD calculations following the alignment of the 

protein conformations. Values given in parentheses stand for standard deviations. BSASA values and 

several hydrogen bonds were computed using the Gromacs routines gmx-sasa and gmx-hbond, respectively, 

with default settings.  

Molecule ID Chemical Structure RMSD  H-bonds BSASA (Å𝟐) 

ZINC77271775 

 

5.5 (1.8) 6.2 (1.0) 979.0 (63.0) 

ZINC67910521 

 

9.4 (2.3) 1.6 (0.6) 922.3 (52.2) 

ZINC67903231 

 

4.7 (1.6) 0.7 (0.8) 950.9 (56.4) 

ZINC21075815 

 

2.4 (0.5) 1.6 (1.2) 772.0 (50.4) 

ZINC70692276 

 

2.5(0.8) 2.3 (0.8) 942.4 (48.3) 
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ZINC64031730 

 

3.1 (0.5) 1.9 (0.8) 670.5 (40.2) 

Figure 3 depicts the binding conformations of the three molecules (ZINC21075815, 

ZINC70692276, and ZINC64031730) that preserved conformations close to their docked 

conformations. As evident from Fig. 3, the PD-L1 surface exhibits high structural plasticity; 

therefore, the three hotspots shown in Fig.1a are no longer readily distinguishable. The 

rearrangement of the side chains of the contact residues (the RMSD value for the backbone of 

PD-L1 was smaller than 2 Å throughout the simulations) enabled stable interactions with the small 

molecules. We utilized the program LigPlot+ [43] to identify the PD-L1 residues forming contact 

with the small molecules. Even though the binding region on PD-L1 adopts a different 

conformation for each molecule, the contact residues are common (Tyr 56, Glu 58, Arg 113, Met 

115, and Tyr 123) for all molecules. The common contact residues Tyr 56, Glu 58, Arg 113, Met 

115, and Tyr 123 constitute the first hotspot, a pocket of predominantly hydrophobic character, 

and accommodates the PD-1 residue Ile 134 [23]. It is well-established that the free energy of 

binding is not evenly distributed across the interface; instead, a small subset of interface residues 

(enriched in tryptophan, tyrosine, and arginine) contributes substantially to the free energy of 

binding [21].  

 
Figure 3: Conformations adopted by the small-molecules ZINC21075815 (a), ZINC70692276 (b), and 

ZINC64031730 (c) on PD-L1.  The small molecules are shown in stick representation. The PD-L1 residues 

that contribute to binding are depicted in the orange surface. The conformations represent the last snapshots 

of the corresponding MD trajectories. 

 

Moreover, it was shown that those energetically critical residues are not randomly 

distributed but rather form clusters termed hot regions [44]. A recent study that addresses hot 

regions at the PD-1/PD-L1 interfaces defined two hot regions, which comprise the residues Tyr 
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56, Glu 58, and Asn 66 and the residue Met 115, respectively. The first region (Tyr 56, Glu 58, 

and Asn 66) was important in antibody and small-molecule binding. In contrast, the second region 

(Met 115) was found to be necessary only in small-molecule binding [45]. Considering the site 

preference of the top 20 molecules in molecular docking calculations and the structural and 

energetic analysis of the MD trajectories of the PD-L1/Small-molecule complexes together with 

previously reported findings suggests that the PD-L1 residues Tyr 56, Glu 58, Arg 113, Met 115 

and Tyr 123 comprise the hot region on PD-L1 at the PD-1/PD-L1 interface and this hot region 

is the most likely region to accommodate a small-molecule inhibitor of protein-protein 

interactions. 

3.4. Comparisons with Known PD-L1 Inhibitors 

Most well-known small-molecule PD-L1 inhibitors like BMS-202, A1D9R, and their 

analogs work by inducing PD-L1 dimerization, which sterically blocks PD-1 binding [46]. 

However, our aim in this study was to discover non-dimerizing small molecules that inhibit PD-

1 binding. There are limited non-dimerizing PD-L1 inhibitors with well-defined structural and 

mechanistic evidence, and all are either antibodies or larger peptide/macrocyclic compounds that 

fall outside the typical small-molecule criteria. In fact, an analysis of all 67 human PD-L1 

structures deposited in the Protein Data Bank further supported this, revealing the lack of well-

characterized non-dimerizing small molecules.  

Since no non-dimerizing small molecule with strong structural or mechanistic evidence for 

PD-L1 binding was available, we performed simulations of several reported compounds to 

evaluate their stability and binding behavior. Simulations of BMS-202 and A1D9R with 

monomeric PD-L1 showed unstable binding. None of the ligands kept their initial conformations, 

whether starting from docking poses or crystal structures. The average RMSD values exceeded 

12 Å and 8 Å for BMS-202 and A1D9R, respectively, indicating substantial deviation from crystal 

structures. This is not surprising as these compounds bind to the dimeric form of PD-L1 in their 

crystal structures and interact with residues from both monomers. 

CA-170 is an orally available small-molecule antagonist targeting PD-L1/PD-L2 and 

VISTA, proposed to disrupt PD-1/PD-L1 interaction without inducing PD-L1 dimerization. 

Although it has advanced to Phase I clinical trials, its direct binding to PD-L1 remains debated 

[41, 47]. CA-170 detached from PD-L1 within the first 3 ns of simulation, suggesting a lack of 

stable interaction. This observation aligns with the study reporting no direct interaction with PD-

L1, supporting the view that CA-170 may act through an indirect or alternative mechanism [46]. 
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Since well-known small molecules do not form stable interactions with monomeric PD-L1, 

we used the cyclic Peptide 104 as a positive control. This peptide maintained stable binding to 

monomeric PD-L1 throughout the simulation, with an average RMSD below 2.0 Å. The binding 

free energy computed using our protocol was −12.6 kcal/mol, consistent with the reported 

moderate binding affinity (120 nM) of the peptide [42], considering that MM/GBSA calculations 

often overestimate binding affinity [48]. Peptide 104 keeps its key interactions with residues Ile 

54, Tyr 56, Met 115, and Tyr 123 in the simulation, which aligns with the binding regions 

observed for our most promising compounds, emphasizing the importance of this surface region 

for non-dimerizing PD-L1 binding. 

4. Conclusion 

In this study, using triple and quadruple combinations of the interface residues on PD-1, 

we constructed several pharmacophore models to scan the ZINC15 database. More than 12000 

small molecules were retrieved from the ZINC15 database. The retrieved small molecules were 

virtually screened using molecular docking calculations. We further evaluated the complexes of 

promising small molecules energetically and structurally. Overall, our results suggest that the 

three small molecules ZINC21075815, ZINC70692276, and ZINC64031730 establish stable and 

energetically favorable interactions with PD-L1 at the hot region consisting of the residues Tyr 

56, Glu 58, Arg 113, Met 115, and Tyr 123. This surface region undergoes local structural 

rearrangements and provides sufficient space and interaction surface to accommodate relatively 

large ligands such as ours. The positive control, Peptide 104, forms also key interactions with this 

surface region, underscoring the relevance of this region for non-dimerizing binding. 

Our study highlights the relevance of incorporating molecular dynamics in drug discovery, 

as it provides a deeper understanding of the interactions and behavior of molecules in a dynamic 

environment. The molecules ZINC21075815, ZINC70692276, and ZINC64031730 have 

moderate estimated binding affinities (-8.6, -7.1, and -7.9 kcal/mol, respectively) for PD-L1 and 

can be used as starting points to develop more effective and selective non-dimerizing anti-PD-

1/PD-L1 inhibitors.   
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