Ossification of Superior Transvers Scapular Ligament:
A Case Report

Ligamentum Transversum Scapulae Superius’un Kemikleşmesi: Olgu Sunumu

Öz

Anahtar Kelimeler: Incisura scapulae, múltidedektörlü bilgisayarlı tomografi, tuzak nöropati, ligamentum transversum scapulae superius

Abstract
Entrapment neuropathies, also known as nerve compression syndrome or compression neuropathy, may be defined as the lesions of the peripheral nerves under exposure of any kind of physical stress, including any kind of traumas and inflammatory or edematous processes, on the route of the nerve to the target tissue. While performing a radiologic examination of multi-detector computerized tomography images of vascular structures in the right shoulder region of a 43 years old female Turkish patient who admitted to our hospital, we observed a complete ossification of the superior transverse scapular ligament. This case report, which is discussed in the clinical perspectives of anatomic variations, puts forth that radiologic images about variations, like the one used in this report, are of importance while illuminating the etiopathologic background of entrapment neuropathies of the shoulder region.

Keywords: Suprascapular notch, Multi-detector computerized tomography, Entrapment neuropathy, Superior transverse scapular ligament
Introduction
On the superior border of the scapula which is the shortest margin, just medial to the coracoid process, a notch lies having different sizes and shapes in individuals. Several variations are described as to the shape of the suprascapular notch (1). This anatomic structure, the suprascapular notch, is arched by superior transverse scapular ligament (STSL) in order to create a passage containing the suprascapular nerve and defined as scapular foramen, if the ligament ossifies after roofing the notch in a portion of cases (2). This strong, thin and flat ligament clings to the base of coracoid process and ends at the medial border of the suprascapular notch. The suprascapular artery and vein passes over this – sometimes ossified – ligament while suprascapular nerve passes through the foramen. The studies were presented in literature detecting similar variations, using sonographic techniques or Magnetic Resonance Imaging (MRI) (3, 4). In this case report, entirely ossification of the STSL is described using Multidetector Computed Tomography (MDCT) images.

Case Report
While performing radiologic examination of MDCT images of vascular structures at the right shoulder region of a 43 years old female Turkish patient who admitted to our hospital, we observed a complete ossification of STSL. Patient had cardiologic complaints and had no complaints about peripheral nervous system. Dimensions of the foramen were measured, which was created by ossified STSL. Transverse and vertical diameter of the foramen was 4.47 mm and 8.57 mm, respectively. The scapula on the left side was not bearing any variational features (Figure).

Discussion: Compression of the suprascapular nerve passing scapular foramen causes a set of symptoms related to the paresis of the infraspinatus and supraspinatus muscles innervated by the suprascapular nerve when STSL is ossified. Entrapment neuropathies, also known as nerve compression syndrome or compression neuropathy, may be defined as the lesions for the peripheral nerves under exposure of any kind of physical stress, including any kind of traumas and inflammatory or edematous processes, on the route of the nerve to the target tissue. Contrary to common thought that suprascapular entrapment neuropathy was first defined by Thompson and Kopell (5) in 1959, Pecina, Cummins (6) remind Andre Thomas’ paper published in 1936 which provides the first description of suprascapular nerve entrapment syndrome (5, 6). However, detailed discussion of this issue was beyond the scope of this study. Complaints of shoulder pain, muscle atrophy, weakness at the regional muscles and rigidity may occur, sometimes together, in individuals with the entrapment of the suprascapular nerve (7-9). Especially, weakness may be expected in anamnesis during external rotation and at the beginning of the abduction of the arm, which are the main functions of infraspinatus and supraspinatus muscles, respectively. Suprascapular nerve is under risk for injuries while traversing under not only bone bridge but also the STSL (10). Structural changes of the suprascapular notch predispose entrapment neuropathies, as well. Five different types of suprascapular notch were described (3). Variations of the suprascapular notch, combining with the ossification of STSL may exaggerate the complaints related to the entrapment of suprascapular nerve. Ossification of this ligament can be encountered about 10% (2). In the literature, many studies provided rates about existence of scapular foramen (Table)

Conservative treatment strategies are tending to be preferred for vast majority of the cases. For the purpose of treatment of cases with entrapment of the suprascapular nerve and with serious clinic reflections, not only open surgical approaches but also arthroscopic procedures are
described as operative treatments as well as physical rehabilitation (11). Awareness of the ossification of the STSL can help the clinicians to explain and treat some kind of chronic shoulder region symptoms after ruling out rotator cuff tears on account of complaint similarities. This case report, which is discussed in the clinical perspectives of anatomic variations, puts forth that radio-anatomic images about variations, like the one used in this report, are of importance while illuminating etiopathologic background of entrapment neuropathies of the shoulder region.

Table: Different rates from literature, indicating the existence of scapular foramen

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Number of scapulae included in study</th>
<th>Number of scapulae with scapular foramen</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang, Chen (12)</td>
<td>295</td>
<td>4</td>
<td>1.3%</td>
</tr>
<tr>
<td>Aydinlioglu, Diyarbakirli (13)</td>
<td>150</td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>Yang, Gil (14)</td>
<td>103</td>
<td>4</td>
<td>3.7%</td>
</tr>
<tr>
<td>Bayramoglu, Demiryurek (15)</td>
<td>32</td>
<td>4</td>
<td>12.5%</td>
</tr>
</tbody>
</table>

Figure: On 3D volume-rendered image, the scapular foramen on the right scapula (red circle)

References:
6. Pecina M, Cummins CA, Messer TM, Nuber