Düzce University Faculty of Forestry Journal of Forestry (DUJOF) Journal of Forestry Volume 21, Number 1, pp.483-503 Category: Research Article

> https://dergipark.org.tr/tr/pub/duzceod ISSN 2148-7855 (online), ISSN 2148-7871 Düzce University Faculty of Forestry DOI: 10.58816/duzceod.1568256

Computer-Aided Modeling In Parametric Landscape Design*

Parametrik Peyzaj Tasarımında Bilgisayar Destekli Modelleme

DFazilet MUHAMMED ÇOLAK¹, **D**Ayça Yeşim ÇAĞLAYAN²

Abstract

In this study, the possibilities of using parametric design in landscape architecture are examined through the design process and design elements. Three different computer-aided design programs, which play an important role in parametric design, were compared and the more advantageous program for parametric design was selected. Examples designed using parametric design approach and design principles are examined and the use of parametric design in landscape architecture is emphasized. At the end of the study, the application of parametric design in landscape design is discussed on the basis of problem-solution and form-logic relationships.

Keywords: Parametric Landscape Design, Design Process, Computer Aided Modeling Özet

çalışmada parametrik Bu tasarımın peyzaj mimarlığındaki kullanım olanakları tasarım süreci tasarım öğeleri üzerinden incelenmiştir. ve Parametrik tasarımda önemli rol oynayan bilgisayar destekli tasarım araçlarından üç farklı program karşılaştırılarak, parametrik tasarım için daha avantajlı olan program seçilmiştir. Parametrik tasarım yaklaşımı ve tasarım ilkeleri kullanılarak tasarlanmış örnekler incelenmiş ve bu hususlarda parametrik tasarımın peyzaj mimarlığındaki kullanımı vurgulanmıştır. Çalışmanın sonunda, parametrik tasarımın peyzaj tasarımında uygulanma şekli, problem-çözüm ve form-mantık ilişkileri temelinde tartısılmıştır.

Anahtar Kelimeler: Parametrik Peyzaj Tasarımı, Tasarım Süreci, Bilgisayar Destekli Modelleme

Received: 16.10.2024, Revised: 15.11.2024, Accepted: 26.11.2024

Address: ¹Department of Landscape Architecture, Institute of Graduate Studies, İstanbul University-Cerrahpaşa, İstanbul.

E-mail: fazilet0513@gmail.com

² Department of Landscape Architecture, İstanbul University-Cerrahpaşa, İstanbul.

E-mail: ayesim@iuc.edu.tr

^{*}This study is prepared based on the Master's thesis of first author at, titled "Computer-Aided Modeling in Parametric Landscape Design".

1. Introduction

Landscape architecture is a discipline aimed at regulating interactions between the natural environment and human beings by creating aesthetically pleasing and functional spaces. The design process in this field is often complex, involving consideration of various and variable parameters. In recent years, parametric design has become increasingly prevalent as a method to alleviate the challenges in landscape architecture design processes. This approach offers a framework where design parameters can be flexibly adjusted, diverse design options can be rapidly generated, and environmental sensitivities can be maintained.

The parametric design approach is a design methodology based on determining design parameters, defining their relationships, and automatically generating designs based on these parameters. In this approach, the design process begins with designers creating a parameter model, where they input values for a set of variables and define their relationships. These parameters can include various features such as dimensions, material selection, geometry, tolerances, and more. Once the parameters are set, the parameter model is run through software that automatically generates the design. This software recalculates the design based on the values of the specified parameters, and altering each parameter results in a change throughout the entire design.

Today, parametric design technology has become widely used in landscape architecture, paralleled by the growing importance of computer-aided design software. The use of design programs like Rhino based on Grasshopper provides several advantages over traditional design, allowing for efficient selection of structural forms through different parametric variations, facilitating detailed component data for analysis, and enhancing interdisciplinary communication efficiency.

The aim of this study is to explore the possibilities of using parametric design tools in landscape architecture. By examining the features and capabilities of computer-aided modeling tools in parametric landscape design, the study seeks to identify a more suitable tool for parametric design. The objective is to apply parametric landscape design principles to a proposed area using these tools. The use of parametric design in landscape architecture will be examined based on criteria such as problem-objective in design, type of design service, and the application of parametric design thinking in design stages. This will elucidate the effects of parametric design on the landscape design process and its impact on landscape design elements. Computer-aided design/modeling tools play a crucial role in parametric design. They enhance efficiency and flexibility in the design process, allowing for rapid modifications and adaptations. The study will compare three different design tools based on various considerations, aiming to select the most advantageous tool for parametric design.

1.1. Elements Constituting the Parametric Design Process

Sevgi (2013) defined the formation process of parametric design with four components: initial conditions and parameters, methods for generating variables (output, product), generation mechanism (rules, algorithms), and the selection of the optimal variable. The parametric design process continues with the production of variables within the framework of rules and algorithms, where the initial conditions and parameters specified by the designer are interrelated. In this process, the most suitable variables are selected to form the design object (Sevgi, 2013).

The elements constituting the parametric design process are as follows (Sevgi, 2013):

Initial conditions and parameters (Inputs): These are variables that form the starting point of the design and are used throughout the design process.

Methods for generating variables (Output, Product): These enable the determination of variables to be used in the design process, based on the initial conditions and parameters.

Generation mechanism (Rules, Algorithms): This expresses the relationships and dependencies among variables through rules and algorithms.

1.2. Algorithm of Parametric Design Model

The creation of a parametric design model in landscape architecture involves three stages:

Definition of Parameters Based on Data: For instance, Hammad (2020) outlined various parameters for the design of a pocket park, including dimensions/scale, area selection, accessibility, function, park boundary, location type, terrain, plant cover, etc. Adjustable data in park design. Additionally, Hammad (2020) compiled the quantitative standards of the design as a database for defining design rules. Different data is collected for different landscape designs, and desired parameters can be established.

Determination of Design Rules: The most crucial aspect of parametric design is the determination of rules. A specific design algorithm is conceived for a design and transferred to computer-aided programs. This requires a thorough understanding of computer-aided modeling tools by the designer.

Attainment of Design Results: In parametric design, diverse and quickly obtainable results are expected. The outcome represents the success of both human cognition and computer algorithmic calculations.

In summary, parametric design in landscape architecture consists of the following stages: Identification of initial conditions and parameters; Generation of variables defined by the designer through rules; Optimization of output and output product.

1.3. Principles of Parametricism / Parametric Design

The term "Parametricism" is used to describe an approach in design and architecture. This approach refers to designs created through the use of computer-aided design and production technologies to shape and produce complex geometries and structures. The term "Parametricism" was introduced by Patrick Schumacher of Zaha Hadid Architects in 2008. Schumacher promoted this approach to enhance the use of computer-aided production technologies in architectural design, allowing designs to achieve a level of complexity in geometries that was previously unattainable. Parametricism also enables design to be modeled and modified through mathematical formulas and parameters.

Schumacher asserts that parametricism emerged from the creative development of parametric design systems aimed at explaining the workings of complex social processes and institutions (Schumacher, 2009). According to Patrick Schumacher, parametricism is the most important movement following modernism. As with every movement, Patrick Schumacher defines principles that should be followed and elements that should be avoided in parametricism. Schumacher outlined these principles at different times, particularly in the 2008 publication "Parametricism as Style - The Parametricist Manifesto," the 2009 publication "Parametricism: A New Global Style for Architecture and Urban Design," and the 2011 book "The Autopoiesis of Architecture." These principles are organized into two categories: affirmations (dogmas) and rejections (taboos).

In recent studies, the principles proposed in the Parametricist Manifesto have been grouped under common headings by gathering similar conditions together, thereby defining key characteristics to look for in designs. In a study by Oktan (2015), the affirmations and rejections deemed necessary for evaluating parametric designs within the context of the "Parametricist Manifesto" are organized as shown in Table 1 below (Table 1).

	Principles of the Parametricist Manifesto	Formulated Principles
	 Articulation Interconnection of all systems 	Interrelation
	Hybridization	Differentiation of form
	Morphing	
	 Deformation 	
	 Systematic bending and interconnection 	
	 Differentiation of all systems within certain rules 	
Dogmas	Variation and repetition of the same unit	Differentiated repetition
	Repetition with variation in different proportions	
	 Use of NURBS 	Curvilinearity
	 Use of splines (curved lines) 	
	 Use of coding 	Parametric design
	 Parametric processing of all forms 	
	Decontextualization	Universality
	 Conventional typologies 	Euclidean forms
	Platonic forms	
	 Sharp edges 	
	Straight lines	
Taboos	 Right angles and corners 	
1 40003	• Rigid geometric shapes like squares, triangles, and circles	
	Rigid forms	
	Lack of interrelation	Lack of interrelation
	 Juxtaposition of unrelated sub-parts and systems 	
	 Unrelated individual parts 	
	 Unrelated sub-parts 	
	• Simple repetition of the same unit	Simple repetition
	 Simple repetition of parts 	
	 Simple repetition of sub-parts 	

Table 1. Affirmations / rejections formulated within the context of the "parametricist manifesto".

2.1. Material

In the scope of this study, an initial literature review was conducted to investigate fundamental information that could be utilized in the research. Among these fundamental pieces of information are the concept of parametric design, elements constituting the parametric design process, parametric design principles, landscape design process and elements, the concept of computer-aided design, and modeling tools. In the subsequent stages, the application of the parametric design approach and the use of parametric design principles in landscape design were elucidated by examining examples of landscape design where parametric design principles were employed. Concurrently, a comparison of computer-aided modeling tools was carried out to highlight the advantages and disadvantages of programs deemed suitable for parametric design. The cited landscape examples in the research encompass fifteen cases, namely Curvilign Bench(Anonymous, 2015), LightPRO Shell Pavilion(Pintos, 2022), Urbach Tower(ICD/ITKE, 2019), Please Be Seated (Paul Cocksedge Studio, 2021), Stadel Museum(Gooood, 2014), Light Wall House (EcoLogic Studio, 2012), Bench Layout(Anonymous, 2023), Roche Campus Kaiseraugst (Bryum, 2019), Parametric Space Installation(Gooood, 2016), Children's Playground(L&A Design, 2020), The South Park(Fletch Studio, 2017), Keio University(MDP, 2012), Sony Forest(Groundhog, 2012), Edaphic Effects(Groundhog, 2011), and MAX IV Laboratory Landscape(Groundhog, 2016).

The cited landscape examples in the research encompass fifteen cases, namely Curvilign Bench(Anonymous, 2015), LightPRO Shell Pavilion(Pintos, 2022), Urbach Tower(ICD/ITKE, 2019), Please Be Seated (Paul Cocksedge Studio, 2021), Stadel Museum(Gooood, 2014), Light Wall House (EcoLogic Studio, 2012), Bench Layout(Anonymous, 2023), Roche Campus Kaiseraugst (Bryum, 2019), Parametric Space Installation(Gooood, 2016), Children's Playground(L&A Design, 2020), The South Park(Fletch Studio, 2017), Keio University(MDP, 2012), Sony Forest(Groundhog, 2012), Edaphic Effects(Groundhog, 2011), and MAX IV Laboratory Landscape(Groundhog, 2016). The classification of landscape design examples is made under three headings: space(scenario) creation, object design, and technical design (Table 2).

Various examples falling under these categories, such as recreational areas, parks, sports and play areas, tourism and leisure facilities, urban and rural development areas, urban pedestrian areas, and squares, were considered(Yarcı and Malkoç, 2011).

Study Samples	Type of Design Service	Category	İmages	Year and Location
Curvilign Bench	Object Design	Structural design - Reinforceme nt design	BRICH	2015 Uncertain
LightPRO Shell	Object Design	Structural design -		2021
Pavilion		Landscape Structure		Germany
Urbach	Object Design,	Structural design -		2019
Tower	Technical Design	Landscape Structure		Germany
Please Be	Object	Structural design -		2019
Seated	Design	Reinforceme nt design		London/ UK
Stadel	Object Design,	Structural design - Ceiling design,		2012
Museum	Technical Design	Landscape design, Natural illumination		Germany

Table 2. Landscape design service type of the study samples.

LightWall	Object Design,	Structural design - Wall design	2012
House	Technical Design	Natural illumination	Turin/ Italy
Bench	Space	Bench	Uncertain
Layout	Design	Layout	Finland
Roche Campus	Object Design, Space	Structural design - Pavement design Planting	2018
Kaiseraugst	Technical Design	design, Natural irrigation	Switzerland
Parametric Space	Object Design,	Structural design -	2016
Installation	Technical Design	Reinforceme nt Design	Nanjing/ China
Children's	Object Design,	Structural design -	2020
Playground	Space Design	Playground Design	Guangzho/ China

			 2017
The South Park	Space Design	Scenario creation	San Francisco/ USA
Keio	Space Design,	Scenario creation, Planting	2012
University	Design	design, Pavement design	Tokyo/ Japan
Sony Forest	_ Space Scenario Design. creation		2012
Sony Forest	Planting design	Planting design	Tokyo/ Japan
Edaphic	Technical	Edaphic effects,	2011
Effects	Design	Irrigation system	Philadelphia /USA
MAX IV	Space Design,	Scenario creation,	2016
Laboratory Landscape	Technical Design	Surface flow management	Lund/ Sweden

(Note: The images in this table are taken from sources Anonymous, 2015; Pintos, 2022; ICD/ITKE, 2019; Paul Cocksedge Studio, 2021; Gooood, 2014; EcoLogic Studio, 2012; Anonymous, 2023; Bryum, 2019; Gooood, 2016; L&A Design, 2020; Fletch Studio, 2017; MDP, 2012; Groundhog, 2012; Groundhog, 2011; Groundhog, 2016.)

According to current design examples, parametric design encompasses object design services such as bank design, pavilion design, tower design, seating group design, ceiling

window design, wall design, flooring design, and installation design. Technical design services include natural lighting, bench placement, landscaping, natural irrigation, and surface flow management techniques. In spatial design, it covers the creation of green open spaces, scenario development, and playground design.

2.2. Method

Before evaluating landscape design examples in the context of parametric design principles, it is essential to examine the relationships between landscape design principles and parametric design principles. Landscape design principles encompass concepts such as harmony, contrast, dominance, balance, emphasis, focus, rhythm, repetition, hierarchy, and unity. Parametric design principles include assumptions, reductions, and sometimes, these principles overlap with landscape design principles.

The fundamental design elements in landscape architecture include color, texture, scale, form, and line. The use of these elements in the examined examples is analyzed, marking the elements incorporated with a " $\sqrt{}$ " and those not considered with a "-" sign.

Key elements in the formation process of parametric design, such as initial conditions and parameters (inputs), generative mechanisms (rules, algorithms), and conditional control variables (output, product), were considered in the study. These elements were treated as a cyclic process, and the first three stages were analyzed accordingly.

The study explores the relationship between problem-solving and form-logic in landscape design. It emphasizes that form and logic are integral to the design process, where the problem defines the starting point. The study evaluates how these elements influence each other during the design process.

The study also assesses the file formats supported by each CAM tool since this is crucial for ensuring the compatibility of design files. The usability of CAM tools is a significant factor in the design process. A user-friendly interface ensures that the tools are easy to use, contributing to the efficiency of designers during the design process.

The study examines whether the parametric modeling program used is Rhino and Grasshopper. If the program used is not specified, the study assesses whether similar processes can be carried out using Rhino and Grasshopper.

The purpose of comparing computer-aided modeling (CAM) tools is to understand how different tools meet diverse design needs and to evaluate and select the best option. CAM tools are commonly used to expedite the design process, reduce costs, and facilitate the accurate and efficient production of designs. The selected CAM tools for comparison are AutoCAD, SketchUp, and Rhino. The comparison includes three key aspects These are features and capabilities, supported file formats and ease of use. First section evaluates the different features and capabilities offered by each CAM tool, including aspects such as view area, display mode, rendering capabilities (material, shading, lighting), layers, basic settings, geometry tools, editing tools, layout, and development.

3. Results and Discussion

The discussion will cover the type of landscape design service, the utilization of fundamental design elements, principles of parametric design, and design stages. Additionally, the examples' problems and solutions, design form, creation logic, and the computer-aided modeling tools used in the design process will be addressed. The features of commonly used tools in landscape architecture, namely AutoCAD, SketchUp, and Rhinoceros, will be examined to select a more suitable tool for parametric design.

3.1. Compliance of Study Samples with Landscape Basic Design Elements and Parametric Design Principles

The use of landscape basic design elements in the study examples is shown in the table below (Table 3). The least used of these is colour and the most used is size.

According to Schumacher (2011), parametrisism is the groundbreaking movement after modernism. Just as each movement has its own characteristics, Schumacher has determined principles that should be followed and avoided in parametrisism. These principles are expected to be taken into consideration in the parametric design of landscape elements. Among the study examples, the bank settlement example and the Sony Forest example draw attention by not complying with any principles.

Table 3. Use of landscape basic design elements in the study samples and compliance of study samples with parametric design principles.

										_					
	Basic Design Elements				Compliance Parameter Design Pirinciples							es			
								Ľ) ogma	S			Tab	oos	
Code	Study Samples	Colour	Texture	Size	Form	Line	Interrelation	Differentiation of form	Differentiated repetition	Curvilinearity	Parametric design	Universality	Euclidean forms	Lack of interrelation	Simple repetition
1	Curvilign Bench	-													

2	LightPRO Shell Pavilion	-	\checkmark				\checkmark			\checkmark				\checkmark	V
3	Urbach Tower	-		\checkmark		\checkmark									
4	Please Be Seated	-	V	V	λ	V	V	V	V	V	V		V	V	V
5	Stadel Museum	-	V	V	λ	V	V	V		V	V	V	V	V	\checkmark
6	LightWall House	-	V				V	V	\checkmark	-	V	V	-	V	V
7	Bench Layout	-	-		-		-	-	-	-	-	-	-	-	-
8	Roche Campus Kaiseraugst	-	V	V	V	V	V	V	V	V	V	V	V	V	V
9	Parametric Space Installation	V	V	V	V	V	V	V	\checkmark	V	V	V	-		V
10	Children's Playground	V	V	V	V	V	V	-	\checkmark	V	V	V	-	\checkmark	-
11	The South Park	-	V	V			\checkmark		\checkmark	V	V	V	V	\checkmark	
12	Keio University	-	V	V			\checkmark		\checkmark	V	V	V	V	\checkmark	
13	Sony Forest		\checkmark		-	-	-	-	-	-	-	-	-	-	-
14	Edaphic Effects	-	-	\checkmark			\checkmark			V	V	\checkmark	-	\checkmark	V
15	MAX IV Laboratory Landscape	-	V	V	V	V	V	V		V	V		V	V	V

3.2. Use of the Study Sample in the Parametric Design Process (Table 4)

Table 4. Parametric design utilisation analysis of study samples
--

Study Samples	Initial conditions and parameters (Inputs)	Generation mechanism (Rules, Algorithms)	Conditional control variables (Output, Product)
Curvilign		1. Placing points at equal	1. Ensuring the
Bench	The general form created	intervals along the curves;	smoothness of curves
	with curves.	2. Creating surfaces with	(linear optimization); 2.
		points and curves.	Material thickness.
LightPRO		1. Placing points at equal	Ensuring the smoothness
Shell	The general form created	intervals along the curves;	of our sufficiency of our set of the sufficiency of
Pavilion	with curves.	2. Creating surfaces with	of curves (linear
		points and curves.	opumization).
Urbach		The appropriate	The maximum slope of
Tower	Wooden piece.	calculation and assembly	the wood, the diameter of
	-	form.	the tower.
Please Be		1. Placing points at equal	Ensuring the smoothness
Seated	The general form created	intervals along the curves;	Ensuring the smoothness
	with curves.	2. Creating surfaces with	of curves (linear
		points and curves.	opumization).
Stadel		1. Placing points at equal	Enguing the smoothness
Museum	Spueliaht	intervals along the curves;	ensuring the smoothness
Sunlight.		2. Creating surfaces with	of curves (linear
		points and curves.	optimization).
LightWall House	Wall Opening Unit.	The appropriate use of the rule.	Light direction.

Bench Layout	The desired number of benches and space limit.	Taking into consideration the principle that both lines passing through seating points in the area are not parallel, randomly distributed seating points and orientations are obtained.	The distribution range of bench placement points.	
Roche Campus Kaiseraugst	Pedestrian flow, seating areas, and types of existing plants.	Leaving gaps in ground covering based on plant types and the law of plant growth.	Arrangement of plants of different types, pavement form.	
Parametric Space Installation	The number and location of "wheat".	The appropriate use of the rule.	The direction of curvature of the "wheat".	
Children's	Boundary line of the area	The appropriate use of the	Form size and slope	
Playground	versus.	rule.	degrees.	
The South	The value of data collected	Multi-stage appropriate	The optimization of road	
Park	from the surroundings.	rules.	curves.	
Keio	Paver depth, dimensions,	The appropriate use of the	An empirical ground	
University	plant palette, etc.	rule.	covering form.	
Sony Forest	The type of plants, etc.	The appropriate use of the rule.	Scattering seed points.	
Edaphic Effects	Curves drawn based on the terrain slope.	Calculating surface water flow by finding the highest and shortest points within a unit "diamond".	The dimensions of the unit "diamond".	
MAX IV Laboratory Landscape	A series of geometric projections extending tangentially from the outer ring of the laboratory building and intersecting.	Erecting peaks on units formed by intersecting lines.	The dimensions of unit peaks.	

3.3. Problem-Solution, Form-Logic Relationships in Parametric Landscape Design

The following conclusions were obtained from the case studies in the relations of problem-solution, form-logic. The form-logic relationship is summarised in two types according to problem-solution differences (Table 5).

Table 5. Analysis	of problem-solution,	form-logic relation	ships of st	udy samples.
-------------------	----------------------	---------------------	-------------	--------------

Study Samples	Problem-Solution	Form-Logic
Curvilign Bench	Creating a parametric furniture design inspired by the depths of the ocean, where form takes shape and fluidity is synthesized. The form is	Pursuit of modeling logic with the goal of finding form, starting from bionics.
	observed to resemble a whale shark.	Seeking logic from form
LightPRO	Creating a sustainable architectural example for the future by incorporating the use of alternative	Pursuit of modeling logic with the goal of finding form.
Shell Pavilion	sustainable materials and presenting innovative approaches in structural applications.	Seeking logic from form
Urbach Tower	A tower design incorporating aesthetic and sustainable features.	Pursuit of modeling logic with the goal of finding form.

		Data analysis in a computer
		environment.
		Seeking logic from form
Please Be	Enriching the atmosphere of the square by bringing together art, functionality, and	Pursuit of modeling logic with the goal of finding form.
Seated	interaction, enhancing the overall experience of the space.	Seeking logic from form
	Enhancing natural light to create an airy and accessible interior, constructing a building in	Finding form through problem- solving logic.
Stadel Museum	accordance with the principles of environmental sustainability, and promoting cultural interaction. Simultaneously, aiming to strengthen the museum's identity through green roof and garden design.	The search for form from logic.
LightWall	The aim is to enhance indoor comfort and energy efficiency with a specially designed wall	Finding form through problem- solving logic.
House	solution, considering sunlight, light, and privacy conditions.	The search for form from logic.
Bench Lavout	To prevent discomfort, individuals seeking relaxation in open spaces avoid making eye	Starting with problem-solving logic and using parametric design tools to find placement points.
Layout	contact with strangers.	The search for form from logic.
Roche Campus	Creating a vital habitat for flora and fauna in this green area, enhancing the ecological sustainability of a large corporate facility, while	Starting with problem-solving logic and using parametric design tools to find placement points.
Kaiseraugst	providing employees and visitors with a clean, green, and appealing environment.	The search for form from logic.
Damamatria	Utilizing parametric techniques to recreate natural phenomena, providing people with a fun	Pursuit of modeling logic with the goal of finding form.
Parametric Space Installation	and interactive spatial experience, and drawing attention to the natural environment through digital forms to offer "landscape representation" and "landscape narration".	Seeking logic from form
Children's	A multifunctional children's play area that	Pursuit of modeling logic with the goal of finding form.
Playground	combines entertainment and education.	Seeking logic from form
The South	Creating an efficient space by parameterizing	Finding form through problem- solving logic.
Park	data collected from the environment.	The search for form from logic.
Keio	The request for a tightly bounded and highly sculpted rooftop garden aims to create a space	Finding form through problem- solving logic.
University	showcasing rich diversity and dynamism, characteristic of a traditional Japanese garden.	The search for form from logic.
Sony Forest	Scattering seeds with consideration for the laws	Finding form through problem- solving logic.
	or prant growth.	The search for form from logic.
Edaphic Effects	Generating infiltration infrastructure on-site with parametric models. This project aimed to demonstrate the potential of "incremental	Finding form through problem- solving logic.

	infrastructures" to improve Philadelphia's stormwater infrastructure. To achieve this, a dispersed geotextile network has been proposed as a means of increasing water retention in vacant lands.	The search for form from logic.
MAX IV	The measurements taken from sensitive laboratory instruments were affected by external vibrations originating from the nearby highway. The flat topography of the area allowed surface vibrations to move freely. Therefore, one of the fundamental objectives of the design was to maximize the surface area of	Finding form through problem- solving logic.
Landscape	the landscape through undulating topography, which would better distribute vibrations that could impede the laboratory's operation. Additionally, some ancillary benefits, such as managing surface runoff, can also be achieved through such topography.	The search for form from logic.

3.4. Use of Computer Aided Modelling Tools in Study Samples

Study Samples	Used Programs	Available Programs	
Curvilign Bench	Rhino & Grasshopper		
LightPRO Shell Pavilion	Uncertain	Rhino & Grasshopper	
Urbach Tower	Uncertain	Rhino & Grasshopper	
Please Be Seated	Uncertain	Rhino & Grasshopper	
Stadel Museum	Uncertain	Rhino & Grasshopper	
LightWall House	Bentley Generative Components	Rhino & Grasshopper	
Bench Layout	Uncertain	Rhino & Grasshopper	
Roche Campus Kaiseraugst	Uncertain	Rhino & Grasshopper	
Parametric Space Installation	Rhino & Grasshopper		
Children's Playground	Uncertain	Rhino & Grasshopper	
The South Park	Rhino & Grasshopper		
Keio University	Rhino & Grasshopper		
Sony Forest	Rhino & Grasshopper		
Edaphic Effects	Rhino & Grasshopper		
MAX IV Laboratory	Rhino & Grasshopper		
Landscape			

Table 6. Use of computer aided modelling tools in study samples.

The result of the comparison of computer aided modelling tools in parametric design, as reflected in table 6 and table 7, shows that the Rhino programme is more advantageous in most features (Table 6 and Table 7). The multi-command nature of the viewport means that the navigation movement towards the inspection of the model is more independent and multi-directional. The multi-command display mode diversified the visual appearance of the model. It is seen that Rhino programme has more advantages than other programmes in rendering. The fact that the rendering command has various and multiple settings contributes to the model visuals to be more realistic. It is seen that the layers and basic settings are at an intermediate level. It is seen to be very advantageous in supported file formats and geometry

settings. In the development programmes, the contribution of grasshopper software has made Rhino programme the biggest advantage.

		AutoCAD	Sketch Up	Rhino&Grasshopp er	
views		Few commands	Mid-number command	Multi command	
Display Mode		Few commands	Mid-number command	Multi command	
	Material	non-existent	existence	existence	
	Shadowing	non-existent	existence	existence	
Dondor	Light	non-existent	non-existent	existence	
Kender	Render	non-existent	Render added	Own rendering available; Render added	
Layers		Multi command	Few commands	Mid-number command	
Ba	asic Interfaces	existence	existence	existence	
	Contrution planes+Vector	non-existent	non-existent	existence	
	Creation settings	Few commands	Mid-number command	Multi command	
	Edit settings	Mid-number command	Mid-number command	Multi command	
Geometr	Attributes	Detailed	Less detailed	Medium detailed	
У	Select	Varied settings	Simple setting	Diverse Command	
	Group	existence	existence	existence	
	measure	Mid-number command	Few commands	Multi command	
	Object Snap	existence	non-existent	existence	
	Layout	existence	non-existent	existence	
Development Programmes		Few varieties	non-existent	Wide variety	
File Formats Supported		few	middle	a lot	

Table 7.	Comparison	of modelling	tools
----------	------------	--------------	-------

4. Results

4.1. The Use of Parametric Design in Landscape Architecture

In the landscape design process, the analysis stage and the design stage are generally iterative. The transition to the modification and improvement stage occurs based on the user's (client) feedback during evaluation. In traditional design, these processes are subject to longer time costs, but in parametric design, obtaining various results has become an instantaneous operation, as reflected in Table 8 (Table 8). Parametric design is not universally applicable at every stage of the landscape design process, despite the advantages offered by computer-aided design; efforts from designers or users are still necessary. As expressed by Fletcher (2018; cited in Groundhog), 'Memory, experience, emotion, and humor are parameters that cannot yet be placed within a parametric definition.'

Designers may encounter limitations in determining every desired piece of information in the parametric modeling process, and similarly, users may not be able to fully express aesthetic values and emotional responses through computer algorithms.

Landscape elements can be designed in various ways using the parametric design method. For instance, details such as plant selections, garden designs, seating areas, outdoor activities, and landscape features can be designed using parametric models and algorithms.

One of the significant advantages of parametric design is its provision of flexibility and speed in the design process. Parameters and variables allow for the rapid exploration and optimization of different scenarios in the design. Additionally, this design method can contribute to better design quality, increased innovation and diversity, and improved functionality.

The use of parametric design for landscape elements can make the design process more efficient, effective, and creative. Furthermore, the outcomes of parametric design can assist in producing more sustainable, environmentally friendly, and innovative designs in the landscape field. The application of parametric design to landscape elements enhances the aesthetic value of the design.

Design Process	Work Stages	Criteria Leading to the Result	Result
	Defining the Problem	The user's expectations from the design of the space or the negative effects that are desired to be eliminated.	Non-parameterizable
Research and Analysis Phase	Determination of Existing Conditions	Determination of existing conditions, determination of user requirements, collection of general information.	Parameterizable
	Field Analysis	Determination of design parameters	Doromotorizable
	Event List	and rules by the designer.	T arameterizable
Design Phase	Synthesis	Creation of the design model by the designer using modeling tools.	Parameterizable
	Create a scenario	The first model created by the designer.	Parameterizable
	Creating Design Options	Producing multiple options by diversifying the scenarios created by the designer according to different elements.	Parameterizable

Table 8	Doromoto	rization	nossibilities	in the	landscone	design	nrococc
I abic o.	, i araincu	IIZation	possibilities	III UIC	lanuscape	ucsign	process

	Evaluating Options	Quantitative evaluation of the created model.	Parameterizable	
		Evaluation of aesthetics and abstract.	Non-parameterizable	
	Choosing a Product	Choosing the most suitable product according to the result of the assessment.	Parameterizable	
	Structural Design	Continue the object design service on the script.	Parameterizable	
Development Phase	Planting Design	To continue the planting service on the scenario.	Parameterizable	
	Detail Design	Elaboration of the final design obtained, development of the irrigation system and lighting system.	Parameterizable	
Application		Landscape construction.	-	

4.2. Computer-Aided Design Tools in Parametric Landscape Design

Computer-aided modeling tools play a crucial role in the advancement of parametric landscape design. Parametric design is an approach where parameters and relationships are expressed through mathematical or algorithmic models during the design process. Computeraided modeling tools are essential in facilitating this process and offer several advantages that enhance both the design and its outcomes.

One of the primary benefits of parametric modeling is its ability to enable rapid iteration and adaptation. By adjusting various parameters, designers can quickly explore and evaluate different design alternatives, which results in a more efficient design process. This flexibility not only accelerates decision-making but also fosters a deeper understanding of the relationships between different elements within the design.

Parametric modeling is also crucial for managing complexity in landscape design. Landscapes often consist of intricate relationships between environmental, structural, and aesthetic components. By utilizing parametric tools, these complex relationships can be broken down into manageable, understandable parts. This allows designers to navigate and manipulate the design more effectively, ensuring that all elements work harmoniously.

Moreover, computer-aided parametric tools enhance the analysis of environmental impacts. In landscape design, environmental factors such as sunlight, wind direction, and topography play a significant role in determining the success and sustainability of a project. Parametric models allow for detailed analysis and optimization of these factors, enabling designs that are more environmentally sensitive and perform better under various conditions.

Data-driven decision-making is another advantage provided by parametric modeling. By integrating data from sources such as geographic information systems (GIS) and other measurements, designers can base their decisions on quantitative data. This approach ensures

that the design is grounded in measurable parameters, leading to more accurate and informed design choices.

In addition to functional benefits, parametric modeling tools also contribute to the aesthetic and visualization aspects of landscape design. The ability to create complex forms and patterns with ease enhances the aesthetic richness of a design. Furthermore, 3D visualizations and animations generated through these tools provide designers and stakeholders with a clearer understanding of the final product, improving communication and decision-making.

Optimization is another critical role of parametric modeling in landscape design. By applying optimization techniques, designers can ensure that the design meets specific performance goals, such as water management, energy efficiency, or ecological sustainability. The use of parametric tools makes it easier to test various scenarios and optimize design parameters accordingly.

Finally, collaboration and communication within design teams are greatly enhanced through parametric modeling tools. Virtual environments enable designers to share and understand different aspects of the design in real time, facilitating more effective teamwork and clearer communication of design ideas.

In conclusion, computer-aided modeling tools play a pivotal role in the advancement of parametric landscape design. These tools contribute to more efficient, complex, data-driven, and environmentally sensitive designs while improving collaboration and optimization efforts. As parametric landscape design continues to evolve, the use of these tools will remain essential for pushing the boundaries of creativity and functionality in the field.

Acknowledgment

This study is derived from the Master's thesis titled "Computer-Aided Modeling in Parametric Landscape Design," prepared within the scope of the Landscape Architecture Master's Program at Istanbul University-Cerrahpaşa Institute of Graduate Studies. We extend our gratitude to the Istanbul University-Cerrahpaşa Institute of Graduate Studies for their support in the preparation of this study.

References

- Anonymous, (2015). Curvilign bench, https://www.behance.net/gallery/26086063/Parametric-design-curvilign-bench. Accessed:22.6.2023.
- Anonymous, (2023). Bank settlement, https://zhuanlan.zhihu.com/p/388555362. Accessed: 31.7.2023.
- Bryum, (2019). Landeine International Landscape Award, Roche Campus Kaiseraugst by Bryum, https://landezine-award.com/roche-campus-kaiseraugst/Kampus. Accessed: 22.12.2022.
- EcoLogic Studio, (2012). LightWall house,

https://www.ecologicstudio.com/projects/lightwall-house, Accessed: 31.7.2023.

- Fletch Studio, (2017). The parametric park, https://www.fletcher.studio/blog/2017/5/26/the-parametric-park. Accessed: 31.7.2023.
- Fletcher, D. (2018). Cited in Groundhog, The south park, https://groundhog.la/projects/southpark. Accessed: 22.12.2022.
- Gooood, (2014). Extension of Staedel Museum, https://www.gooood.cn/extension-of-staedelmuseum.htm. Accessed: 31.7. 2023.
- Gooood, (2016). Parametric space installation, https://www.gooood.cn/parametric-space-installation-nanjing-university-of-the-arts.htm. Accessed: 31.7.2023.
- Groundhog, (2011). Edaphic effects, https://groundhog.la/projects/edaphic-effects/. Accessed: 31.7.2023.
- Groundhog, (2012). Sony forest, https://groundhog.la/projects/sony-forest/. Accessed: 31.7.2023.
- Groundhog, (2016). Max IV laboratory, https://groundhog.la/projects/max-iv-laboratory/. Accessed: 31.7.2023.
- Hammad, A. (2020). "Developing A Parametric Design Tool as A Decision Support System For Designing Pocket Parks". Master's Thesis, İstanbul Technical University, Institute of Science, İstanbul.
- ICD/ITKE, (2019). University of Stuttgart, Urbach tower, https://www.itke.unistuttgart.de/research/built-projects/urbach-tower/. Accessed: 31.7.2023.
- L&A Design, (2020). Aoya children's play area, https://www.aoyahk.com/index.php?m=content&c=index&a=show&catid=21&id=333. Accessed: 31.7.2023.
- MDP Michel Desvigne Paysagiste, (2012). Keio University,

http://micheldesvignepaysagiste.com/en/keio-university. Accessed: 31.7.2023.

- Oktan, M.S. (2015). "Parametric Design in the Context of the Parametricism Manifesto". Master's Thesis, Karadeniz Technical University, Institute of Science.
- Paul Cocksedge Studio, (2021). Please be seated, https://www.paulcocksedgestudio.com/please-be-seated-1-1, Accessed: 31.7.2023.
- Pintos, P. (2022). LightPRO Shell pavilion, https://www.archdaily.com/976846/lightpro-shell-pavilion-icd-itke-university-of-stuttgart. Accessed: 31.7.2023.
- Schumacher, P. (2008). Parametricism as Style Parametricist Manifesto, 11th Architecture Biennale, Dark Side Club, Venice.
- Schumacher, P. (2009). Parametricism: A New Global Style for Architecture and Urban Design, Architectural Design / Digital Cities, 79, 4, 14-23.
- Schumacher, P. (2011). The Autopoiesis of Architecture, Volume I: A New Framework for Architecture, Wiley, West Sussex, ISBN-10: 0470772980.
- Sevgi, S.Y. (2013). "Design of Display Elements in Interior Architecture Using Digital Design and Production Techniques". Master's Thesis, Istanbul Technical University, Institute of Social Sciences.
- Yarcı, B. & Malkoç, E. (2011). Problems Encountered in Landscape Design Practices and Suggested Solutions, ADÜ Faculty of Agriculture Journal, 8(1), 103-108.