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• A generic and comprehensive impact analysis framework is proposed to be applied to low-voltage 

networks to investigate an evaluation of the integration of small-scale renewable energy systems 

and/or new forms of demand such as electric vehicles. 

• The influence of the transformer loading on secondary substations as well as the effects on low voltage 

customers, feeders and energy losses are analyzed separately for different cases whilst assessing the 

corresponding dependencies – crucial for a realistic quantification. 

• It demonstrates the effectiveness of the proposed indicators with a UK case study that considers real 

Low Voltage Networks (typically, 0.4 kV), as well as realistic time-varying residential demand and 

Electric Vehicle Profiles. 

• The discussion section is also presented with the corresponding caveats and suggestions. 
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ABSTRACT: The growing share of Electric Vehicles (EVs) in the personal automobile market is expected 

to accelerate in the years to come. With increased demand at a household level, technical problems such 

as transformer and feeder overloading are likely to emerge. Therefore, this highlights the need for a 

comprehensive impact analysis framework for EVs to overcome the challenges ahead. A smoother 

transition, exploiting scalable performance indicators, to Low Voltage (LV) networks with this new form 

of demand could be achieved as imminent problems can be computed in a realistic manner. To this end, 

the impact analysis framework is proposed and the corresponding performance indicators are formulated 

to be used by researchers and/or Distribution Network Operators (DNOs) for different purposes. Under 

different scenarios, the impacts of EVs on the real underground unbalanced three-phase network are 

comprehensively explored considering household voltage profiles, transformer-loading, utilization of 

feeders, and daily total energy losses. For the summer and winter seasons, three cases covering all possible 

circumstances are investigated: without EVs, with EVs, and a worst-case scenario where all EVs connect 

at the same time. From the study, it can be deduced that the impact of EVs on the network and household 

voltage could reach unacceptable levels, and diversifying the connection times of EVs is vital to coping 

with potential problems posed by residential-level participation in EVs. 
 

Keywords: Plug-in Electric Vehicles, Low Voltage Network, Impact Analysis, Thermal Overloading, Performance 

Indicators 

1. INTRODUCTION 

The concerns associated with reducing reliance on fossil fuels and decarbonizing the personal 

automobile market, together with the falling prices of electric vehicles and government incentives, have 

paved the way for the boom of electric vehicle uptake in recent years. Consequently, investment in EVs 

and their batteries increased 19 times more in 2019 compared to 2018 in the European Union alone  [1]. 

Some countries have already reached a significant share/penetration of vehicles running on electricity.  

For instance, the proportion of EVs in the personal automobile market in 2019 was 56%, 25.5%, and 15% 

in Norway, Iceland, and the Netherlands, respectively  [2]. Despite global car sales declining by 16% due 

to the pandemic-related worldwide downturn, electric car registrations grew by 41% in 2020  [3]. 

However, this opportunity is likely to result in some technical issues (such as voltage drop and thermal 

overloading), as residential peak demand is expected to coincide with the new form of demand posed by 

EVs  [4–7].  

Given that traditional distribution networks are not designed to deal with these new forms of 

demands, some technical problems might eventually emerge due to significant peak demand hours  [8]. 
Since householders with EVs are likely to charge their automobiles at home, the corresponding 

infrastructures are highly likely to be the first place affected (in particular, European-style LV networks 

on which hundreds of customers are connected to the grid). It is, consequently, essential to quantify the 

impact of the adoption of EVs on customers and the network-level to propose efficient and scalable 

solutions through which greater the hosting capacity of the network is gained.  

In general, the impact analysis and various solutions in the literature have been documented. These 

can be categorized under three main headings: optimization-based solutions, control-based methods, and 
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deterministic or probabilistic impact analysis studies at the residential and/or network level.  

The first group aims to provide impact analysis and solutions with various advanced optimization 

techniques  [9–11]. These analyses typically require charge status, extensive information, visibility and 

communication technologies, and real-time pricing  [12–14]. However, this does not yet fully correspond 

with real-world conditions, as acquiring all this information is not cost-effective and, therefore, is not 

readily available in a straightforward manner. 

The second method, control-based solutions, typically aim at voltage or congestion mitigation 

(conductor and transformer levels)  [15–18].  For voltage impact analysis, the primary objective is to reduce 

the voltage magnitude per unit, while current reduction or utilization reduction is employed to address 

thermal overloading. However, achieving this requires both data from the network and a communication 

system for remote control. Therefore, similar to the optimization-based solutions, in the absence of real-

time data, corresponding communication channels and interoperability issues make these approaches 

challenging to be viable. The control actions can also be achieved through Machine Learning approaches 

(e.g., employing nodal voltage and its sensitivity to the design controller)  [19].  Furthermore, some 

methods might require additional specific control elements such as phase-shifting ability  [20].  
The third common method is to perform a deterministic or probabilistic (DoP) impact analysis  [21–

24]. Most of the studies documented in the literature focus on DoP. The majority of these studies are on 

assessing/mitigating thermal overloading on the transformer, lines, and customer voltage profiles  [25–

28]. However, for utilities, especially in terms of voltage, the penalties are given based on the existing 

voltage standards of the relevant countries. Therefore, related studies should be evaluated in this context. 

In addition, thermal overloading poses a risk to the corresponding assets. Moreover, these analyses are to 

be generic, in turn, they must be expressed mathematically. Thus, it can be adapted in other countries with 

minor setting modifications. In addition, most studies have not examined low-voltage networks, where 

the effects are expected to emerge first  [29]. This is likely to create hesitation in terms of the applicability 

of the relevant solutions. Also, some studies using simplified models may not disclose their 

particularities  [5].  

However, none of the aforementioned studies address mathematically expressed dynamic voltage 

calculation as performed in real life scenarios. Furthermore, none of the studies conduct a comprehensive 

analysis that simultaneously examines both customer and network-level technical issues. 

1.1. Contributions  

In this paper, a generic and comprehensive impact analysis framework is proposed to be applied to 

low-voltage networks to evaluate the integration of EVs. In addition, this framework could be applied to 

quantify the impact of battery energy storage systems, small-scale renewable energy systems, and new 

forms of demand, such as electric heat pumps. This framework allows Distribution Network Operators 

(DNOs) to identify the networks with technical problems in advance, providing them with sufficient time 

to implement potential solutions.  

This impact analysis framework includes the realistic dynamic voltage calculation according to 

European standards (EN 50160). Furthermore, simpler and applicable calculations for network energy 

losses are mathematically expressed for the planning stage. Consequently, the impact analysis combines 

the utilization of feeders and the transformer, voltage issue (voltage drop), and network energy losses 

which in turn, is able to realistically quantify network and customer-level technical issues.  

For the case studies, therefore, this study aims to mimic real-life applications by considering a fully 

modeled three-phase four-line real LV network, generating realistic high resolution (1-min) plug-in 

electric vehicle profiles and obtaining 1-min demand profiles.  

The remainder of the paper is organized as follows: An overview of the proposed methodology is 

presented in section 2. Modelling and analysis considerations, together with performance indicators, are 

provided. In section 3, the results and discussion are presented for the case study. Finally, section 4 

concludes the study. 
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2. MATERIAL AND METHODS 

The methodological framework proposed comprises three stages and is illustrated in Fig.1. In the first 

stage, a fully modeled LV network and household demand profiles are needed. Once EVs are considered 

for the analysis, corresponding EV profiles are taken into account. Given uncertainties surrounding the 

usage of demand and EV profiles, the analysis needs to be tailored to each household. For illustrative 

purposes, the worst-case scenario may include only one EV profile. While this might not accurately reflect 

real-life conditions, the objective is to provide insights into potential outcomes when all customers behave 

in a similar manner. 

In stage two, three-phase four-wire power flow analyses are carried out. In stage three, performance 

indicators are obtained and compared against the explored cases. 

A generic synthetic LV network model is given in Fig.2, where the measurement points are in place 

to allow the capturing/computing of the aforementioned indicators. 

 
Figure 1. Flow chart for the performance assessment framework 

 

The measurement point at the secondary side of the transformer provides active (𝑃𝑡𝑟𝑠𝑒𝑐,𝜑) and reactive 

(𝑄𝑡𝑟𝑠𝑒𝑐,𝜑)  power, and current drawn by each feeder (𝑖 𝑡
𝐹_ℎ𝑒𝑎𝑑,𝜙

).   

Furthermore, measurements at household connection points provide corresponding daily voltage 

profiles (𝑉ℎ𝑁
𝜑
). This enables the calculation of the corresponding performance indicator.  

 

 
Figure 2. Layout of synthetic LV network 

 

2.1. EV modeling considerations  

For EV impact analysis, typically real data is employed. By means of long-term charge measurements 

for EV cars, starting charging time and energy demanded during a connection are typically captured. 

Along with these, considering the constant charging rate and the battery capacity, EV profiles can be 

modeled accordingly. For this study, the detail of the modeling is provided in section 3.  
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2.2. Performance indicators  

To assess the performance of EVs on the network, voltage, utilization of feeders, transformer loading, 

and energy losses are analyzed. This approach aims to provide a thorough analysis of each component 

within the studied network.  

One of the striking features in the transition to LV networks with emerging technologies such as EVs 

is voltage instability. Voltage rise or drop may exceed the statutory limits. Given that EV and household 

demand profiles are analyzed on the network, it is essential to apply a voltage drop equation.  

For an exemplary two-bus system demonstrated in Fig.3, voltage drop from 𝐵𝑢𝑠𝑗 to 𝐵𝑢𝑠𝑗+1, for the 

phases (i.e., 𝜑), is shown as �⃗� 𝑗
𝜑
− �⃗� 𝑗+1

𝜑
 , which can be expressed by power flow between buses as in (1).  

 

 
Figure 3. Exemplary two-bus system 
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 𝑥 [𝑍 𝑙]3𝑥3 (1) 

 

For each phase, this three-by-three matrix equation can be transformed into the form in which only 

the corresponding current and impedance could be utilized as in (2).  

 

�⃗� 𝑗 − �⃗� 𝑗+1 = [
(𝑃𝑗,𝑗+1

𝑎 + 𝑗𝑄𝑗,𝑗+1
𝑎 )

�⃗� 𝑗∠𝜃𝑗
]

∗

𝑥 𝑍 𝑙 = 𝐼 𝑗,𝑗+1𝑥 𝑍 𝑙 
 

(2) 

 

It is crucial to compute voltage drop (or rise) more realistically, as DNOs are legally obliged to keep 

their end users’ voltage profile within the statutory limits (e.g., according to BS EN50160). According to 

regulation, 95% of the measured supply voltage (10-min average r.m.s. value) must be within 1.1 p.u. and 

0.9 p.u. of nominal voltage.  In addition, all measured supply voltage must never breach 1.1 p.u. and 0.85 

p.u. of nominal voltage.    

To comply with statutory obligations, the following three steps proposed in  [30] are adopted.  In the 

first stage, a 10-min average of household demand profile-based decisions are made (e.g., 144 decisions 

for 1440-min resolution).  Due to the fact that day-long analysis is adopted, in this study, the corresponding 

regulation is adapted as daily. As such, in each time of t (time of measurement), a 10-min average of 

voltage profile (i.e., 𝑎𝑣(𝐻𝑑𝑡)) a day is greater than 1.1 p.u. or less than 0.9 p.u., then, the associated time 

(i.e., i) is flagged as 1(i.e., problem arisen), if not, i is defined as 0. This is mathematically expressed in (3).   

Considering all-day-long analysis, for each 10-min average a value is assigned, in turn, a set of binary 

decisions  (𝑖. 𝑒. , 𝑇𝑃𝑖
𝐷𝑎𝑖𝑙𝑦

) is given, for a certain customer.  

 

𝑇𝑃𝑖
𝐷𝑎𝑖𝑙𝑦

=

{
1,  𝑖𝑓 𝑎𝑣(𝐻𝑑𝑡) ≥ 1.1𝑝𝑢 ∨ 𝑖𝑓 𝑎𝑣(𝐻𝑑𝑡) ≤ 0.9 𝑝𝑢 

0,   𝑒𝑙𝑠𝑒                                                                            
  

∀ 𝑡 ∈ 𝑇 

(3) 

 

In stage two, the final daily decision is made for a given customer. In accordance with EN50160, in the 

first stage, if any 10-min average of voltage profile (i.e., 𝑎𝑣(𝐻𝑑𝑡)) is higher than 1.1 p.u. or lower than 0.85 
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p.u., the customer is identified as a customer with a voltage problem.  

When all 10-min average voltage profile decisions (∑ 𝑇𝑃𝑖
𝐷𝑎𝑖𝑙𝑦

𝑖 ) is greater than five percent of the 

duration of household demand resolution (𝐷𝐻𝐷𝑅), then, a voltage problem is identified, otherwise, no 

voltage problem is considered for a given customer.   

Considering all customers for the given network, the recurrent process in stages 1 and 2, is carried out 

for all customers (∑𝐻𝑛) on the network, in stage three as in (4). 

 
𝐻𝑛

=

{
 
 

 
 1,         ∑𝑇𝑃𝑖

𝐷𝑎𝑖𝑙𝑦

𝑖

> 0.05 𝑥 𝐷𝐻𝐷𝑅

1,       𝑖𝑓 𝑎𝑛𝑦 , 𝑎𝑣(𝐻𝑑𝑡) ≥ 1.1𝑝𝑢 ∨ 𝑎𝑣(𝐻𝑑𝑡) ≤ 0.85 𝑝𝑢

0,        ∑𝑇𝑃𝑖
𝐷𝑎𝑖𝑙𝑦

𝑖

< 0.05 𝑥 𝐷𝐻𝐷𝑅

 
(4) 

 

Finally, the percentage of the total customer number (Tcus
per

) with voltage problems are identified. This 

process can also be adopted to feeder-by-feeder calculation in (5).  

 

Tcus
per

=
∑𝐻𝑛

𝑁 𝑥 10−2
, ∀ 𝑛 ∈ 𝑁   (5) 

 

Given that thermal overloading might affect the first feeders more than the corresponding 

transformer, it is crucial to calculate the utilization of feeders. Therefore, for a given time period (t), the 

average current drawn by the head of each feeder (i.e., considering all phases, 𝜙) is captured and divided 

by ampacity, and the percentage value is calculated as given in (6). This provides the daily percentage of 

feeder utilization (𝐹𝑢𝑡
𝐷,𝑝𝑒𝑟). 

 

𝐹𝑡
𝑝𝑒𝑟

=
   𝑎𝑣(𝑖 𝑡

𝑡𝑜𝑡𝑎𝑙,𝐹_ℎ𝑒𝑎𝑑,𝜑
)

𝐹𝐴 𝑥 10−2
   , ∀ 𝑡 ∈ 𝑇 (6) 

 

A set of feeder utilization is obtained, the maximum one is the feeder utilization.  

This is one of the important indicators as it is well known that EVs have an adverse effect on the 

utilization of feeders, hence, it provides insight into DNOs' understanding as to when their feeders are 

expected to be reinforced.    

Due to the fact that EVs have the potential to increase transformer loading, it is essential to measure 

this according to profiles’ resolution to cater for time-varying impact. Therefore, in each predefined 

resolution time (t), considering all phases (ɸ) at the secondary side of the transformer, the total active 

(𝑃 𝑡
𝑡𝑟𝑠𝑒𝑐,𝑡𝑜𝑡𝑎𝑙,ɸ) and reactive power (𝑄𝑡

𝑡𝑟𝑠𝑒𝑐,𝑡𝑜𝑡𝑎𝑙,ɸ) is measured and transformed to complex power and 

divided by transformer capacity (𝑇𝑅𝑐𝑎𝑝) so that the corresponding transformer capacity percentage 

(𝑇𝑅𝑐𝑎𝑝,𝑝𝑒𝑟) computed for a given penetration level. The mathematical expression is provided in (7).  

 
𝑇𝑅𝑐𝑎𝑝,𝑝𝑒𝑟

=
∑ ((𝑃 𝑡

𝑡𝑟𝑠𝑒𝑐,𝑡𝑜𝑡𝑎𝑙,ɸ)^2 + (𝑄𝑡
𝑡𝑟𝑠𝑒𝑐,𝑡𝑜𝑡𝑎𝑙,ɸ)^2𝑇

𝑡=1 ^(1/2)

𝑇𝑅𝑐𝑎𝑝𝑥 10−2
  

, ∀ 𝑡 ∈ 𝑇 

(7) 

 

As a result, the impact of EVs on the transformer loading based on resolution is captured. This allows 

DNOs to be aware of the usage of a transformer for a given LV network and take precautionary measures, 

if necessary. 

Energy losses on the network are expected to increase due to the power drawn by EVs, therefore, the 

impact of EVs on energy losses could be considered another indicator to be taken into account.  
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For a given two-bus system in Fig.2, power injection at 𝐵𝑢𝑠𝑖 (i.e.,  𝑃𝑗,𝑗+1
𝜑

 and 𝑄𝑗,𝑗+1
𝜑

) is computed by 

power balance equations. Since the household demand (e.g., customer number one exists in place) is 

known (i.e., 𝑃ℎ1
𝜑

 and 𝑄ℎ1
𝜑
), the active (𝑃𝑗,𝑗+1

𝑙𝑜𝑠𝑠𝑒𝑠,𝜑
) and reactive power (𝑄𝑗,𝑗+1

𝑙𝑜𝑠𝑠𝑒𝑠,𝜑
) losses can be calculated in 

a straightforward manner (as given in 8 and 9).  

 

𝑃𝑗,𝑗+1
𝑙𝑜𝑠𝑠𝑒𝑠,𝜑

= (
𝑃𝑗,𝑗+1
𝜑

�⃗� 𝑗
)

2

𝑟𝑗,𝑗+1 = 𝑃𝑗,𝑗+1
𝜑

− 𝑃ℎ1
𝜑
   

 
∀ 𝜑 ∈ 𝜙 

(8) 

𝑄𝑗,𝑗+1
𝑙𝑜𝑠𝑠𝑒𝑠,𝜑

= (
𝑄𝑗,𝑗+1
𝜑

�⃗� 𝑗
)

2

𝑥𝑗,𝑗+1 = 𝑄𝑗,𝑗+1
𝜑

− 𝑄ℎ1
𝜑
      

∀ 𝜑 ∈ 𝜙 

(9) 

 

For a network with numerous buses and customers, a simpler method for quantification is needed.  

Unlike voltage, utilization, and transformer loading equations in which time is essential for accurate 

quantification, only the total daily amount is sufficient for calculating energy losses. 

 Therefore, total daily active and reactive energy losses (i.e., 𝑃𝑠𝑢𝑚
𝑙𝑜𝑠𝑠𝑒𝑠,𝜑

 𝑎𝑛𝑑 𝑄𝑠𝑢𝑚
𝑙𝑜𝑠𝑠𝑒𝑠,𝜑

) are quantified as  

shown in (10) and (11) where ∑ 𝑃ℎ𝑛
𝜑

𝑛𝜖𝑁   𝑎𝑛𝑑 ∑ 𝑄ℎ𝑛
𝜑

𝑛𝜖𝑁  denote the total daily active and reactive demands 

of all households, respectively. 𝑃 𝑡𝑟𝑠𝑒𝑐,𝑡𝑜𝑡𝑎𝑙,𝜑and  𝑄 𝑡𝑟𝑠𝑒𝑐,𝑡𝑜𝑡𝑎𝑙,𝜑 represent total daily active and reactive power 

at the secondary side of the transformer, respectively.  

 

𝑃𝑠𝑢𝑚
𝑙𝑜𝑠𝑠𝑒𝑠,𝜑

= 𝑃 𝑡𝑟𝑠𝑒𝑐,𝑡𝑜𝑡𝑎𝑙,𝜑 −∑𝑃ℎ𝑛
𝜑

𝑛𝜖𝑁

, ∀ 𝜑 ∈ 𝜙, 𝑛 ∈ 𝑁 (10) 

𝑄𝑠𝑢𝑚
𝑙𝑜𝑠𝑠𝑒𝑠,𝜑

= 𝑄 𝑡𝑟𝑠𝑒𝑐,𝑡𝑜𝑡𝑎𝑙,𝜑 −∑𝑄ℎ𝑛
𝜑

𝑛𝜖𝑁

    

∀ 𝜑 ∈ 𝜙 , 𝑛 ∈ 𝑁 

(11) 

3. RESULTS AND DISCUSSION 

In this section, the demand profiles, EV profiles, and network employed to assess the impact of EVs 

on the network is introduced. The tool developed by the Centre for Renewable Energy Systems 

Technology (CREST) in  [31] is utilized for modeling the domestic profiles (one-minute resolution). Each 

load of individual dwelling is realistically modeled by considering factors such as the number of 

occupants, the type of day, seasonality, and the corresponding usage of electrical appliances. 

For the considered network, the number of occupants per household aligns with UK statistics  [32], 

i.e., the percentage of houses with 1, 2, 3, and more than 4 person/people are 29, 35, 16, and 20%, 

respectively. Two seasons (summer and winter) are investigated, therefore, for each season, a pool of 

1,000-weekday customer profiles (1-min resolution) is created to be employed. For each season (July and 

February), the average of the created pool is normalized and demonstrated in Fig.3. As the EV statistics 

(for Nissan leaf brand EV cars) are publicly available in  [33], where probability distribution function for 

daily EV energy requirement and probability distribution function of EC connection times during the field 

trials are provided. The corresponding figures are provided in Fig.4 and Fig.5. This data is employed to 

generate a pool of 1000 profiles (1-min resolution). The average of the created pool is normalized and 

demonstrated in Fig.6. In this study, EV profiles are considered to operate at the unity power factor. The 

battery capacity is 24kWh  [34].Since  EVs are connected to the grid at home, only slow charging mode is 

considered, with a constant charging rate of 3kW. Furthermore, generated EV profiles are randomly 

allocated between customers to cater for uncertainty.  
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Figure 4. The probability distribution function for daily EV energy requirement.  

 

 
Figure 5. The probability distribution function of EC connection times. 

 

In order to coincide the maximum EV profile with the corresponding seasonal demand profiles, the 

time of connection is shifted to one and four hours for summer and winter, respectively.  Therefore, the 

effect of EV connection on voltage profiles can be observed. For the worst-case scenario (also referred to 

as Dumbed Charging), the same EV profile is chosen to be able to connect at the same hours, which also 

coincides with peak demands. Although it is highly unlikely to observe Dumb Charging under normal 

conditions throughout the year, it may happen in exceptional cases (e.g., after a sports event, etc.) 
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In this section, the real underground residential UK LV network (feeder by feeder) from the North 

West of England, part of the Low Carbon Networks Fund Project ‘LV Network Solutions’, is used  [35]. It 
is modified as an LV network to assess the network-based impact analysis shown in Fig.7. The network 

consists of six LV feeders (three-phase four-wire), each of which is shown with different colors. A total of 

351 customers are connected to feeders through single-phase connections.  

 
Figure 6. Normalized average of EV, summer, and winter demand profiles. 

 

 
Figure 7. Studied real LV network on which feeders are shown in different colors and the secondary 

substation is represented by a triangle. 
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The corresponding transformers (illustrated in the triangle) have a voltage ratio of 11 kV to 0.433 kV 

(8.7% offload tap boost), which is typical in the UK  [36].  The capacity of the transformer is 500 kVA. For 

simplicity purposes, the voltage at the primary side of the transformer is considered fixed at 1 pu. 

3.1. Results  

In this section, a realistic three-phase four-line time series unbalanced power flow analysis is carried 

out through OpenDSS to assess the impact of EVs on the network along with customer voltage profile 

considering different scenarios. The results and corresponding discussions are provided. 

In order to assess the impact of EVs on the voltage, the analysis of with and without EVs, and the 

worst-case scenario is carried out for summer and winter. For the without EVs cases, only demand profile 

impacts on the network and the customers are quantified considering seasons. For the ‘with EV’ and 

‘worst-case’ scenarios, each dwelling has an EV connected in a certain time period of the day (the worst-

case scenario considers the same connection time of EVs).  

The minimum voltages of households throughout the day for each case are captured and compared 

against each other to provide insight into how EV profiles' effects are on the voltages shown in Fig.8.  

The results show that the reduction in minimum voltages for all feeders analyzed varies according to 

the location of households (a total of 351 customers). The more demand drawn from households indicates 

the lower voltages.  

 
Figure 8. The minimum voltage at each household on the network for without, with, and worst-case 

study. 

 

Due to the nature of EVs, the current drawn by dwellings is expected to increase. Therefore, voltage 

profiles along the feeders are to be affected. The change in voltage profile along with the feeders with EVs 

in winter is, for Feeder-4, demonstrated in a time series manner in Fig.9. 

It is evident that the change in voltage profiles of households from the transformer to the end of the 

feeder increases. It is a fact that customers with the largest distance from the transformer are expected to 

be the most challenging dwelling in terms of voltage (i.e., relatively large voltage drop). Crucially, voltage 

drops are primarily observed at late hours when most EVs are connected. It is noteworthy that, according 

to EN50160, none of the customers experience voltage problems in the case of employing without EVs and 

different EV profiles for summer and winter. Whereas, in the worst-case scenario, a total of 44 and 51 
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customers are affected by voltage problems (i.e., breaching the statutory limits) for summer and winter, 

respectively. 

 

 
Figure 9. Daily min-by-min voltage profiles of households from the transformer (customer number is 

labeled as 0) to the end of Feeder-4 (labeled as 100).  

 

The hourly utilization of each feeder considering the seasons and various scenarios is shown in Fig.10. 

Once feeder utilization exceeds one hundred percent, thermal overloading occurs in the feeder. Note that 

the utilization percentage of each feeder increases with the adoption of EVs as the currents drawn by 

households increase. For the worst-case analysis, Feeders from 4 to 6 pose thermal overloading. From the 

seasonal perspective, the utilization of feeders increases slightly in response to the growth in demand.   

 
Figure 10. Utilization of feeders for different cases in two seasons. 

 

From utilization feeder impacts, it is obvious that currents drawn by households increase to a great 
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extent with the adoption of EVs. This is, in turn, expected to result in amplification in transformer loading. 

For the analyzed three cases in each season, the transformer loading percentage is given in Fig.11. It can 

be seen from the figure that EVs augment transformer loading due to the growth in demand profiles. In 

the case of the worst-case scenario, thermal overloading exceeds its limit (i.e., 100%), which indicates no 

headroom is left to host EVs. Furthermore, from utilization impact, only feeders from 4 to 6 are overloaded, 

yet, the room provided by other feeders is not sufficient for the transformer to overcome overloading.  

Another indicator considered is energy loss as it can be expected to increase with greater demand 

(EVs). Daily total energy losses for the studied network are given in Fig.12. With larger demand 

(considering EVs and seasonality), daily energy losses are increased, as expected. 

 
Figure 11. Hourly transformer loading for different cases in two seasons. 

 

 
Figure 12. Daily energy losses for different cases in two seasons. 

 

It is noteworthy to highlight that total daily energy losses are to be significantly low compared to total 

energy drawn by households.  
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3.2. Discussion 

As demonstrated by the results, the impact of EVs on the households and network level depends on 

seasonality and instances in which how EVs are engaged in the network.  

Although impact analysis may be computed from different perspectives, the proposed methodology 

and formulated performance indicators could be used to assess the impact in a more realistic manner by 

adopting timely analysis, real-time control of networks and EVs, etc. The resolution of profiles is also key 

to computing performance indicators, as the realistic manner of calculating voltage issues depends on the 

average 10-min voltage profile according to BS EN50160.  

From a planning/operational perspective, the methodology considers the extent to which feeders are 

prone to voltage/utilization problems and when the solution could be required to cope with eminent 

technical problems.  

Despite most DNOs currently having little or no measurements from the customers and/or network 

points, publicly available or generated high-resolution demand profiles can be used to conduct this 

analysis. 

The identical connection time case (worst-case scenario) poses technical problems such as voltage 

problems, utilization of feeders, and thermal overloading of the transformer. Therefore, DNOs are to be 

ready for this case even if no technical problem is posed by their networks currently. While this scenario 

is highly unlikely to occur under normal circumstances, it remains a possibility to occur under some 

circumstances (e.g., in the aftermath of sports activities in some neighborhoods). This could pave the way 

for greater investment in charging stations at workplaces and malls. Another topic that deserves to be 

discussed is the interoperability of EVs with other technologies, such as energy storage systems, to 

diminish the potential reverse impact on the network. 

Additionally, the methodologies developed to enhance hosting capacity in low-voltage (LV) networks 

with photovoltaic (PV) systems can be extended to the domain of LV networks with electric vehicles (EVs). 

These include network reconfiguration, the deployment of battery energy storage systems (BESS) to 

support LV feeders hosting both PVs and EVs, and the implementation of demand response 

strategies  [37–41]. 

4. CONCLUSION  

In this study, the participation of EVs in the real LV network is studied. A pool of EV profiles is 

generated from real-world statistics. Under three different scenarios, the impact of EVs on the LV 

networks is investigated in a comprehensive manner considering household voltage profile, the network 

transformer loading, utilization feeders, and daily total energy losses. Without EVs, with EVs and worst-

case scenarios for summer and winter are considered to cover all possible circumstances. 

For scalability purposes, all performance indicators are formulated to be used in a 

straightforward/practical manner by researchers and/or DNOs. Taking into account that the share of 

electric vehicles will increase in the years to come, the formulated performance indicators promote a 

smoother transition to this new form of demand at a residential level as imminent problems can be 

computed and the corresponding solution could be put in place.  

The presented case study exemplifies the computation of the formulated performance indicators that 

could be adopted to any network. The study suggests that diversifying the connection times of EVs is vital 

to coping with potential problems posed by residential-level EV participation. Therefore, incentivizing 

householders to shift the connection time of their EVs into the grid could be a potential solution. 
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