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The purpose of this paper is to summarise the more important
techniques used to analyse the multi-echelon inventory control
problem. An introductory section defines the term "multiechelon”
and establishes the kinds of problems involving multi-echelon
considerations. Subsequent two sections provide review of work in
multi-echelon inventory theory with respect to selections from the
literature. Deterministic-Stochastic dichotomy, is used as a
distinguishing feature to categorise models. The penultimate section
discusses the recent work on the subject and the last section contains
conclusions and a direction for further research.

1. INTRODUCTION (D42}

In accordance with systems theory if a complex system consists of
a finite number of interacting and explicitly recognisable
subsystems, there is a need to preciselv defline vertical arrangements
between the subsystems. The vertical position of subsystems in the
system is defined either in reference to priority of actien or in the
sense that the system pairts on lower-level positions are subsystems
of higher-level parts. A level in such a system is called an echelon,

(*) This paper was prepared while the author was researching at the
Department of Operational Research and Operations Management at
Lancaster University.

(*¥) I am indebted to Professor Bilge Hacihasanoglu -Hacettepe University,
for introducing me to multiechelon inventory theory. I wish to thank also
Professor Brian Kingsman -Lancaster University, for numerous discussions
during the preparation of this paper.

(1) Petrovic, R., A. Senborn, and M. Vujosevic, Hierarchical Spare Parts
Inventory Systems, Studies in Production and Engineering Economics, No.5,
Elsevier Science Publishers B.V.: Amsterdam, 1986.

(2) Schwarz, L.B., {ed.), Multi-Level Production/Inventory Control Systems.
Theory and Practice, Studies in the Management Sciences, Vol. 16, North-
Holland: Amsterdam, 1981.
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and represents an organisational level. Generally, there are many
subsystems at a given level, except the highest one where, as a rule,
only a single subsystern exists,

The concepts of echelons and organisational hierarchy can be
defined in a precise formal manner by using abstract setting. This
can be done for any system in whatever context or discipline. Here, it
is done by employing the terms and words from inventory systems.
Let an inventory system S have a finite number of subinventories Sy,
n ¢eN where N is a finite set of indices, If o is a strict partial ordering
of N, then (S,0] is a hierarchy of subinventories. When the relation o
is defined as nan', n, n' e N if and only if Sn', is a subinventory of Sp.
S is said to be a multi-echelon system, and (S,0) is a muiti-echelon
hierarchy. ‘

First-echelon subinventories are the minimal units of S. The
family Sl=(S,: n eN3}, where Ni= {n : n is a minimal element of N}, is
the first echelon. Going further in the same way, second-, third-
echelon ete., subinventories are defined. The m-th echelon
subinventories are the minimal units of S when all lower echelons
are omltted, i.e., the family SM={5, n e Nm}, where Nyp=n: is a
minimal element of N-{N] U No U ... U Ny gl is the m-th echelon,

A multi-echelon or organisational hierarchy is a very common
type of hierarchy. In realily, organisational hierarchy exists in any
complex ,system. An attribute specilic for multi-echelon systems lies
in the partially conflicting goals and objectives between decision
problems on different echelons, These partial conflicls are not only,
a resuit of the composition of the multi-echelons system, but are also
necessary for efficient functioning of the overall system. A block
diagram of such a system with three echelons is given in Fig. 1. The
arrows indicate the patlern for the flow of goods through the system.
In the system shown, customer demands occur only at the stocking
points in echelon 1. Echelon n has its stocks replenished by
shipments from the echelon (n+1). A multi-echelon inventory
sysiemn can also be portrayed as a directed netwaork wherein the nodes
represent the various stocking points in the system and the linkages
represent flows of goods. If the network has at most one incoming
link for each node and flows are acyclic (no loops in the network} it is
called an "arporescence” or inverted tree structure. More complex
interconnected systems of facilities can exist however, most of the



A SURVEY OF MULTI-ECHELON INVENTORY MODELS 117

work in multi-echelon inventory theory, has been confined to
arborescence structures.®

The problem is to determine what inventories, if any, should be
maintained at the various stocking points, and what the operating
doctrine should be for controlling the stocks at all the stocking
points. Clark has defined the multi-echelon inventory control
problem in his informal survey of multi-echelon inventory theory
{Ref 3);

“...viewed in terins of a network of activities, with external
demands occurring at some or all of them, the basic multi-
activity inventory control problem for a given product is one
of establishing rules or policies which, if followed, cause
flows of the product through the network as functions of time
and which satisfy a prescribed performance objective, such
as, minimising expected costs or meeting a prescribed level of
customer service. The set of such policies, for any given
system, usually contain ordering policies (resupply,
procurement production, repair), which prescribe amounts
over time that each activity orders from its supplier(s), and
supply policies (issuing, delivery, distribution, allocation)
which control amounts over time that each activity ships to
those activities designated as ils customers. A common
situation which warrants this distinction is one where there
is insufficient stock at a particular supplier to fill all the
orders it receives and some kind of rationing, or supply
policy, is thereby required. To solve this "inventory control
problem, a variety of models have been formulated which are
these distinguishing features are expressed by the following

_ dichotomies: Deterministic-Stochastic, Single Product-Multi
Product Stationary- Non stationary, Continuous Review-
Periodic Review, Consumable Product- Reparable Product,
Backlog- No Backlog”

(3) Clark, a.J., “An Informal Survey of Multi-Echelon Inventory Theory”, Naval
Research Logistics Quarterly, Vol. 19, 1972, pp. 621-650.
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1. DETERMINISTIC MULTI-ECHELON MODELS

One of the early investigations of the deterministic multi-echelon
problem was by Evans.™ To overcome the limitations of this work,
Zangwill® analysed a deterministic single-activity, multi-period
production and invenitory model which has led to the development of
a multiactivity model. The single-activity model has concave
production costs and piecewise concave inventory costs. Model
permits backlogging which violates concavity assumptions of the
previous works. Instead Zangwill considers piecewlse concave cost
functions to find the form of the minimum cost production schedule,
An efficient dynamic programming algorithm to calculate the
minimum cost schedule is presented. In a later paper® |, Zangwill
analysed the first significant deterministic multi-product, multi-
activity, multi-period production and inventory model that is a
linking together of the single facility models developed in Ref.[5]. The

{4} Evans, G.W., II, "A Transportation and Production Model”, Naval Research
Logistics Quarterly Vol.5, 1968, pp. 137-154.

(5) Zangwill, W.L, “A Deterministic Multi-Period Production Scheduling Model
with Backlogging, Management Science, Vol. 13, No. 1, 1866, pp. 1.05-11%.

(6) Zangwill, W.i., *A Deterministic Multifacility Production and Inventory
Model”, Operations Research,Vol.14,No.3.pp.486-507.
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linking is arranged to form an acyclic network of the facilities. Each
facility can receive inputs from either raw material or lower
numbered facilities and supply only higher numbered facilities or
market demand for its own product. The object is to determine a
production schedule that specifies how much each facility in the
network should produce so that the total cost is minimised. The
notation is given below:

e rly 1Jj > 0, is the market requirements for facility j's (j= 1,....,.N)
production in the period i, {i=i, ... ..n1) where n is the number of periods
under consideration and there are N facilities. i is known in
advance. t=(d, ¥a,...... tln) represents total market requirements for
facility j.

o xi= (1,.......xIn)is a production schedule for facility j.» where xJj.
xJi20, is the production completed in period i facility j,

o alh alh>o, is the number of units of facility j's production
required to produce one unit of facility h's product. Since the model
is an acyclic network alh=0 for hgj,

* }j is a non negative integer that represents the number of periods
lag from the start of production in facility j until the completion of
production.,

+ yl; is the total demand on facility j in period |,
vh=di+INh = j+1 (eitxbivag), yi=0y1,s,......yjn) represents the total
demand for facility j,

» 0 is a non negative integer denoting the number of pericds of
backlog permitted for facility j,

@ [ is the inventory at the, end of period i in facility j,
Ui=Yih=1(xp-yp) and.lj 2-3ip=i-o

+yln),

e Z=(x!, x2,..... ,XN)'EG(l},X22 ..... X1, X2, %2, ... X2 peeres X, xN)
is a schedule vector for the entire networks, and Zi=(xJ, =i+ ... xN)
is a partial production vector,

e P{z) is a concave function of the schedule vector z,

o HYi1) is an inventory cost function, Hi{fjil=Hi(Z),
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» Fl(z) is total cost function, Fz)=Plz}+=IN;=1ZV;=1(Hli(z)) Zangwill
shows that the total cost function is piecewise concave,
Zangwill states the entire model as follows:
Minimise

Flz) =P (2) + TNj=1TM = 1(Hi(z))

Subject To
Ui=Yth=1ih-yih) {i=1,......n}
Jiz- Yh=i-aj+1{yh)
vi=di+ ¥Nh=j+ l"(ujhxhiﬁth) (j=1......N}
U=0 '
=0

The total cost function is shown to be concave on certain bounded
polyhedral sets called basic sets. Then, by the theory of concave
functions, the total cost considered as a function on a particular
basic set is minimised on that set at an extreme point of that sef. The
union of all basic sets is proven to be the set of all feasible production
schedules. The total cost function now considered as a funetion of all
feasible production schedules must be minimised on some basic set,
and hence at an extreme point of some basic set. Defining the
dominant set as the set of all extreme points of all basic sets, an
optimal production schedule must be in the dominant set. The
principal result of the paper characterises the dominant set. For the
two special cases of "series" and "parallel" networks efficient
dynamic programming algorithms are developed that search the
dominant set for the optimal production schedule.

In a later work Zangwill” analysed the multi-echelon system as a
dynamic economic lot-size system with no backlogging on demand
permiited. In particular, it is shown that the multiechelon structure
can be represented as a single source network and can thereby be
analysed by applying the theory of concave cost networks. The
notation for the model is:

(7) Zangwill, W.I., "A Backlogging Model and a Multi-Echelon Model of
Dynamic Economic Lot Size Production System-A Network Appreach”,
Management Science, Vol 15, No.9, 1869, pp. 506-527.
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s 1j, 1120, is the market demand for the finished product in period
i,i=l....n

* Xjj represents the production in period i of faeility j, i=1....n,
j=1...m

» Ijj is the inventory stored in facility j at the end of period
Ijj=0

Li-1d-Tj+xyXi,j+1=0  j=1,....m-1 i=1,...... n
L mIlim+Xim =1 i=l...n
Ioj=In;=0 for all j
* Pyjlx;j) is the cost of producing Xjj units
» Hij(Iy) is the cost of holding Ijj units in stock, Hi;j(lT)=Hij (i)
Zangwill states the entire model as follows:
Minimize
Zij{Pijlxij)+Hij{xiph
Subject To

ZMi=1(xj1)=2"i=1(ry)

Ii-;'j—I,-j+xij—xi,j+1=O j=L.....m-1 i=1,.....n
Ii-1, m-lim+Xim=r1 i=1,...... ,n

Toj=Inj=0 for all j
Ii20, 20 for all and j

An equivalent network representation of the mathematical model
is given. Under the concavity assumptions on costs, there exists an
optimal schedule which is an extreme flow in the associated single-
source nelwork. An extreme flow is an extreme point of the convex set
of feasible solutions for the problem and as Zangwill previously
demonstrated has the property that any node in the network can
have at most one positive input. Exploiting these result, Zangwill
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presents an extremely efficient algorithm that is superior the one in
Ref [B].

It is pointed out by Veinott® that some network models, such as
the one in Ref.[7], are equivalent to transhipment Leontief
substitution systems. For these models the charicterisation of the
extreme flow follows alternatively from the characterisation of the
extreme points of the system's solution set. Zangwill in Rel.{7]. has
shown that a number of existing qualitative resulis on deterministic
inventory models with concave costs can be deduced immediately
from the characterisation of extreme flows in networks having
exactly one source. Recognising the network interpretation of the
deterministic inventory problem and exploiting the equivalency of
these network meodels and transhipment Leontief substitutions .
systems, Veinott®, expands upon the formulation of the problem as
a Leontief substitution model with concave costs and shows that the
solution algorithm developed by Zangwill extends to this case, butl
that the amount of computation, depending linearly upon the
number of wholesale facilities but to the fourth power of the number
of time periods, can still be extensive. With rather severe
assumnptions about the cost functions, Veinolt presents a simpler and
more efficient solution algorithm for the general arborescence
model.

The other deterministic multi-echelon system control models are
developed by the following researchers. Love!!® shows that if, in
addition to concavity assumptions, per-unit ordering costs are non
increasing over time for each activity and per-unit holding cests for
each activity are always greater than or equal to those for the next
activity in the series structure, then there exists a nested extreme
optimal solution. He defines a nested production schedule as being
onte where if any activity produces in a given time period, then so does
the next facility in the series structure. This result is exploited to
develop a more efficient solution algorithm. A decomposition

(8) Veinott, A.F., Jr., "Extreme Points of Leontief Substitution Systems", Linear
Algebra and Its .Applications, Vol. 1, 1968, pp. 181-194.Veinott., A.F., Jr.
"Minimum Concave-Cost Sohition of Leentief Substitution Models of Multi-
Facility Inventory Svstems", Operations Research, Vol. 17,1969, pp.262-291.
(9) Veinott., AF., Jr. "Minimum Concave-Cost Solution of Leontief
Substitution Models of Multi-Facility Inventory Svstems", Operations
Research, Vol. 17,1969, pp.262-291.

(10) Love, 5-.F., "Dynamic Deterministic Production and Inventory Models
with Piecewise Concave Costs", Stanford University, Depariment of
Operations Research, Tecnical Report No.3, Stanford, Calif, 1968,
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algorithm, which is computationally feasible for arboresconce
structures that were previcusly too large to solve, is developed by
KalymonD. Von Lanzenauer!? constructed a mixed bivalent linear
programming model where all costs are assumed linear with set-up
costs for production for each activity and product. For each product a
sequence of the activities is specified to indicate the technological
ordering of production stages for the product. Each activity can
process only one product in each time period. The problem is to
determine the sequence of production at all activities as well as the
lot-size and number of lots for each product such that total costs are
minimised. Crowston and Wagner!!» examined complex systems
involve an assembly structure where each intermediate facility has
exactly one successor but possibly several predecessors. Their first
model is based on dynamic prograrming where, through efficient
sequencing, computational savings can be obtained conpared to
complete enumeration. Their second model uses branch and bound
approach, where the subproblems are solved by dynamic
programming. Lambrecht! shows that an optimal production-
inventory schedule has the property that for each facility, if there is
production in period i, then the incoming inventory must be zero;
and conversely, if the incoming inventory in period i is positive, then
the production must be zero given that in a basic feasible solution the
vectors representing the coefficients of the basic variables are
linearly independent, and that a basic feasible solution cannot be
written as a convex combination of two non-basic feasible solutions.
Afentakis et al.(!®) presents a new formulation of the lot-sizing
problem in mult! stage assembly systems which leads to an effective
optimisation algorithm for the problem. The problem is
reformulated in terms of "echelon stock” which simplifies its
decomposition by a Lagrangean relaxation method. A branch and

{11) Kalymon, B.A., "A Decomposition Algorithm for Arborescence Inventory
Systems”, University of California, Western Management Sclence Institute,
Working Paper No. 167, Los Angeles, Calif,, 1970.

{12)Von Lanzenauer, C.H., "A Production Scheduling Mode! by Bivalent Linear
Programming, Management Science, Vol. 17, 1970, pp. 105-111.

(13) Crowston W.B., and M.H. Wagner, " Dynamic Lot Size Models for Multi-
Stage Assembly Systems”, Management Science, Vol.20, No. 1, 1973, pp. 14-
21.

(14) Lambrecht, M.R., "Capacily Constrained Multi-Facility Dynamic Lot-Size .
Problem”, Unpublished Doctoral [issertation, Katholieke Universiteit
Leuven, 1976.

(15) Afentakis, P., B. Gavish and U. Karmarkar, “Computationally Efficient
Optimal Solutions to the LotSizing Problem in Multistage Assembly
Systems”, Management Science, Vol. 30, No.2,1984, pp.222-239,
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bound aigorithm which uses the bounds obtained by the relaxation
was developed and tested.

As a result of the widespread interest in the deterministic
dynamic production and inventory models many heuristics have
been developed. Some of the most popular are WagnerWhitin(*®)
Part-Period Balancing,17) Silver-Meal(®, and Least Unit Cost(19
These heuristics use single level information in order to determine
scheduling pattern. Due to the complexity of general multi-stage
problem, many heuristic procedures are proposed for this structure,
The most common form of heuristic is to consider the stages
sequentially, starting with some single-stage procedure which may
itsell be a heuristic. Examples of such multi-stage heuristics are
given in McLaren??, McLaren and Whybark -Order Moment
Heuristic®D | Bigg et al. ), and Blackburn and Millen®® | Carlson
et al. @Y For an N stage system, the amount of work necessary for
these heuristics is comparable to that needed for solving N single-
stage problems. All of the reported work has been restricted to
assembly systems. Graves® considered the lot-sizing problem in a
genteral multi-stage, discrete-time inventory system. A heuristic,

{16) Wagner, M.H., and T.M. Wbtin, "Dynamic Version of the Economic Lot- -

Sizing Model", Management Science, Vol.5,1958, pp.89-96.

{17)De Matters, J.J., and G. Mendoza, "An Economic Lot-Sizing Technique”,

IBM Systems Journal Vol.7, 1969.

{18} Silver, E.A., and H.C. Meal. "A Heuristic for Selecting Lot-Size Quantities

for the Case of Deterministic Time-Varying Demand Rate and Discrete

Opportunity for Replenishment”, Production and Inventory Management,

Second Quarter 1973, pp.64-77.

(18} Love, 8.F., Inventory Control, McGraw- Hill New-York, 1979,

{20} McLaren, B.J., “A Study of Multiple Level Lot Sizing Technigties for

Material Requireinents, Unpublished Doctoral Dissertation, Purdue

University, 1976,

{21) McLaren B.J., and D.C. Whybark, “Multi-Level Lot Sizing Procedures in a

Material Requirements Planning Environment, Discussion Paper No.64,

Indiana University, 19786, '

(22} Biggs, J.R., 3.H. Goodman, and 3.T. Hardy, “Lot Sizing Rules in a

Hierarchical Multi-Stage Inventory System Preduction and Inventory

Management, First Quarter 1977, PP. 104-115.

(23} Blackburn, J., and R-A Millen, ‘Lot Sizing in Multi-Level Inventory

Systems”, Proceedings of 1978 AIDS Conference, 1978, p.314.

{24) Carlson, R.C., D.H. Kropp, M.C. Burstern, P.G. Hanson, and L.J, Rodler, “An

Algorithm for Lot Sizing in the MRP Product Hierarchy”, Technical Report

No.80-2, Stanford Universty, 1980.

(25) Graves, 5.C., "Multi-Stage Lot Sizing: An Ilerative Procedure”, in Schwarz,
(ed}, Mulli-Level Production/Inventory Control Systems: Theory and

Practme. Studies in the Managemen! Science, Vol.18, North-Holland:

Amesterdam, 1981,
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iterative procedure is proposed and tested for finding a periodic
review schedule. Lambrecht et al.'?¢ consider the lot-size problem for
serial production/inventory systems operating with deterministic,
dynamic, pericdic demand. They review the characteristics of the
optimal policy for the uncapacitated and capacitated versions of this
problem present two algorithms for optimisation in the capacitated
problem, and examine the performance of several heuristics for both
problermns. They conclude that the costs of the heuristically based
policies differ only slightly from the costs of the optimal policies and
are far more efficient computationally.

Il STOCHASTIC MULTI-ECHELON MODELS

One of the early work on multi-echelon systems is due to
Simpson®’. Simpson investigated an allocation problem. The
model assumes that there are N warehouses that are centrolled and
supplied by a ceniral agency. Each warchouse is faced with an
independent external random demand. Single item that is reordered
from lime to time is handled by the warehouses and supply system.
This means that present allocation has to last the warehouses only
until the material from the next allocation arrives. It is assumed that
a fixed penalty cost is incurred every time the emergency
replenishment is invoked. Emergency procedure is invoked
whenever a warehouse inventory gets down to a previously
established emergency trigger level. The problem then is to find the
minimum cost allocation policy. Under these assumptions a simple
allocation rule is obtained. The rule states that "a necessary
condition that an allocation have minimum total expected cost is
that the weighted probabilities, piP(Si=Qi-aj) be equal for all
warehouses. Here pi is the penalty assoclated with the emergency
replenishment action, and P(S;=Qj-a;) is the probability that sales
will be exactly equal to the quantity allocated minus the emergency
trigger level". Another allocation policy is obtained for the "no
ermergency replenishments” case. In this case a warchouse remains
out until the next regular replenishment if it runs out of stock. Any
demand that occurs when a warehouse is not out of stock is
considered to be lost. Then the problem is to find the allocation

(26) Lambrecht, M.R., i.V. Eecken, and H. Vanderveken, “Review of Qptimal and
Heuristic Methods {or a Class of Facilities in Series Dynamic Lot-Size
Problems” in: L.B. Schwarzfed), Multi-Level Preduction/Inventory Control
Systems: Theory and Practice, Studies in the Management Science, Vol.18,
North-Holland: Amsterdam, 1981,

(27) Simpson, K-F., Ji., “A Theory of Allocation of Stocks to Warehouses”,
Operations Research, Vol.7, 1959, pp.797-805,
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policy that minimises weighted number of unsatisfied demands. The
allocation rule derived for this case states that "a necessary
condition that an allocation minimises the, weighted number of lost
sales is that the weighted probabilities wiP(Si>0Q3) be equal for all
warehouses. Here wi is the weight given to a lost customer at a
particular warehouse, and P(5;2Q) is the probability that demand is
equal to or greater than the guantity allocated to that warchouse”.
For the both cases Simpscn gives tolal expected cost expressions and
minimises cost functions netting out the first derivatives. Thus, he
proves aforementioned rules by contradiction.

A significant contribution to the multi-echelon inventory theory

is made by Clark and Scarf?® . The model assumes that there are N
installations, where installation N supplies stock to installation
N-1, N-1 supplies stock to N-2,....., installation 2 supplies stock to
installation 1. The highest installaticn in the series, N, receives its
stock from the source of production. It is important to note the
following distinction between an installation and an echelon. The
stock at installation i refers only to the stock physically at that
location, stock at echelon i refers to the sum of all the stocks at
installations i, i-1,...,2,1 plus all the stock in transit between
installations i, i-1,... 2, 1. It is alsc assumed that (1} demand,
exogenous to the system occurs at installation 1 only, (2} the
purchasing cost between installations is linear without a fixed cost of
ordering (the only exception to this assumption is at the highest
installation, where a fixed cost of ordering is allowed), {3) demand in
excess of supply at any installation is backlogged, (4) delivery at each
installation is instantaneous, (5} in addition to the purchase cost
holding cost, h-proportional to the stock on hand at the beginning of
the period- and shortage cost p -proportional to the deficit of
available stock at the end of the period- are charged during each
period, (6) delivery of an order occurs A periods after the order is
placed, (7) the one period cost function, L is convex for all echelons.
As a continuation of the classic dynamic programming approach
used In single-activity periodic review problems, Clark and Scarf
formulated and solved the aforementioned problem. The model given
below is for single-installation problem.

if x>0 then Lix)=hx+p)~t-x) gdt

else L (%) =p />{t-x] Bit)dt

{28) Clark, A.J., and H. Scarf, "Optimal Policies for a Multi-Echelon inventory
Problem™, Management Sclence, Vol.6, No.4, 1960, pp.475-490.
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In this cne period cost function xj is the stock on hand at the
begining of the period i. Cp,{x1, w1, ... , W,3-1) represents the expectation
of the discounted costs, begining with x) units of stock on hand and
following an optimal provisioning scheme, where wj is the units to be
delivered i periods in the future. This sequence of functions satisfy
the following functional eguation:

Cnlxi,wi, ooeee , Wi~ 1 l=min{z>0)clz)+Lix1}+
oiCn-1 K1+Wi-t. Wa,.... W) 1.2@{tdt)

where the minimising value of z is the optimal purchase quantity for
the given stock configuration.

U=X],W],0eereyW -1
y=u+z (in fact, z is w))

Cnlxy, w1, ... W j-1) = Lxp)+a afLix)+w) @hdt+
+arlf L ewi+wosg -t -t O dtd
LJndE+ e )

£ (w=miny >uf{c{y-u)+oM... [Liy-t1-....-ty))@lt1)
Bltdty.....do+ally- ) (y-0@at

For this formulation of single installation problem y* -u is the
optimal purchase guantity, where y* is the minimising value in the
above equation. Following the approach for the single installation
maodel one gets the recursive relation for multi-echelon model The
problem with this approach is that in the general case C"n is a
function of N variables. Therefore, the recursive calculations of
dynamic programming would be prohibitively long, if the function
C~n is left in this form. Clark and Scarf proved that the function C™n
can be decomposed into N functions, each of a single variable, one for
each echelon in the system. Each of these problems can then be
solved by the usual single activity technique. The set of one state
variable problems are interconnected by "implied shortage costs"
generated at echelon (excepted the highest one} and passed on
(included in the cost function) to the next higher echelon. Thus the
optimal policy is first established for the lowest echelon, from which
implied shortage costs are obtained. These costs are then included in
the cost function for the next higher echelon for which the process is
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repeated. The ordering policies determined in this fashion take the
form of periodic (S-1,3) policies at lower echelons and an (s,S) type
policy at the highest echelon. And it is shown that, in general, the
parallel echelon structure cannot be broken down into a set of single
activily problem.

Clark, and Scarf's paper is significant because it introduces the
concepts of system stock (echelon stock) and implied shortage costs
to demonstrate the optimality of a simple ordering rule. Extensions
of these results to general arborescent structures, using a different
mode of analysis, was accomplished by Bessler and Veinott?® | In
previous papers, Veinott developed a technique for analysing
inventory problems, first for the single-product, single-activity
case®? and then for the multi-preduct, single-activity problem®D |
Both papers are concerned with determining an optimal ordering
policy for a single commodity, in a dynamic multi-period inventory
model in which the demand pattern and the cost structure may
change from period to period. The criterion of optimisation is the
minimum expected discounted cost over an infinite time horizon.
Ordering policy is to order up to a critical stock level in each time
period. Further underlying assumptions involve: partial or complete
backlogging of excess demand; deterioration of stock in storage for
single-product case. The cost parameters are non stationary. If
demand is assumed backlogged a constant delivery lag can be
accommodated. The functional equation approach of dynamic
programming is not used in proofs. Instead, a direct analysis, which
is called "dynamic process analysis" by Clark in Ref.[3], of the
underlying stochastic process is used. Bessier and Veinott (Ref.29),
extended these results to the multi-activity inventory problem. In
this seminar paper a general multi-period multi-echelon supply
system consisting of n facilities €ach stocking a single product is
studied. At the begining of a period each facility may order stock
from an exogenous source with no delivery lag and proportional
ordering costs. Demand during each period at each activity are
satisfied by available stocks at the facility, with excess demands

(29) Bessler, S.A., and A.F. Veinott Jr., "Optimal Policy for a Dynamic Multi-
Echelon Inventoriv Model”, Naval Research Logistics Quarterly, Vol. 13,1968,
PPp.355-389.

(30) Veinott, A.F., Jr., "Optimal Policy in a Dynamic, Single-Product Non-
Stationary Inventory Model with Classes”, Operations Research, Vol 13, 1965,
pp.761-778. _

(31) Veinott, A.F., Jr., “Optimal Policy for a Multi-Product, Dynamic,
Nonstationary Inventory Problem”. Management Science, Vol.12, No.3,1965,
pp.208-222, :
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being immediately transmitied to its supplier for possible
satisfaction. Excess demands are successively passed up, with |
backlogging occurring only at the top supplier. When the stock at
each facility is viewed as a product, results of the multi-product
single-activity problem have corresponding interpretations for the
single-product, multi-facility case. Exploiting the correspondence
one proves that if there is a y~i which minimes Gily) over Yili=1, .....n),
if xyy~1, and if Syy~i,Di) <y~i +1 (for all Dj and i=1, ... N-1) then one
optimal policy is given by Y~i(H;), (i=1,....N-1); where xy=(xy) is the
vector of inventories of the item on hand at each of the n facilities at
the begining of period i; Dj=(Dy) is the demand for the item at facility i
in peried i; yiz(yij) is the vector of inventories on hand after orders
have been in placed in period i at each of the n facilities;
Si(yi,Di)z{Sij(yi,Di)) is a vector function called a supply policy which

- specifies the amount of stock on hand at each of the n facilities after
the demand occurs in period i; Gi(y) is total cost function: Y=[FLyz, -}
is a sequence of vector value functions which specifies the ordering
policy such that at the begining of period i, after having observed the
past history Hj, order quantity is Y~i i(Hj)-x;. This result reduces the
problem of determining the optimal policy to that of solving N n-
dimensional minimisation problems, where N is the number of ,
periods and n is the number of activities. In the following sections,
the arrangement of the activities in an arborescence one-period cost
function, investigation into effects of parameter variations, .
establishment of bounds for the optimal stock levels and an
algorithm for computing approximations to the optimal levels based
upon the values for the lower bounds are considered. Ignall and
Veinott®, removed the restrictions on the initial stocks and
proposed a supply pelicy for specific networks.

In a later work®? , Clark, and Scarf extended their previous work
(Ref 28) to include fixed order cost at lower installations with all
other characteristics of the problem the same as before. Since the
problem ecould not be broken down into a sequence of single-state
variable problems, the optimal value for the cost function is bounded
from both above and below.

{32} Ignall E., and AF. Veinott Jr., "Optimality of Myopic Inventory Policies for
Several Substitute Preducts”, Management Science, 15, 1969, Pp.284-304.

(33) Clark, A.J., and H. Scarf “Approximate Solutions to a Simple Multi-
Echelon Inventory Problem”, Chap.5 in K.Arrow, S. Karlin, and H.Scarfleds.) :
Studies in Applied Probability and Management Science, Stanford University
Press, Stanford, Calif,, 1962, pp.88-110.
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As a continuation of the Clark-Scarl approach, Fukuda®4
combined ordering and disposal policies. A model is described in
which the decision to be made at the beginning of each period is
always one of ordering fresh stock, disposal of surplus stock, or doing
nothing. Four costs are considered: shortage and holding costs,
which are both linear functions of the number of items concerned,
and ordering and disposal costs, each of which may be either of type
A or type B. Type A costs are preportional to the number of units
purchased and type B costs include an additional fixed reorder cost.
Disposal cost may be negative (when revenue is obtained from
disposal). It is also assumed that excess demand is backlogged, that
items for disposal are withdrawn at the beginning of the period, and
that stock is delivered one period after it is ordered. The optimum
policy for minimising total expected costs is first determined for a
single installation system by a dynamic programiming formulation.
Then multi-echelon system is considered. Type A costs are assumed
for ordering and disposal at each echelon. If a decision is made to
dispose of units at any echelon, they are immediately withdrawn
from that echelon, but one period is required for umnits to move from
one echelon to another. When stock reaches the highest echelon, it
leaves the system. The second echelon in a three echelon system is
analysed in detail, Similar to Clark-Scarf model the implied
shortage costs for ordering are passed upward in the structure. Using
the same reasoning the implied shortage costs for disposal are passed
downward.

A much simpler proof of optimality for Clark and Scarf model is
given by Veinott®® . Veinott used an approach which exploited a
convexity theorem of Karush®® . Hochstaedter®” established upper
and lower bounds for the optimal cost function of the system, in
which activities are in parallel with a common supplier. In this
model Hochstaedter permitted fixed reorder costs. Zacks(®
formulated a Bayesian model of the two-echelon parallel activily
structure, assurning that Poisson distribution demands occur at the

(34) Fukuda, Y., “Optimal Disposal Pohcies", Naval Research Logistics
Quarterly, Vol.8, 1961, pp.221-227.

(35) Veinott, A.F., Jr, "The Status of Mathematical Inventory Theory”,
Management Science, Vel 12, 1966,pp.745-777.

(36) Karush W., "A Theorem in Cenvex Programming', Naval Research
Logistics Quarterly, Vol.6,1957, pp.245-260.

{37)Hochstaedter, D., 'An Approximation of the Cost Function for Multi-
Echelon Inventory Medel',Management Science, Vol. 18, 1970, pp.718-727.
(38) Zacks, S., “A Two-Echelon, Multi-Station Inventory Model for Navy
Applications”, Naval Research Logistics Quarterly, Vol. 17,1970, pp.-72-85.
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lower activities and that the prior distribution of the Poisson
parameters is a Gamma distribution. Linear holding and shortage
costs are assumed, ordering costs are not included. With these
assumptions, a multi-state variable dynamic programming solution
procedure is developed. In a later paper, Zacks®® removes the
restriction "no return of stock to the higher activity” and hence the
later model allows unrequired stock at lower activities to be returned
to the higher facility. The optimal policy is derived from a dynamic
progamming formulation. The principle result is that the optimal
ordering policy of the lower activities is obtained by solving an
integer convex programming problem with linear constraints. -
Another extension of ClarkScarf model was given by Williams®0. In
this paper a multi-state variable dynamic programining model is
developed for both the backlog and lost sales case. A series structure,
where each activity has a fixed ordering cost in addition to the usual
inventory cost is considered.

Another important technique, other than the dynamic
programming used to investigate inventory systems is expected cost
minimisation technique. One of the oldest papers, which used this
approach to examine multi-echelon inventory systems was
published by Berman and Clark™lD. The work is devoted to
procurement policies in a single-product inveniory system
consisting of s¢veral bases supplied by a depot. The paper provided
more than an extension of the previous research on single-stocking
point problems in that it announced many real alternatives in
complex inventories such as: consumable or repairable items,
transhipment or no lateral resupply among subinventories at the
same level, normal and emergency resupply, life-of-type {sufficient
amounts are purchased all at once to satisfy all expected future
demands) and periodic procurement, etc. Expressions for the
expected avarage costs were obtained. From these cost functions,
expressions for minimising values of the policy variables were
derived.

(39) Zacks, S., “Bayes Adaptive Control of Two Echelon Multi-Station
Inventory Systems”, The George Washington University, Institute for
Management Sicience and Engincering, Programs in Logistics, TN-61541,
Washington, D.C., 1970. :
(40} Williams, J.F., Multi-Echelon Production Scheduling When Demand is
Stochastic”, University of Wisconsin, School of Business Adminisiration,
Milwaukee, Wisc., Wisc., 1971,

(41) Berman E.B., and A.J. Clark “An Optimal Inventory Policy for a Military
Organization”, The Rand Corporation, P-647, Santa Monica., 1955.
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Another important paper which used the expected cost approach
to analyse the inventory problem for a low-demand item was
published by Hadley and Whitin#2). In this paper a supply system
consisting of N depots and a central control point studied. It is
assumed that:

= instantaneous information concerning inveniory levels is
available;

= items are ordered one at a time;

s the supply lead time, and times required for either of two
available modes of redistribution are constants;

s demand comes from a stationary Poisson process at each of the
depots; .

» demand at one depot is independent of that at other depots.

The amount of stock on hand plus on order minus backorders for
the system remains constant throughout time. The oplimal system
stockage objective and depot stockage objectives are derived by
balancing carrying costs against the costs of stockout and
redistribution. If the system stockout cost is neglected, then the depot
stockage objectives can be determined independently of the mode of
transportation used from the source. However, the optimal system
stockage objective depends on the mode of transportation. It is
assumed that the decision as to where to allocate each unit ordered is
made at the time a unit is ready to be shipped from the source. A
dynamic programing model is developed to obtain the optimal
allocation for minumum costs of stockout and redistribution, but it
is noted that for many low cost items, it is not worthwhile to use the
dynamic programming model. For some cases, it is sufficient simply
to allocate the unit to the depot which has the greatest probability of
using it before the next allocation. A redistribution is to be
considered each time there is a demand in the system, provided the
distribution time is not greater than the time until the next
allocation, rules are developed for deciding whether and how to
redistribute. Using the same approach, Hadley and Whitin also
considered the case of higher demand items®?. It is assumed that the
system as a whole uses an (s,8) type policy and that redistribution is

{42) Hadley, G., and T.M. Whitin, "A Model for Procurement Allocation and
Redistribution for Low Demand ltems”, Naval Research Logistics Quarterly,
Vol.8, 1961, pp.395-414.

(43) Hadley, G., and T.M. Whitin "An Inventory-Transportation Model with N
Locations”, Chap.5 in H. Scarf, D. Gilford, and M. Shelly {eds.): Multistage
Inventory Models and Techniques, Stanford University Press, Stanford, Calif.,
1983. :
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considered whenever a depot's stock falls to critical levels that are
set by external crileria. Furthermore, only that depot triggering the
redistribution decision is considered as a receiver each time, All
other assumptions for this model are the same as for the previous.
Again, cost minimising expressions are obtained for determining
stockage objectives at the depots, values for the system procurement
policy, and sources and amounts for redistribution decisions. A
dynamic progamming algorithm is presented for allocating system
procurements to the depots upon receipt from the external source.

Gross™ investigated the same problem, confining the attention
to a single time period and no a priort assumptions are made
concerning the form of stockage and redistribution policies. A total
cost function is first forinulated for the case of two locations. From
this, minimising values for ordering and transhipment amounts are
derived. An iterative procedure is then given to generalise the results
to an arbitrary number of locations.

The problem formulated by Gross was also considered by -
Krishnan and Rao®). Demand at each warehouse is independent of
other warehouses and is continuously distributed with a known
density function. All costs are linear and include: holding cost,
which is directly proportional to excess demand over available stock
during the period; cost of transportation,which is incurred when
delivering at the end of a period, from a warehouse with excess stock
to a warehouse with a shortage (which is the most important
difference between the Gross model and the Krishnan-Rac model).
The expressions for total expected costs are developed for a two-
warehouses and for an N-warehouses distribution system. In both
cases the minimum total expected cost is found by partially
differentiating with respect to the required stock levels. Treating the
second case as two centres, one consisting of the first warchouse and
the other comprising the remaining N-1 warehouses; successive
iterations provide solutions for the N optimal inventory
replenishment levels,

The resuits of many disciplines such as queuing theory, Markov
analysis, reliability analysis etc. can be employed to perform

{44) Gross, D., "Centralized Inventory Control in Multilocation Supply
Systems”, Chap.3 in H. Scarf, D. Gilford, and M. Shelly (eds.): Multistage
Inventory Models and Technigues, Stanford University Press, Stanford, Calif., -
1963.

{45) Krishnan, K.5,, and Rao, V.R.K., “Inventory Centrel in N Warehouses”
Journal of Industrial Engineering, Vol. 18, No.3,1965, pp.212-215.
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stationary analysis of muliti-echelon inventory systems considered
in steady-state conditions. Stationary process analysis was applied
by Rosenman and Huckster®® in considering a iwo-level
supply/repair system. It is here that it was assumed for the first time
that failed items can be repaired at the peripheral level on at a higher
level according to given rates. The problem of distributing a given
system stock among the subinventories which minimises the total
expected customer waiting time was solved. It is assumed that items
can be repaired locally or centrally according to given rates and that
losses to the system are negligible. It is further assumed that external
demands are Poisson distributed that lower-level facilities use
continuous review, one for one {S-1,5) ordering policies, and that
replenishment times and repair cycles are given constants. Under
these assumptions, a cost-free model is developed.

Love™@) treated thé simplest two-subinventory cascade, both
subinventories using continuous review {S-1,8) policies, External
Poisson demand occurred only at the peripheral subinventory.
Resupply times at both locations were exponentially distributed. By
applying the results of queuning theory Love obtained the expected
number of backorder days and stock on hand per unit time. The
expected total system cost was shown to be convex with § and an
algorithm for determining the optimal policies was given.

One among the most frequently cited papers from the field of
multi-echelon inventory systems is the paper by Sherbrooke®®)
which presented METRIC model (an acronym for "The Multiechelon
Technique for Recoverable Item Control’) based on a stationary
process analysis. Originally, two-echelon system was considered in
which the bases with repair capabilities follow continuous review
{8-1,8) policies and the depot (with repair capabilities as well)
performs no reordering since all failed units are always repairabie.
The two-echelon system is pictured in Fig.2.

(46) Rosenman, B., and D. Hockstra, "A Management System for High-Value
Army Aviation Components", U.S.Army, Advanced Logistic Research Office,
Report TR 64-1, Philadelphia, Pennsylvania, 1964,

(47) Love, R.F., "A Two-Station Stochastic Inventory Model with Exact Methed
of Computing Optimal Policies", Naval Research Logistics Quarierly, Vol.
14,1967, pp.185-217. '

{48) Sherbrooke, C.C., "METRIC: A Multi-Echelon Technigue for Recoverable
Item Control”, Operations Research,Vol.16,1968,pp.122-141.
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. External " 00
_ Demand

Fig.2 The Two-Echelon System Considered by METRIC

J

Each of I bases stock J spare parts. At the occurrence of a demand
{that is, failure of one or more items in the field), the following takes
place: the demand is either satisfied from available base stock or
backordered and the failed item is inspected to determine the extent
of the repair required. If the repair can be made at the base the
unprepared item enters base repair. If the item cannot be repaired at
the base level it is shipped to the depot. Simultaneously with
shipping the item (or items) to the depot, the base places an order for
a replacement (or replacements), so that the inventory position for
item i at base j is a fixed constant, Sij. The model assumes that
demand requests are filled by the depot in the same order that they
are received. The goal is to find values for S5y at the bases and the
depot that minimise the total expected level of backorders for spare
parts at a random point in time subject to a constraint on the total
investment available, The following assumptions are made: -

* Demands for item i at base j are generated by a stationary
compound Poisson process with rate Aijj and  compounding
distribution with mean Fjj. ‘

» With probability ry a failed item i at base J can be repaired at the
base. With probality ( 1-1yj) that item must be repaired at the depot.
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» The expected base repair time, Ay, the expected order and ship
time from the depot to base j, Oy, and the expected depot repair time,
Dy for item i are known constants.

» All items can be repaired. That is, the system is completely
conservative with no condemnations allowed. Sherbrooke argues
that since the condemnation rate is only arcund 5 % and
procurement decisions are determined separately from levels for
spares, assuining a zero condemnation rate should be satisfactory.

e There is no lateral resupply {transhipment) among bases.

e Successive repair times are independent identically distributed
random variables. This is basically the same as saying that there are
infinitely many servers at the repair channels so there is no queuing
at the repair stations.

The principal computation requires obtaining an expression for
the expected number of backorders on the books for item i at base j at
a random point in time. The computation of the expected lead-timne
(Aj} when items are shipped to the depot (the depot resupply time) is
affected by a direct application of the classic formula L=AW from
gueuing theory, which says that the expected queue length is the
product of the arrival rate and the expected waiting time of an
entering customer, independent of the form of the interarrival or
service distribution. The expected wailting time at the depot for an
arriving order is the expected number of backorders {expected queue,
length of backorders) divided by the expected rate of the demand on
the depot. The total demand on the depot is compound Poison with
rate A= YJifi(1-t) and compounding distribution with mean
f= ¥ 1i(1-ri)since it is the superposition of the demand process at the
bases. Since the number of busy servers has distribution pixiA D) (49),

the expected number of unfilled requests at the depot at a random
point in time when depot stock is Sg is

B(So 1AD)=X, ®x=S0+1[{X-Solpx [AD]]

The total expected depot demand per unit time is A { or B{O] AD)/D.
It follows from L=AW that the expected waiting time per demand at
the depot is D.B(Sg!AD}/B(OILD) or § (So)D, where
5(S0)=B(Sp | AD)/B{O!AD). Hence, the total expected resupply time for
an item shipped to the depot is O+3(Sg)D. Combining this with the
computation of the expected base resupply time and including

{49) Feeney, G.J:, and C.C. Sherbrooke, “The ( S-1,5) Inventory Policy Under
Compound Poisson Demand”, Management Science, Vol.12, No.5,19686,
pp.391-411. ‘
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subscripts for clarity, it follows that the lead time for item i at base ¥
say Tijj(Sio), is given by

Tij(Sio)=rijAjj+(1-1yy}[Og +8(Sjo)Di]

By applying Feeney and Sherbrooke extension of Palm’s Theorem
{Ref.49), the expected number of backorders of item i at base jata
random point in time when depot stock for item i is Sjo and base
stock is Sjj is given by 8i(Sio, Sij), where

‘Bij(Sio’ Sij)=2>Sij(x-Sij)pix| KﬁT;j(SiO}]

It should be pointed out that this expression for expected
backorders will be exact only if lead times are independent random -
variables. However, since orders from the bases are assumed to be
filled in the same sequence in which they were placed, successive lead
times will generally be correlated. Fox and Landi®® |, however, state
that simulation experiments indicate that this expression gives
relatively good agreement with backorder levels occurring in actual
applicalion. ¢; is the cost of item i and C the total investment
available. The optimisation problem is: find Sij. 1<i<I, 0<j<J to

Minimise
Hi=137j=1] 8j{Sio. Sij)l
Subjeci To

TH=I(C¥j=(S5<C)
Sij20, O<i<l, 0gj=J

A five step procedure is given for finding optimal solutions. First.
using the expression for expected number of base backorders, the
average delay per demand against the depot is found for each items as
a lunction of depot stock. Second, for each level of depot stock and
each base, expected base backorders are calculated as a function of
the base stock. Third, for each level of depot stock, an allocation to
the bases is made which minimises the total expected backorders:
this is done by a marginal analysis method. Fourth, the minimum
expected system backorders are found as a function of total system

(50} Fox, B.L., and D.M. Landi, “Searching for the Multiplier in Qne Constraint
Optimization Problems”, Operations Research, Vol. 18, No. 12,1970, pp.253-
262.
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stock (bases plus stock). Fifth the multi-item aspect is considered by
the use of a marginal value method to allocate a given investment
across items: each additional increment of investment is assigned to
that item for which the largest reduction in expected system
backorders win result.

An interesting continuous review model was developed by
Simon'! which treats the same base/depot supply system
considered in METRIC. Simon's model is more general than METRIC
in that both a positive condemnation rate and external
procurements at the depot level are allowed, but less general in that
item demands at the bases are assumed to be generated by simple
Poisson processes and all resupply times are assumed deterministic.
As with METRIC, it is assumed that each base follows a continuous
review {S-1,S) policy. For an item which fails at base j, there is a
probability of rj that the item will be base repairable and a
probability p that an item which is not base repairable will be depot
repairable. Hence {l—rj}(1~p) is the probability that on item which
fails at base j must be condemned. Because the system is no longer
conservaltive, outside replenishments are required. This is
accomplished by assuming that the depot follows a continucus
review (80,30) policy. For each base, Simon obtains exact expressions
for the steady-state number of backorders and proves that the
number of units in repair is stationary and Poisson distributed.
Similar results are obtained for the depot.

Sherbrooke's paper has inspired many authors to propose
modified or extended models which are referred to as METRIC-based
maodels in the literature. The most commonly cited among them is
MOD-METRIC model by Muckstadi®? which introduced a concept of
high relevance for practical purposes a multi-indenture inventory.
The fact that many of the endproducts being maintained are complex
and consist of assemblies has motivated the incorporation of the
multi-indenture aspect of the problem inio inventory model. This
has been reflected in the procedure for calculating the average base
repair time. The notions of line replaceable unit (LRU) and shop
replaceable unit (SRU} were introduced. Muckstadt derived
expressions for the expected delay in the LRU base repair time due to

(51)Simon, R.M., "Stationary Properties of a Two-Echelon Operations
Research, Vol. 19,1971 ,pp.761-773.

(52)Muckstadt J.A., “ A Model for a Multi-ltem, Multi-Echelon Multi-Indenture
Inventory System", Management Science, Vol.20, No.4, 18973, pp.472 -481.
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a shortage of a given type of SRU and, further on, the average
resupply time for a failed LRU at each base. Muckstadt formulated
and solved the very realistic problem of how to allocate a given
budget for the procurement of spares between LRU and SRU which
maximises the operational availability of end-products. The
solution obtained is reported to be more suitable than the one
obtained by original METRIC. Comparison was performed by
simulation.

Another extension of METRIC has been proposed by Miller®?, In
both METRIC and MOD-METRIC, demands upon the depot are
assumed to be filled in the same sequence that they were placed
originally. In Real Time METRIC (the name was used in the original
RAND memorandum), this restriction is not placed upon the depot.
Instead, as each item completes depot repair, the depot has the
prerogative of determining to which base the item will be shipped.
Miller assumnes that demands for the itern on the depot are generated
by independent Poisson processes with respective rates Aj. The time
required at the depot to repair each item is independent of the repair
times for other items, and repair times are exponentially distributed
with mean 1/p days. In addition, Miller assumes that it requires Tj
days to ship the item from the depot to base j, where the Tps are
known constants. As each item completes repair, the rule he suggests
is to ship the item to that base whose marginal decrease in expected
backorders will be greatest at time Ty days into the future. Miller
shows this rule to be optimal for a slightly modified version of the
recoverable item problem and claims that simulation of some test
resulted in considerable decreases in the levels of expected
backorders observed when using METRIC,

In a paper by Perteus and Lansdowne®® the multi-location multi-
item spare inventory problem was treated as a logistic subproblem.
The items failed require repair. According to the authors, the time of
a particular type of repair is governed by probability distribution
and spares are kept on hand for replacing failed items in case of
lengthy repairs. The expected weighted shortages over all items and
all locations represent the measure of performance of the whole
system. The optitnisation of design is viewed in choosing between

(53)Miller, B.L., "Dipaiching from Depot Repair in a Recoverable Item
Inventory System: On the Optimality of a Heuristic Rule”, Management
Science, Vol.21, No.3, 1974, pp.316-325

(54)Porteus, E., and Z.Lansdowne, "Optimal Design of a Multi-ltem, Multi-
Location, Multi-Repair Type Repair and Supply System”, Naval Research
Logistic Quarterly, Vol 21, 1974, pp.213-238.
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more spaves on shorter expected repair times within a budget
constants. All costs are separable and a Lagrangean approach to
optimisation has therefore proven efficient.

Deuermeyer and Schwarz® analyse a system operating under a
continuous review demand replenishment (5,3}, ordering policy. The
paper develops and tests an approximate model for estimating
system service level performance as a function of system parameters:
warehouse and subwarehouse lot-sizes, order points, lead times, and
demand parameters. External demand is Poisson, with identical
mean rate at all subwarehouses and the iead time to the
subwarehouse is also identical and constant for all warehouses.
Further, the subwarehouses have identical order points, s, and order
quantities, Q. Model involves the approximation of the warehouse
demand process using results from renewal theory.

Clark3® summed up the interesting results of many-years efforts
towards developing the optimal availability inventory model for
Navy applications. These results are embodied in a multi-indenture,
multi-echelon spare parts inventory model which was explicitly
designed for practical use and implementation. The main
assumptions made in the model are: demand distributions are
stationary and satisfy Palm's theorem, all subinventories use
continuous review (5-1,8) policies, excess demand is backlogged,
there is no lateral resupply. The performance measure is the expected
operational availability of end-product. It is defined as the ratic of
up-time to the sum of up-time and down-time of end-product. The
solution procedure is described, and the application of the model is
fllustrated by a number of actual two-echelon type examples. The
same availability is achievable with more than three times lower
total spares investment used for current spare policies in the Navy.

A review paper on various mathematical models that have
appeared in the literature for determine stocking levels for.

(55) Deuermeyer, B.L., and L.B. Schwarz, "A Model for the Analysis of System
Service Level in Warehouse Retalier Distribution System: The Identical
Retailer Case", paper presented to Multi-Level Production/Inventory Systems
Conference, Purdue University, 1979.

{56) Clark A.J., “Experiences with Multi-Indenture, Multi-Echelon Inventory
Model”, in Schwarz, L.B.(led), Multi-Level Production/Inventory Control
Sysiem: Theory and Practice, Studies in the Management Sicience Vol '16,
North-Holland: Amsterdam, 1981, pp.299-330.



A SURVEY CF MULTI-ECHELON INVENTORY MODELS 141

repairable item inventory system is published by Nahmias(??)
Existing models are classified into three general classes: continuous
review, periodic review, and models based on ¢yclic gueuing sysiemns.

A model to determine the inventory stockage levels in a multi-
echelon inventory system for a repairable item is developed by
Graves(®. The multi-echelon system consists of a set of operating
sites supported by a centrally-located repair depot. Each operating
site requires a set of working items and maintains an inventory of
spare items. The repair depot also holds an inventory of spare items.
Item failures are infrequent and are replaced on a one-for-one basis.
Failures are generated by a cormnpound Poisson process and that the
shipment time from the depot to each site is deterministic. No
assumptions are made with regard to the repair cycle at the depot.
Under these assumptions an exact model for finding the steadystate
distribution of the net inventory level at each site is presented. Also,
based on the exact model, an approximation for the steady-state
distribution for the case with ample servers at the repair depot is
presented.

The application of a heuristic model developed to aid Eastman
Kodak management in determining safety stock allocated in a two-
level, finished products distribufion system is described by
Rosenbaum®®. This distribution system consists of a central
distribution centre {DC} and up to seven regional distribution centres
{(RDCs}, depending on the given product. Within Kodak's existing
management system safety stock, quantities are based on fill rates,
individualy set at each stocking location, the DC and the RDCs. The
model was developed to determine that combination of individual
fill rates, which minimises the system's safety stock while
guaranteeing a prespecified level of system performance.

Before ending the review on stochastic multi-echelon inventory
systems published papers on systemn, design are reviewed. The design
of a multi-level production and inventory system the determination

(567} Nahmias, S., “Managing Reparable liem Inventory Systems: A Review”, in
Schwarz, L.B. (ed), Multi-Level Production/Inventory Control System: Theory
and Practice, Studies in the Management Science, Vol. 16, North Holland:
Amsterdam, 1981, pp. 253-277.

{58} Graves, S.C., “A Multi Echelon Inventory Model for a Repairable Ifem with
One-for-One Replenishment”, Management Science, Vol. 10, 1985, pp.1247-
1256,

(59) Rosenbaum, B.A., "Service Level Relationships in a Multi-Echelon
Inventory System”, Management Sclence, Vol.27, pp.926-945.
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of the number of activities, their size, and network configurafion, is
in many ways the most important problem that the theoretician or
manager may confront.

The first paper that discusses the optimal design of multi-echelon
system was by Pinkus et al®®. This paper presents a model for
designing multi-activity, multi-facility systems. Given the
maximum number of facilities and their possible locations, the
problem is to detertnine which facilities to include in the systemn and
which activities should be carried on at each facility in order to
minimise the cost of the system. A branch and bound algorithm for
solving the problem is given. One of the weaknesses of this model is
that it assumes that there is no limit to the storage space available at
a given installation. A later paper by the same authors'®l is
presented to overcome this deficiency. To use the later model it is
necessary to know the optimal inventory policies for a set of multi-
echelon systems. Dynamic programming approach presented by
Clark and Scarf (Ref.28) is used to detemnine the optimal inventory
policies. In the model the echelon structures are indexed by i, i=L....m;
the products are indexed by j, j=1,....n; the installations are indexed
by k, k=1......p. The other variables are as follows:

aj: the inventory cost of product j using echelon structure i,
bk  : the facility cost of installation k,

T : the storage space available at instailation k,

djjic : the storage space required at installation k for product j

uses echelon structure L
xjj :the decision variables, 1 il product j uses echelon structure

i, 0 otherwise,
vk : the decision variables, 1 if installation k is used,
0 otherwise,
Gross states the entire model as follows:

Minimise

Ty =1(ayxgj)+. X pk=1 by

{60) Pinkus, C.E., D. Gross, and R.M. Soland, "Optimal Design of Multiactivity
Multifacility Systems by Branch and Bound", Operations Research, Vol.21,
No.1, 1973, pp.270-283.

(81) Gross, ID., R.M. Soland, and C.E. Pinkus, "Designing a Multi-Echelon
/Inventory System”, in Schwarz L.B. (ed.), Multi-Level Producticn/Invetory
Control System: Theory and Practice, Studies in the Management Science,
Vol. 18, North-Holland: Amsterdam 1981, pp.11:49.
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Subject to
i =1{xg)=1 i=l....n
Xy =1}:,nj= i (dijkxié-rkyk)so k=1......,p
Xij,yk=0 or 1 foralli,j, k

It should be noted that the parameters ajj are determined using the
Clark-Scarf anproach.

Another paper on system design was by Eppen(?. This paper
concerns a multi-location newsboy problem with normal demand at
cach location and identical linear holding and penalty cost functions
at each location. Consclidation of demand from several facility is
considered, and expression is derived for the result expected holding
and penalty costs as a function of the demand parameters for each
location (means, variances, and correlation coefficients). The
expression is used to demonstrate that (1) the expected holding and
penaity costs in a decentralised system exceed those in a centralised
system, (2) the magnitude of the saving depends on the correlation of
demands; and (3) if demands are identical and uncorrelated, the costs
increase as the square root of the number of consolidated demands.
The general approach and some expressions are useful in
investigating various questions concerning the design and operation
of inventory systems.

. RECENT WORK ON MULTI-ECHELON INVENTORY SYSTEM
Clark (Ref.3) in 1971 has said:

"...It is probable that research in multi-activity inventory
theory has reached a point where highest returns have already
been achieved (the easy problems have been solved) and,
therefore, marginal returns from further work, are likely to
diminish. The principle opportunities for further work both by
individual researchers and research teams, probably lie in
refinements and extensions of previous results and in the
reduction of currently available theory to practice in actual
inventory situations. In addition there may still be a small -
probability that a new basic theory can be developed which
would supersede much of the previous results,..”

(62) Eppen, G.D., “Effect of Contralization on Expected Costs in a Multi-
Echelon Newsboy Problem”, Management Science, Vol.25, No.5, 1979, pp.498-
501.
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Unfortunately Clark is right; a new basic theory has not been
developed. In this section most of the recent work on rmulti-echelon
inventory control theory is reviewed and marginal contributions are
discussed.

Recent developmentis on information processing techniques and
computer science are leading to implementation of more effective
decision support systems. Some of these support systems are
developed for multi-echelon logistics. The most significant system
(named Optimiser} is announced at the paper of Cohen ¢t al,(63)
Details for the model, its properties, and the effectiveness of the
solution algorithm are reported in Cohen et al.(69, Cohen et al. %,
Cohen et aL® , and Cohen et al.6?, Optimiser, a systemn for flexible
and optimal control of seirvice levels and spare parts inventory, was
implemented by IBM in ifs US network for service support. The time-
averaged value of inventory recommended by the stocking policies of
Optimiser was 20 to 25 percent below that of the existing system. This
difference was ohtained along with a 10 percent improvement in the
parts availability al the lower echelons while maintaining the parts
availability levels at the higher echelons. These strategic changes
have yielded operational efficiency on the order of 20 million dollars
a year.

Mentzer et al.(8® presented a personal computer (PC)-based, multi-
echelon, stochastic, dynamic simulator, termed the Strategic
Planning Model (SPM). The model is intended as a strategic decision
support system generator, which can be conligured to represent the

(63) Cohen, M. , p.V. Kamesam, P. Kieindorfer, H. Lee, A Tekerian “Oplimizer
IBM's Multi-Echelon Inventory System for Managing Service Logistics”,
Interfaces, Vol.20, No. 1, 1990, pp.65-82.

{64) Cohen, M.A., P.R. Kleindorfer, and H.L. Lee, "Optimal Stocking Policies for
Low Usage Items in MultiEchelon Inventory Systems", Naval Research
Logisdcs Quarterrly, Vol.33, No, pp.17-38.

{65) Cohen ML.A., P.R. Kleindorfer H.L. Lee, A.P. Tekerian "Excess-Demand
Distributions for, MEeS Stocking Policies in Multi-Echelon Logistics
Systems”, in Chikan A. (ed.), Inventories in Theory and Practice, Elsevier
Science Publishers: Amsterdam, 1986, pp-655-667.

{66) Cohen, M.A., P.R. Kleindorfer, and H.L. Lee, “Service Constrained (s,5)
Inventory Systems With Priority Demand Classes and Lost Sales”,
Management Science, Vol.34, No.4,1989, pp.482-499

(67) Cohen, M.A., P.R. Kleindorfer, H.L. Lee, and D.F. Pyke, "Mulii-ltem Service
Constrained (s, S) Policies for Spare Parts Logistics Systems”, Waorking Paper,
1989.

(68) Mentzer, J.T., and R. Gomes, “The Strategic Planning Model: APC- Based
Dynamic, Stochastic, Simulation DSS Generator for Managerial Planning”,
Journal of Business Logistics, Vol.12, No.4, 1991, pp. 193-219.
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detailed functioning of operating systems, production, or
distribution facilities. With system cost operating data entered into
the model the effects of varied conditions of market and company
operation can be tested,

Another decision support system was designed by Tripp et al.®? to
help logistics managers assess wartime readiness and to identify
resource and policy changes that could improve it. The decision
support system known as the weapon systemm management
information system (WSMIS), detects situations where theatre
wartime sortie capabilty might be jeopardised and by what resource
shortages or logistics processing bottlenecks. The WSMIS is designed
to distinguish between planned and actual logistics support
capabilities,

One of the recent papers on design of multi-echelon systems is
published by Gray et al.”’%. In this paper the composite design and
operating problems for a typical order-consolidation warehouse are
described and modelled. These problems include warehouse layout
equipment and technology selection, item location, zoning, picker
routing, pick list generation and order batching. The complexity of
the overall problem mandates developing a new multi-stage
hierarchical decision approach. The hierarchical approach utilities
a sequence of coordinated mathematical models to evaluate the
major economic {rade-offs and to prune the decision space to a few
superior alternatives. Detailed simulation employing actual
warehousing data is then used for validation and fine-tuning of the
resulting design and operating policies.

A framework for the planning and control of the materials flow in
a multi-item production system is presented by Zijm.7" The prime
objective is to meet a prespecified customer service level at minimum
overall costs. The system incorporates several new concepts, in
particular multi-echelon structures and hierarchical planning
procedures, based on a product family structure. The basic algorithm

(89) Tripp, R.S., L k. Cchen, R.J. Hlllestad R.W: Clark, S.B. Limpert, and S.K.
Kassicieh, “A Decision Support System for Assessing and Controlling the
Effectiveness of Multi-Echelon Logistics Actlons“, Interfaces, Vol.21, No.
4,1991, pp. 11-25. _

(70} Gray, A.E., U.S. Karmarkar A. Seldmann, “Design and Operation of an
Order- Consolldation Warehouse: Models. and Application”, European
Journal of Operational Research, Vol.58, No.1, 1992, pp.14-36.

(71) Zijm, W.H.M., “Hierarclical on Internatlonal Journal of Production
Economics, Vol.26, No 1-3, 1992, pp. 257- 264 :
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framework that is needed to turn conceptual ideas into operational
procedures is described.

Friedman(? makes some inroads into the problem of
determining the optimal number of echelons. An extended lol-size
model with no shortages, the usual array of underlying regularity
assumption but with the added option of storing inventory in several
vertical echelons form the modelling framework. The trade-off
between stocking two different echelons on the inventory ladder is
that on the higher levels the carrying charges are lower but the
handling charges are higher. The initial objective is to minimise the
total cost per unit time via the determination of the lot-size, or
alternatively the cycle's length, and simultancously its distrubution
among the available echelons, or alternatively again the proration of
the inventory cycle into subperiods In which demand is met by
different echelons. After establishing this the final objective of
finding the number of echelons for which aforementioned cost is
smallest is being taken up.

An inventery system with one warchouse and N retailers where
lead times are constant and the retailer face independent Poisson
demand is considered by Axsater®, Simple recursive procedures lor
determining the holding and shortage costs of different control
policies are provided. Svonoros et al.’%) present a model which
assumes that the exogenous demands are independent Poisson
processes and each location follows a one-for-one replenishment
policy. Transit times are modelled in a way that closely follows the
standard treatment of stochastic lead-times in single-localion
models. Simple methods are described for computing or
approximating the steady-state behaviour of the system. The resulis
show that, in sharp contrast to prior multi-echeion models, transit-
time varlances play an important role in system performance.
Herative computational formulas are developed by Daryanani el
al.”® for the steady-state probabililies of an exponential single-

{72) Friedman, M.F., “A Distribution Multi-Echelon Lot-5ize Model", European
Journal of Operational Research, Vol.57,1992, pp.54-70. _

{73) Axsater, S., "Simple Solution Procedures for a Class of Two-Echelon
Inventory Problems", Operations Research. Vol.38, No. 1, 1990, pp.64-69.

(74) Svonoros, A., and P. Zipkin, "Evaluation of One-for-One Replenishment
Policies for Multiechelon Inventorv Systems, Management Science Vol.37,
No.1,1991, pp.68-83.

(75) Daryanani 8., and D.R. Miller, “Calculation of Steady-State Probabilities
for- Repair Facilities with Retum Priorites”, Operations Research,
Supplement, May/June 1992, pp.5248-5256. .
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channel repair facility with multiple Poisson sources and a dynamic
return policy. Such facilities occur as part of multi-echelon
repairable item pro-visioning systems in which backorders are filled
according to need instead of FIFO or SIRQ policies. The solution
technique is based on the taboo structure.

The concept of echelon stock is adopted by Chiu et al.® so as to
decompose an N-stage lot-sizing problem into N independent single
stage subproblems. Each subproblem is represented by the topology
structure used by Afentakis et al. (Ref.15). A dynamic programming
algorithm is developed to obtain the optimal solution. This
algorithm is based on a pointer method and can be easily extended to
capacitated problems, AR

The lot-size models are well known models in oﬁe'rat.ién:ai:i

research. Especially the multiechelon, lot-size inventory problems

have received much attention in the literature. Richter and Voros? =~ .
examined the stability of a schedule. The stability region: of a’ .
schedule means the set of cost inputs having the same production’ [
plan for a demand series. For the singlelevel lot-sizing stability -
problem, it has been pointed out that the stability region is a convex -

cone. Omitting the need [or strong assumptions, it is shown that this

convex cone properly can be extended to more general multi-level
problems with certain cost functions. Analysing the structure of an
optimal schedule, il is also shown that this production plan can be
expressed by a regeneration matrix. Nine lot-sizing rules are
evalnated by Choi et al.’® using simulation where two sets of
demand patterns are used. Lot-sizing rules are: lot-for-lot econormic
order quantity, periodic order quantity, least unit cost, least total
cost, part-period balancing, Silver-Meal, Wagner-Whitin, and
economic order quantity-economic production hybrid. The analysis
shows that the periodic order quantity rule performed best in the
majority of lest cases. The part-period balancing, least total cost, and
least unit cost rules generally ranked in the upper half while the
other rules are generally ranked in the lower half. Hsu and El-

(76) Chiu, H.N., and T.M. Lin, "An Optimal Model and a Heuristic Technique for
Multi-Stage Lot-Sizing Problems: Algorithms and PerformanceTests",
Engineering Costs and Production Economics Vol. 16 No.2,1989, pp.151 -160.
(77) Richler, K, and J. Voros “On the Stability Region for Multi-Level Inventory
Problems", European Journal of Operational Research Vol.41. No.2, PP 169-
173,

{73} Choi, R.H., E.M. Mzistrom, and R.D. Tsai, "Evaluating Lot-Sizing Methods
in [nvenlory Systems by Simulation”, Production and Inventory Management,
Vol.29, No.4,1988, pp.4-11. ' '
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Najdawi(" examined four safety stock planning methods and five
lotsizing rules under three levels of forecasting error. The total costs
of various strategies at each level of forecasting error are compared.
Gupta and Keung®® examined the multi-stage lot-sizing models that
assume constant demand, time-varying demand, and a rollinghorizon.

The problem of determining the approximate timing and
quantities of shipments in a multiitem, multi-stage inventory
distribution system is censidered by Roundy®, Several dilferent
items are stocked at each of a number of different locations. External
demand for each of the items takes place at a constant, location-
dependent rate. All demands must be met without back orders and
stockouts. The costs that are to be minimised are linear holding and
order costs. The total order cost incurred at any given time is a
function of the set of item ordered at that time, but not of the .
quantities of the items ordered. A heuristic algorithm is presented
that is guaranteed to produce policies that are within 2 % of optimal.
Joneja®? presented a simple single-pass approximation algorithm
which is proved that, in the worst case, the performance of the
algorithm is uniformly bounded where the bounds are independent of
the size of the system, the cost parameters, and the demand pattern.
Changes in the time horizon or in the demand forecasts far in the
future have little effect on the production policy in the current time
period. Hence, the algorithm has the advantage of controlling
nervousness of the generated policy. Bregman et al.®% developed a
heuristic algorithm for solving the multiechelon inventory control
problem that balances transportation costs against the cost of
holding inventory in a multi-echelon environment. Same
authors® developed and tested another heuristic procedure for

{79) Hsu, J.I., and M.K. El-Najdawi, "Integrating Safety Stock and Lot-Sizing
Policies for Multi-Stage Inventory Systems Under Uncertainty”, Journal of
Business Logistics, Vol.12, No.2,1891, pp.221-238. '
(80) Gupta, Y.P., and Y. Keung, "A Review of Multi-Stage Lot-Sizing Models",
International Journal of Operations and Production Management, Vol 10,
No.9, 1990, pp.57-73.

(81) Roundy, R.O., "Computing Nested Reorder Intervals for Multi-Item
Distribution Systems”, Operations Research,Vol.38, No.1,1990, Pp-37-52.

(82) Joneia, D., "Multi-Echelon Assembly Systems with Nonstationary
Demands: Heuristics and Worst Case Performance Bounds”, Operations
Research, Vol.39, No.3,199 1, pp.512-518.

{83) Bregman, RL., L.P. Ritzman and L.J. Krajewski, "A Heuristic Algorithm for
Managing Inventory Multi-Echelon Environment, Journal of Operations
Management Veol.8, No.3,1989, pp. 186-208,

{84) Bregman R.L., L.P.Ritzman, and L.J Krajewski, "A Heuristic for the Control
of lnventory Echelon Environment with Transportation Costs and Capacity
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controlling finished goods in a multi-echelon environment with
significant transportation costs and capacity limitations on both
storage and transportation resources.

A model that is a direct generalisation of the initial work of Clark
and Scarf (Ref.28) is presented by Rosling®, In the model, an
assembly system that has random demands and proportional costs
of production and stock holding activities is considered. Under
certain assumptions it is shown that the assembly system can be
remodelled as a series system. Inderfurth® develops a procedure for
determining the optimal size and distribution of safety stocks in a
general serial or divergent production and distribution process ruled
by a base-stock control policy. A dynamic programming algorithm
for solving the safety stock optimisation problem is presented.

Some other specific topics that examined by the researchers are
price discounting in muliiechelon distribution systems®?, multi-
echelon {R, S) inventory models®®), numerical evaluation for multi-
echelon systems®, and correlated demands (both across
warehouses and in time} in multi-echelon inventory systems,®%

V. EPILOGUE

Looking at the whole work on the multi-echelon inventory control
problem, i is observed that the problem as [ormulated has been
solved. Additional research on refinements and extensions of
previously developed approaches seems to go on. From our point of
view, simulation technique and heuristic approaches are the key

Limitations", Journal of the Operational Research Society, Vol.41, No.2, 199
pp.8B09- 820.

{85) Rosling, K., “Optimal Inventory Policies for Assembly Syslems Under
Random Demands”, Operations Research, Vol.37, No.4,1989, pp.565-579.

{86} Inderfurth, K., "Safety Stock Optimization in Multi-Stage Inventory
Production FEconomics, Vol.24, No.1-2,1991, pp.103-113.

(87} Jaikmar, R., and V.K. Rangan, Price Discounting in Multi-Echelonh
Distribution Systems”, Engineering Costs and Production Economics, Vol 18,
No. 1-3,1990, pp. 103-113.

{88) Sinha, D., and K.F. Matta, "Multiechelon (R, 3) Inventory Model”, Decision
Sciences, Vol.22, No.3, 1991, pp.484-499. '

(89) Van Houtum, G.J., and W.H.M. Zijm, “Computational Procedures for
Stochastic Multi-Echelon Production Systems”, International Journal of
Production Economics, Vol.23, No.1-3, 1991, pp.223-237.

(90) Nesim, E., H.H. Warren, and S. Nahmias, “Oplimal Centralised Ordering
Policies in Multi-Echelon Inventory Systems with Correlated Demands”,
Management Science, Vol. 36, No.3, 1890, pp.381-392.
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tools of operational research to investigate complicated multi-
echelon systemn. Wagner®) has said
"...at this time I know of no approach, other than computer
simulation that give equally reliable estimates of the service
and inventory levels for a proposed design for a multi-product,
multi-warchouse system.”

Peterson and Siver®® have also said
"...it will be clear that analytical decision rules for
hierarchical inventory systems involving probabilistic
demand are out of question, at least for the present. Therefore,
simulation models have and will continue to be used to develop
control guidelines for such situations.”

Especially, decision 'f":support systems which exploit the recent
developments in the area of artificial intelligence and information
technology, are and will be on the rise,

Although there are many important contrcl problems in the
multi-echelon inventory area, this has never had any real impact on
the development of control theory, which has traditionally been
directed towards more technically oriented dynamical systems.
However, in the short run results from servomechanism theory can
be used for multi-echelon inventory control purposes in the same
sense as the other technigues described previously. As Hadley and
Whitin'®® assert

"...most of the analytical work in this area has been done in
electrical engineering in the course of studying
electromechanical servomechanisms. Little has been done to
apply the results to inventory system, or to modify the
analytical results already available to make them more useful
in the analysis of inventory problems.”

This area needs further investigation. The application of
servomechanism theory in the analysis and design of multi-echelon
inventory systems is on the research agenda of the author.

(©1} Wagner, H.M., “The Design of Production and Inventory Systems for
Multiwarehouse Companies”, Operations Research, Vol.22, 1974, pp.278-291.
(92) Peterson, R., and E.A. Silver, Decision Systems for Inventory Management
and Production Planning, Wiley/Haimilton, 1979.

(93} Hadley, G., and T.M. Whitin, “A Review of Alternative Approaches to
Inventory Theory”, RM-4185-PR, US Goverment Research Reporis, Document
‘No.AD-605843, The RAND Corp., Santa Monica, Calif., 1964.



