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Abstract. The problem of prime factorization is particularly important in fields such as cryptography, where it
plays a crucial role, especially in the security of public key cryptosystems like RSA Algorithm. There are numerous
factorization algorithms that have been developed over time, each with varying levels of complexity. These algo-
rithms have played a crucial role in fields like mathematics and cryptography, where prime factorization remains
a key challenge. In this study, the continued fraction method, one of the factorization methods, is examined. To
highlight the importance of the continued fraction factorization method, a brief mention is made of the vulnerability
of RSA Algorithm to attacks, such as Weiner’s attack, which exploits small private keys. Our approach aims to en-
hance the efficiency of factorization by integrating this method with relevant theorems by giving concrete examples
with detailed tables.

2020 AMS Classification: 94A60, 11A55, 11J70, 11A51

Keywords: Factorization algorithms, continued fractions, RSA algorithm, cryptography.

1. Introduction

Mathematics and security have evolved in a deeply intertwined manner throughout history. Cryptography, situ-
ated at the intersection of these two fields, applies advanced mathematical techniques to secure data. One of the
most renowned cryptographic methods is RSA Algorithm [13], developed in 1978 by Ronald Rivest, Adi Shamir, and
Leonard Adleman. RSA Algorithm is based on a security model that leverages the computational difficulty of fac-
toring large composite numbers into their prime components. This complexity is fundamental to the strength of RSA
Algorithm and has positioned it as a cornerstone of modern cryptographic systems.

Various methods have been developed to factorize large numbers, one of which involves the use of continued
fractions. Continued fractions represent irrational numbers as an infinite sequence of divisions and are particularly
effective in factoring large composite numbers with significant prime factors. This technique is not only essential in
number theory but also enhances the security framework of cryptographic algorithms like RSA Algorithm.

The mathematical origins of continued fractions date back to ancient Indian mathematicians such as Aryabhata and
Brahmagupta in the 5th century BCE. However, their relevance to modern cryptography became pronounced with the
advent of RSA Algorithm. The challenge of factoring large prime numbers underscores the role of continued fractions
in strengthening the cryptographic model of RSA Algorithm.

*Corresponding Author
Email addresses: hturgut@yyu.edu.tr (T. Hanoymak), cihankayak1071@gmail.com (C. Kayak)

https://orcid.org/0000-0002-3822-2202
https://orcid.org/0009-0004-6811-7747


Another Approach to Factoring by Continued Fractions 34

Among factorization algorithms, Fermat Factorization Algorithm [6] was developed around 1670 by the French
mathematician Pierre de Fermat. Fermat proposed this algorithm as a method to find the prime factors of large com-
posite numbers. The algorithm estimates the approximate square root of a given composite number and uses this
approximation to identify its factors. It holds particular significance in fields such as cryptography and number theory.
The Fermat Factorization Algorithm is based on a fundamental logic of searching for prime divisors to determine the
factors of a number.

Euler’s Factorization Algorithm [3], introduced by the Swiss mathematician Leonhard Euler in the mid-18th century,
holds notable importance in number theory. Similarly, John Pollard’s Rho Algorithm [9], developed in 1974, is a
prominent method for factoring large composite numbers. Pollard’s p − 1 Algorithm [8], also introduced in 1974, is
another key technique that contributes to evaluating cryptographic systems like RSA.

In 1984, Carl Pomerance introduced the Quadratic Sieve Algorithm [11], which proved to be highly effective for
factoring large composite numbers. Building on this success, Pomerance later proposed the Number Field Sieve (NFS)
Algorithm [12] in 1996. NFS has become the most efficient classical algorithm for factoring numbers exceeding 100
digits, solidifying its role in cryptography.

The p + 1 Factoring Method [16] emerged in the mid-20th century alongside advancements in number theory and
algorithmic cryptography. Interest in this method grew during the 1970s with the advent of computer technology.
Researchers such as Richard Brent refined the technique in the 1980s, increasing its effectiveness for factoring large
numbers. Today, the p+ 1 method is utilized in both theoretical research and practical applications, contributing to the
development of more secure encryption systems.

In this study, an alternative method for factoring a number is proposed, based on certain well-known theorems related
to continued fractions. This proposed method is considered to provide faster and more efficient results compared to
classical method. The process of factoring selected composite numbers is analyzed step by step, algorithms for both
methods are presented, and these methods are compared in detail with examples. Additionally, the results are visualized
in tabular form. Furthermore, Wiener attack [15], [1], [7] on RSA Algorithm is briefly discussed in the context of
continued fractions. The remainder of our article is structured as follows: In Section 2, we present some definitions and
theorems based on continued fractions. In Section 3, we discuss the mathematical foundations of continued fractions.
In Section 4, we examine the security vulnerabilities of RSA Algorithm in detail, particularly focusing on Wiener’s
attack and how continued fractions can serve as an effective method in such attacks. In Section 5, we thoroughly
explore the classical continued fraction-based factorization algorithm, supported by step-by-step implementations and
examples. In Section 6, we propose a faster and more efficient factorization approach as an alternative to the classical
method, presented in detail with examples. In Section 7, we analyze the computational complexity of both methods,
evaluating their efficiency and practical applicability. Finally, in Section 8, we summarize the findings of our study and
provide suggestions for future research in the fields of cryptanalysis and post-quantum security.

Some definitions and theorems related to continued fractions that we utilize are provided below. The reader can see
more information about continued fractions in [14].

2. Preliminaries

This section addresses fundamental concepts and key results related to the applications of continued fractions in
number theory, particularly in factorization problems. A critical aspect of factoring large composite numbers lies in
constraining their prime factors within specific upper bounds. For instance, the well-known result that any prime factor
of a composite number n cannot exceed

√
n significantly simplifies the search process for factors. Such structural

properties, when combined with foundational tools like Euclidean Algorithm, enhance efficiency in both theoretical
and practical applications.

In factorization algorithms, numbers with small prime factors play an important role. In this context, numbers whose
prime factors are all bounded by a predefined parameter B (termed B-smooth numbers) directly influence algorithmic
performance. This concept is central to techniques such as the factor base method and, when integrated with continued
fractions, enables rapid factorization of large integers. Below, the definitions and theorems forming the foundation of
this study are presented in detail.

Definition 2.1. A positive integer n is called B-smooth if all its prime factors are less than or equal to a given bound B.
Let n be represented as follows:
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n = pe1
1 · p

e2
2 · · · p

ek
k , where each prime factors pi ≤ B

and B is a predefined upper limit (smoothness bound).

We begin with the following theorem, which plays a fundamental role in the rational approximations of irrational
numbers and enhances the accuracy of factorization methods.

Theorem 2.2 (Dirichlet’s Approximation Theorem (1842)). For any irrational number α, there exist infinitely many
distinct rational numbers a

b with b ≥ 1 such that ∣∣∣∣∣α − a
b

∣∣∣∣∣ < 1
b2 .

We present the following theorem, which determines the best rational approximations of irrational numbers and
serves as a crucial tool in factorization algorithms, particularly contributing to security analysis in cryptography, where
small errors can lead to significant consequences.

Theorem 2.3 (Legendre’s Theorem on Approximation). Let a and b be coprime integers (gcd(a, b) = 1), with b > 0.
For any irrational number α, there exists a rational number a

b such that∣∣∣∣∣α − a
b

∣∣∣∣∣ < 1
2b2 .

In the study of number theory and integer factorization, the relation between quadratic residues and the greatest
common divisor (gcd) is essential for finding non-trivial factors of a composite number n. The following remark
emphasizes an important observation:

Remark 2.4. Let x, y be integers and n ∈ Z+. If x2 ≡ y2 (mod n) but x . ±y (mod n), then gcd(x−y, n) is a non-trivial
factor of n. The random square methods attempt to find integers x and y at random so that x2 ≡ y2 (mod n).

3. Contiuned Fractions Background

Continued fractions provide a systematic way to express irrational numbers as sequences of nested fractions, offering
highly accurate approximations. Their unique recursive structure makes them particularly useful in number theory and
integer factorization. In cryptographic applications, continued fractions play a key role in analyzing modular arithmetic
relationships, especially in attacks that exploit small private keys in RSA Algorithm. Before presenting the formal
definition, we introduce the fundamental notation and properties that will be used throughout this section.

A continued fraction representation of a number allows for efficient approximations, particularly in cases where tra-
ditional fraction expansions fail to provide sufficiently close estimates. This property is crucial in integer factorization
methods that rely on rational approximations to deduce hidden numerical structures.

Let d be a non-square positive integer. We use continued fractions to find the positive integer solutions to the
equations x2 − dy = ±1. Continued fractions represent a mathematical technique utilized to explore the solutions of
such equations through the application of the expression

√
d.

Definition 3.1. Let k ≥ 1 and ak > 0 be a sequence of integers given by a0, a1, a2, . . ..

[a0; a1, a2, . . .] = a0 +
1

a1 +
1

a2+
1

...

.

A sequence of the form [a0; a1, a2, . . .] is called a simple infinite continued fraction, and the values an are referred to as
partial quotients. If the limit of the continued fraction exists, it is said to be convergent.

The following theorems form the mathematical foundation of factorization methods that utilize continued fractions.
These theorems are used to find rational approximations of irrational numbers and to factorize large numbers into their
prime factors using these approximations.
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Theorem 3.2 ( [5]). [Convergents of Continued Fractions and Recursive Relations] Given a sequence of positive
integers a0, a1, a2, . . ., the sequences pn and qn are defined recursively as follows:

p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2.

Then, the convergents of the continued fraction are given by

Cn = [a1; a2, . . . , an] =
pn

qn

which satisfies the recurrence relation:
pn

qn
=

an pn−1 + pn−2

anqn−1 + qn−2
.

Moreover, for every pn and qn, the following inequality holds:∣∣∣∣∣α − pn

qn

∣∣∣∣∣ < 1
q2

n

which demonstrates that the convergents obtained from continued fractions provide the best rational approximations
to the irrational number α.

This theorem defines the convergents of continued fractions and the recursive relationships of these convergents. It
also demonstrates that continued fractions provide the best rational approximations to irrational numbers. It explains
how the sequences pn and qn are recursively calculated and how these sequences converge to the irrational number.

Theorem 3.3 ( [5]). Let α be an irrational number. In this case, the continued fraction expansion of α is represented
as follows:

α = α0,

ak = ⌊αk⌋,

αk+1 =
1

αk − ak
, where (k = 0, 1, 2, 3, . . .).

If α is defined in this manner, then its continued fraction representation is given by

α = [a0; a1, a2, . . .]

which is unique.

This theorem, on the other hand, shows how the continued fraction expansion of an irrational number can be
uniquely obtained. It explains how the coefficients (ak) of continued fractions are calculated and how these coefficients
form the fractional approximations of the irrational number. This process is a fundamental step in the computation of
the values ai and bi used in the factorization algorithm.

These two theorems establish the mathematical basis for factorization methods that employ continued fractions and
explain why these methods are effective. In particular, these theorems demonstrate how large numbers can be factored
into their prime factors more quickly and efficiently. This method underlies attacks such as Wiener’s attack, which
threatens the security of cryptographic systems like RSA Algorithm.

4. Factoring RSA Moduli via Continued Fractions

The security of RSA Algorithm relies on the difficulty of factoring large integers. However, certain vulnerabilities
can arise when specific conditions are met, particularly when the private key is too small. One such vulnerability is
exploited by Wiener’s attack, which uses the mathematical concept of continued fractions to break RSA scheme under
specific circumstances. This section explores the theoretical foundation of Wiener’s attack and how continued fractions
can be used to efficiently recover the private key when certain parameters are improperly chosen.
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4.1. Theoretical Background. [2]
In RSA Algorithm, the public key consists of a modulus N = p · q (where p and q are large prime numbers) and a

public exponent e. The private key is represented by the private exponent d, which satisfies the congruence:

e · d ≡ 1 (mod ϕ(N)),

where ϕ(N) is Euler’s totient function. For RSA Algorithm, ϕ(N) is computed as

ϕ(N) = (p − 1) · (q − 1).

Wiener’s attack focuses on cases where the private key d is small relative to N. Specifically, if d < 1
3 N1/4, the attack

can efficiently recover d using the continued fraction expansion of e
N .

4.2. Continued Fractions and Wiener’s Attack. Continued fractions provide a way to approximate real numbers
using sequences of integers. For Wiener’s attack, the continued fraction expansion of e

N is used to find convergents k
d

that approximate e
N . These convergents are potential candidates for the private key d.

A method of attack that threatens the security of RSA aims to determine the value of ϕ(N). To achieve this, the
following modular arithmetic expression is employed as

e · d − k · ϕ(N) = 1, where k ∈ Z.

When rearranged, this expression yields:

e
ϕ(N)

−
k
d
=

1
d · ϕ(N)

.

From this, it is derived:

e
N
≈

k
d
.

These ratios can be approximated using the method of continued fractions. Continued fractions aid in simplifying
rational numbers to uncover the values of k and d.

Validation of d Value: The value of d in RSA scheme possesses certain characteristics. First, since ϕ(N) is an even
number, d must be odd. If d is even, the next convergent should be considered. Furthermore, ϕ(N) must be an integer.
This can be verified using the following expression:

e · d − 1
k
.

If this expression does not yield an integer, the next convergent should be evaluated.

Finding Roots: To identify the prime factors, a quadratic equation can be constructed

(x − p) · (x − q) = 0.

Expanding these factors results in the equation:

x2 − (p + q)x + p · q = 0

This equation can be reformulated in relation to ϕ(N) as follows

x2 − (N − ϕ(N) + 1)x + N = 0.

If the value of ϕ(N) is a precise approximation, the roots of this equation (p, q) will be integers. These roots represent
the prime factors of N and provide an opportunity to examine the security of RSA Algorithm.
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5. Factorization Algorithm Using Continued Fractions

In this section, the well-known method is explained in detail, along with examples. One of the provided examples
is factored using both this method and the proposed method.

Definition 5.1. Let n > 1, n ∈ Z, and
√

n ≈ a, where a ∈ R+ and k = 0, 1, 2, . . . . From the continued fraction
expansion:

a = c0 +
1

c1 +
1

c2+
1

...

, a = [c0; c1, c2, . . . ].

For c0 ∈ Z and ci ∈ N where i ≥ 1, the values of ci are calculated as follows:

c0 = ⌊a⌋, ε0 = a − c0,

c1 =

⌊
1
ε0

⌋
, ε1 =

1
ε0
− c1,

c2 =

⌊
1
ε1

⌋
, ε2 =

1
ε1
− c2,

...

ci =

⌊
1
εi−1

⌋
, εi =

1
εi−1
− ci.

The k-th convergence of a = [c0; c1, c2, . . . ] ∈ R+ is calculated as follows

a =
ak

bk
= [c0; c1, c2, . . . , ck].

Convergents are computed iteratively:
a0

b0
=

c0

1
,

a1

b1
=

c1a0 + 1
c1

,

...

ak

bk
=

ckak−1 + ak−2

ckbk−1 + bk−2
, where k = 0, 1, ...

xk = [a0, a1, . . . , ak] is defined accordingly.
Before factoring n, a factor base B = {−1, p1, . . . , pL} is used. Squares that are B-smooth are added for processing.
That is,

Yk ≡ x2
k (mod n), x ∈ Z.

The process involves identifying which products of Yk form a perfect square. If a perfect square is obtained, the product
of Yk equals y2, and the product of xk modulo n gives x. Subsequently, x and y are added and subtracted. Finally, the
greatest common divisor (gcd) with n is computed to determine the prime factors.

gcd(x − y, n) = p, gcd(x + y, n) = q.

Example 5.2. Let us factorize n = 11021 using the well-known method based on the continued fractions.

We compute convergence for
√

11021 ≈ 104, 980951...

a0

b0
=

104
1
,

a1

b1
=

105
1
,

a2

b2
=

5459
52
,

a3

b3
=

11023
105

, ...

Smallest absolute residue Yi of a2
i (mod 11021) ;
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i 0 1 2 3 ...
xi = ai 104 105 5459 11023 ...

Yi ≡ a2
i mod n 205 4 103 4 ...

Thus, y2 = Y1 = 22, and x = x1 ≡ 105 (mod 11021), with 22 ≡ 1052 (mod 11021). Then, we can factorize n as
gcd(105 + 2, 11021) = 107 and 11021 = 107 × 103.

Example 5.3. Let us factorize n = 9073 using the well-known method based on the continued fractions.

For
√

9073 ≈ 95.2523 . . . , the approximation is calculated as follows:

√
9073 ≈ 95 +

2523
10000

= 95 +
1

10000
2523

= 95 +
1

3 + 2431
2523

= 95 +
1

3 + 1
1+ 1

26+ 1
2+ 1

...

.

Since n is a four-digit number, only the first four coefficients are taken into consideration, except the integer part. Thus,
the coefficients are [95; 3, 1, 26, 2]. After obtaining the coefficients, the values of ai

bi
are found for (i = 0, 1, 2, . . . ):

a0

b0
=

95
1
,

a1

b1
= 95 +

1
3
=

286
3
,

a2

b2
= 95 +

1
3 + 1

1

=
381
4
,

a3

b3
= 95 +

1
3 + 1

1+ 1
26

=
10192

107
,

a4

b4
= 95 +

1
3 + 1

1+ 1
26+ 1

2

=
20765
218

.

The sequence xi = (95, 286, 381, 10192, 20765 . . . ) is then used to compute the Yi values:

Y0 ≡ 952 (mod 9073) = 9025.

Since the number 9025 is close to 9073, it is subtracted.

Y0 = 9073 − 9025 = 48,

Y1 ≡ 2862 (mod 9073) = 139,

Y2 ≡ 3812 (mod 9073) = 9066,
Y2 = 9073 − 9066 = 7,

Y3 ≡ 101922 (mod 9073) = 87,

Y4 ≡ 207652 (mod 9073) = 9046,
Y4 = 9073 − 9046 = 27.

The sequence Yi = (48, 139, 7, 87, 27, . . . ) is obtained. Since none of the Yi values is a perfect square individually, we
look for combinations of Yi whose product is a perfect square. The combination Y0 · Y4 is found to be a perfect square.
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Thus,

y2 = Y0 · Y4 = 48 · 27 = 42 · 3 · 33 = 362

x = x0 · x4 ≡ 95 · 20765 (mod 9073) = 3834.

Finally, x and y are added and subtracted, and the gcd with n is calculated:

gcd(x + y, n) = gcd(3834 + 36, 9073) = 43
gcd(x − y, n) = gcd(3834 − 36, 9073) = 211

Thus, n = 9073 is factored as 9073 = 43 × 211.

6. An Alternative Approach with Continued Fractions

In this section, we modify the continued fraction method for integer factorization by using Theorems 3.2 and 3.3.
These theorems exploit particular numerical properties to identify prime factors both more rapidly and more efficiently,
thereby establishing the method as a powerful tool for factoring composite integers. We demonstrate the alternative
factorization procedure through detailed examples, illustrating each step to clarify the methodological advancements
and highlight the advantages of this approach for factoring large composite numbers.

We can write the followings by using Theorem 3.3. For n > 1, n ∈ Z,

⌊
√

n⌋ = c0,

r0

b0
=

1
√

n − c0
=

√
n + c0

n − c2
0

, c1 = ⌊

√
n + c0

n − c2
0

⌋

ri+1

bi+1
=

1
ri
bi
− ci+1

, ci+2 = ⌊
ri+1

bi+1
⌋ where i = 0, 1, 2, . . . (6.1)

While solving (6.1), both the coefficients and the bi values are determined. The critical point is to check whether bi is
a perfect square. B-smooth check is performed, and if bi is B-smooth, then the product of bi’s is equal to y2, i.e,∏

bi = y2

which represents the condition for identifying a perfect square among B-smooth values.
From Theorem 3.2:

a−2 = 0, a−1 = 1
ai = ai−1ci + ai−2, where i = 0, 1, 2, . . . (6.2)

This equation (6.2) gives the product of coefficients up to the point where bi is a perfect square. The result, when
taken modulo n, yields the smallest positive integer remainder, x i.e,

x = ai (mod n). (6.3)

Using (6.2) and (6.3):

x + y ≡ ai (mod n) +
√∏

bi, (6.4)

x − y ≡ ai (mod n) −
√∏

bi. (6.5)

By calculating the greatest common divisor of n with (6.4) and (6.5) separately, the factors of n are found:

gcd(x + y, n),
gcd(x − y, n).

We give the algorithm for our new method for finding factors of a given number by using continued fractions.
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6.1. The Algorithm for the Proposed Method. :
Step 1: Enter Input Values

(1) Give a composite integer n to be factored.
(2) Determine the set B of small prime numbers for B-smoothness.

Step 2: Compute Initial Values

(1) Compute the integer part of the square root of n:

c0 = ⌊
√

n⌋.

(2) Compute the initial remainder:

b0 = n − c2
0.

Step 3: Compute Continued Fraction Terms

(1) Initialize values for numerator = c0 and denominator = b0.
• Set lists for ci and bi (i = 1, 2, 3, ...).

(2) Repeat the following steps until a suitable subset is found:
• Compute the next term in the continued fraction:

ci =

⌊c0 + numerator
denominator

⌋
,

bi =
n − (numerator − new numerator × denominator)2

denominator
.

• Compute the new numerator:

new numerator = denominator × ci − numerator.

• Compute the new denominator:

new denominator =
n − (new numerator)2

denominator
.

• Update the numerator and denominator.
• Append ai to the list.
• If bi contains only prime factors from B, add it to the list.

Step 4: Find a Perfect Square Product

(1) Check all subsets of bi values.
(2) Compute the product of each subset.
(3) If a product is a perfect square, select that subset and compute:

y =
√∏

bi.

Step 5: Compute Modular Values

(1) Compute the sequence ai = ai−1ci + ai−2 (i = 1, 2, 3, ...) by using initial values a−2 = 0, a−1 = 1.
(2) Compute x using the selected indices:

x =
∏

ai mod n.

(3) Compute (x + y) and (x − y) modulo n.
(4) Find the factors by calculating the greatest common divisor (gcd):

If gcd(x + y, n) or gcd(x − y, n) provides a non-trivial factor of n, the factorization is found.
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6.2. Examples Using the Proposed Method:
We illustrate this method with some examples.

Example 6.1. Let us factorize n = 9073 using our modified method based on continued fractions.

c0 = ⌊
√

9073⌋ = 95,

r0

b0
=

1
√

9073 − 95
=

√
9073 + 95

9073 − 952 =

√
9073 + 95

48
.

c0 = 95 and b0 = 48. Since b0 is not a perfect square, the process continues:

c1 =

 √9073 + 95
48

 = 3,

r1

b1
=

1
√

9073+95
48 − 3

=

√
9073 + 49
9073−492

48

=

√
9073 + 49

139
.

c1 = 3 and b1 = 139. The process continues by checking whether b1 is a perfect square:

a2 =

 √9073 + 49
139

 = 1,

r2

b2
=

1
√

9073+49
139 − 1

=

√
9073 + 90
9073−902

139

=

√
9073 + 90

7
.

c2 = 1 and b2 = 7. The process continues for b2, and: b0 · b2 = 48 · 7, b1 · b2 = 139 · 7, b0 · b1 · b2 = 48 · 139 · 7
does not yield a perfect square.

c3 =

 √9073 + 90
7

 = 26,

r3

b3
=

1
√

9073+90
7 − 26

=

√
9073 + 92
9073−922

7

=

√
9073 + 92

87
.

c3 = 26 and b3 = 87. b3 is not a perfect square, so we need to check whether their products result in a perfect square
b0 · b3 = 48 · 87, b1 · b3 = 139 · 87, b2 · b3 = 7 · 87, b0 · b1 · b3 = 48 · 139 · 87, b0 · b2 · b3 = 48 · 7 · 87, b1 · b2 · b3 =

139 · 7 · 87, b0 · b1 · b2 · b3 = 48 · 139 · 7 · 87 did not result in a perfect square, so the process continues.

c4 =

 √9073 + 92
87

 = 2,

r4

b4
=

1
√

9073+92
87 − 2

=

√
9073 + 82
9073−822

87

=

√
9073 + 82

27

c4 = 2 and b4 = 27.

b4 is not a perfect square, so we need to check whether their products result in a perfect square:

b0 · b4 = 48 · 27 = 362

which gave a perfect square, so the process ends.

The process continues similarly for c3 and c4. Finally, b4 = 27 forms a perfect square:

y =
√

362 = 36.
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It is obtained. Now, x is found:

a−2 = 0, a−1 = 1
a0 = a−1c0 + a−2 = 1 · 95 + 0 = 95
a1 = a0c1 + a−1 = 95 · 3 + 1 = 286
a2 = a1c2 + a0 = 286 · 1 + 95 = 381
a3 = a2c3 + a1 = 381 · 26 + 286 = 10192,
a4 = a3c4 + a2 = 10192 · 2 + 381 = 20765
x = a4 · a0 mod n, x = 20765 · 95 mod 9073 = 3834

Then,

x + y = 3834 + 36 = 3870
x − y = 3834 − 36 = 3798

Now,

gcd(x + y, n) = gcd(3870, 9073) = 43
gcd(x − y, n) = gcd(3798, 9073) = 211

is obtained.

We provide two more examples with the tables based on this new method.

Example 6.2. Let us factorize n = 91 using its continued fraction representation.

Table 1. Factorizing n = 91 using continued fractions
Calculated quantity How it is derived i=0 i=1 i=2 i=3 ...

[ ⌊
√

n⌋ ] [ ci, (i = 0, 1, . . .) ] 9 1 1 5 ...
ri
bi

r0
b0
= 1
√

n−c0
ri+1
bi+1
= 1

ri
bi
−ci+1

√
91+9
10

√
91+1
9

√
91+8
3

√
91+7
16 ...

ai a−2 = 0, a−1 = 1
ai−1ci + ai−2 9 10 19 105 ...

y
√

bi
√

10 3
√

3 4 ...
x ai (mod n) 9 10 19 14 ...

x + y ai (mod n) +
√

bi 9 +
√

10 10 + 3 = 13 19 +
√

3 14 + 4 = 18 ...
x − y ai (mod n) −

√
bi 9 −

√
10 10 − 3 = 7 19 −

√
3 14 − 4 = 10 ...

gcd(x + y, n) - 13 - - ...
gcd(x − y, n) - 7 - - ...
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Example 6.3. Let us factorize n = 253 using its continued fraction representation.

Table 2. Factorizing n = 253 using continued fractions
Calculated quantity How it is derived i=0 i=1 i=2 i=3 ...

[ ⌊
√

n⌋ ] [ ci, (i = 0, 1, . . .) ] 15 1 9 1 ...
ri
bi

r0
b0
= 1
√

n−c0
ri+1
bi+1
= 1

ri
bi
−ci+1

√
253+15

28

√
253+13

3

√
253+14

19

√
253+5
12 ...

ai a−2 = 0, a−1 = 1
ai−1ci + ai−2 15 16 159 175 ...

y
√

bi 2
√

7
√

3
√

19 2
√

3 ...
x ai (mod n) 15 16 159 175 ...

x + y ai (mod n) +
√

bi 15 + 2
√

7 16 +
√

3 159 +
√

19 175 + 2
√

3 ...
x − y ai (mod n) −

√
bi 15 − 2

√
7 16 −

√
3 159 −

√
19 175 − 2

√
3 ...

(∗)
b1 · b3 3 · 3 · 22 = 62

a1 · a3 16 · 175 (mod 253) = 17
x 17
y 6

gcd(x − y, n) 11
gcd(x + y, n) 23

(∗) :
The square root of y does not simplify outside of the radical, so we need to check which products of bi

results in a perfect square.

7. Comparison Between the Continued Fraction FactorizationMethod and the ProposedMethod

In this section, the time complexities of the classical and proposed methods are analyzed in detail, and the differences
between these two methods are explained based on a mathematical foundation.

7.1. Time Complexity of the Classical Continued Fraction Method. The classical continued fraction-based factor-
ization method applies a factorization strategy by performing a continued fraction expansion at each step. The key
components determining the time complexity of this method are as follows:

• Continued Fraction Expansion:
– The continued fraction expansion is completed in an average of O(n1/4) steps.
– Each step requires one division operation, two multiplication operations, and one modular exponentiation

operation.
• B-Smooth Testing:

– At each step, a modular square is computed and checked for B-smoothness.
– The B-smooth test involves factorization based on a predefined factor base and requires O(B) division

operations per step.
– The total number of division operations performed is O(n1/4B).

The size of B is generally selected as:
B = e

√
log n·log log n.

Thus, the overall time complexity of the classical method is given by:

O(n1/4e
√

log n·log log n).

For a comprehensive overview and rigorous complexity analysis of integer factorization techniques, a reader can
also refer to [10] and [4].
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7.2. Time Complexity of the Proposed Method. The proposed method offers a more optimized structure compared
to the classical continued fraction method. Specifically, by applying the B-smooth test only once, the total number of
division operations is significantly reduced.

• Continued Fraction Expansion:
– The number of steps remains O(n1/4).
– Each step requires one division operation, two multiplication operations, and one modular computation.

• B-Smooth Testing:
– This test is performed only once, requiring O(B2) division operations in total.
– Here, B is chosen to be smaller compared to the classical method, specifically O((log n)2).

Thus, the total time complexity of the proposed method is expressed as:

O(n1/4 log n) + O(B2).

Substituting B = (log n)2, we obtain:

O
(
n1/4 · log n + (log n)4

)
≈ O
(
n1/4 · log n

)
.

In many integer factorization algorithms, the choice of the smoothness bound plays a critical role in determining the
overall efficiency. A well-chosen bound can significantly affect the performance of the smoothness testing phase.
So, the choice of the bound B = (log n)2 is intended to minimize the overall computational cost by reducing the
number of required divisions during the B-smoothness test, thereby enhancing the practical efficiency of the proposed
method. Therefore, the proposed method is more efficient than the classical method, as it avoids the exponential growth
caused by repeated B-smooth testing. Instead, it applies the B-smooth test only once, leading to quasi-polynomial time
complexity. This makes the proposed approach significantly more scalable and practical for large-scale factorization
problems.

8. Conclusion and FutureWorks

In this study, a novel perspective on the use of continued fractions for factorizing integers is presented. The conven-
tional method exhibits a tendency to decelerate as the parameter B increases due to the repeated B-smoothness checks
performed at each step, leading to increased time complexity, particularly for large integers. In contrast, the proposed
approach integrates coefficient and modular arithmetic computations concurrently and performs the B-smoothness
check only once. This innovative methodology significantly enhances computational efficiency, especially for larger
B values. It is suggested that this alternative method may facilitate reaching conclusions and contribute to a better
understanding of the topic.The continued fraction factorization method offers a different perspective on factoring large
numbers into their prime factors. Advances in factorization methods have significantly impacted cryptography, espe-
cially RSA encryption. Wiener attack and the continued fraction algorithm threaten RSA systems with short secret
exponents, creating vulnerabilities. Cryptanalytic methods like Wiener attack exploit these weaknesses using contin-
ued fractions to break RSA encryption. These concerns highlight the need for research in post-quantum cryptography
and cryptanalysis, as quantum computing threatens traditional cryptographic security. Addressing these vulnerabilities
is essential to strengthening cryptographic systems against both classical and quantum attacks in the future.
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