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ABSTRACT

Modeling a dead-time system is a common issue in engineering applications. To address this issue, existing research has employed neural networks 
and fuzzy logic-based intelligent systems. Herein, a dead-time system modeled with the aid of support vector machine regression, which has a good 
generalization feature, was investigated. The performance of the method proposed herein was examined with different parameters in linear and 
nonlinear dead-time systems.
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Introduction

Optimal generalization success can be achieved for a learning task with a finite number of 
training cases, if the machine capacity is correctly balanced, which means that the result is a 
definitive conclusion on a given training group and the learning ability every single training 
set excellently. The classic neural network attitude has faced several challenges, especially in 
applications with few data, in generalizing and generating data-compatible models. The Sup-
port Vector Machines (SVM) presented by Vapnik in the 1970s is a combination of statistics, 
machine learning, Neural Networks (NN) [1, 2]. The formulation includes the Structural Risk 
Minimization rule. SVM can also carry out a well generalising of classifying and regressing even 
on little sized data using the kernel function mapping tecnique [3, 4]. In addition, SVM are 
becoming increasingly popular due to their many attractive features in theoretical and engi-
neering applications. Unlike NN, SVM can overcome the problem of classifying and regressing 
via being transformed to the problem of quadratic programming without being deterred by 
any regional minimum. One other adverse side of NN is not to know exactly to choose the 
hidden cells numbers. SVM that can be utilized at the nonlinear system modelling, is utilized 
at many fields of model identification, identification of hidden handwriting, identification of 
objects, determination of sound, search and characterization of a face, regression, estimation 
of a function and optimal control areas  [5, 6].

The purpose of this work is to present the regression method according to SVM by applying 
it in order to model of the system with dead-time. The proposed article is arranged as below: 

A general information about SVM is given in Chapter 2. The proposed support vector machine 
regression method and its structure are expressed in Chapter 3, the examples are in Chapter 4. 
They are followed by conclusion and references sections.

Support Vector Regression

Vapnik found in 1997 that support vector techniques were successfully applied to solve re-
gression problems [1]. Contrary to pattern recognition problems, there are real-value func-
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tions. Support vector machine is an effective way to model lin-
ear and nonlinear systems.

The training data set to be used to learn the function f(x) with 
input-output relation is as follows:

(x1 ,y1),(x2 ,y 2)......(xn ,yn ), x ∈R
N , y ∈R  (1)

Here, input data, X, stand for N-size vectors and generally sys-
tem responds, Y, stand for scalar values. The function to be esti-
mated in the support vector machines is processed as follows. 
The input/output connection may be modeled as follows at the 
feature space by the linear regressing model: 

f (x,w)=wTx+b  (2)

Several loss functions are used in regression operations. The 
ε-tolerance loss function used here is given as follows:

Yε =
0 if y − f (x ,w ) < ε

y − f (x ,w ) − ε othervise

⎧
⎨
⎪

⎩⎪
 (3)

It is the objective to minimize the observational and also the 
experimental risk that symbolizes the whole of errors at SVM 
algorithm formula and 2w at once. As a result, a regressing hy-
per-plane ),( wxf  can be detected in x and x* slack variables via 
minimization as follow:

R(w ,ξ ,ξ * )= 1
2
w

2
+C (ξ

i=1

n

∑ +ξ * )  (4)

The trade-off parameter between error and w  weight vector 
form is C and it is chosen by the user. ε value, another param-
eter, which will be chosen by the user, like C, and defines the 
size of the ε-tube. This optimization problem with restriction is 
resolved via installing a secondary Lagrangian as follows: 

max
α ,α *

		W(α ,α * )= −ε . (α i
* +α i )

i=1

n

∑ + (α i
* −α i )y i

i=1

n

∑

− 1
2

(α i
* −α i )(α j

* −α j )xi
T x j

i=1,j=1

n

∑
 (5)

The restrictions are as the following.

α i
*

i=1

n

∑ = α i
i=1

n

∑
0≤α i

* ≤C i =1,..,n
0≤α i ≤C i =1,..,n

 (6)

By combining the results of optimal regression hyper-plane, it 
is rewritten as:

z = f (x,w)=wTx+b = (α i
* −α i )< xix > +b

i=1

n

∑  (7)

In non-linear SVM regression, it is passed through from nonlin-
ear input space to a linear features space  using “kernel func-
tions”, which meet Mercer conditions and are symmetric final 
positive. Any kernel function, which corresponds to any inter-

nal multiplication to be done, in this space having high-degree 
size has been defined in the present space [7]. 

K (xi ,x j )= <ϕ(xi ),ϕ(x j )>  (8)

Using kernel function, need for making multiplications in (7) is 
eliminated. In the feature space, which is linear, the algorithm 
for linear regression by SVM is applied. Thus, ),( wxf  hyperplane 
of regression, which is linear in the features space, will create 
nonlinear regressing hyper-plane in the specific input space. 
The formulation for non-linear regression is rewritten as fol-
lows: 

f (x,w)= (α i
* −α i )K (xi x )+b

i=1

n

∑  (9)

The most popular kernel functions, the polynom kernel func-
tion, Radial Base kernel Function (RBF) have been used and 
tested in this study.

Polynomial kernel function: K (x ,x' )= (〈x ,x'〉+1)p

RBF : K (x ,x' )= exp − x− x'
2
2σ 2⎛

⎝⎜
⎞
⎠⎟

Modeling with SVM-Regression 

The proposed form of the modelling of the dynamic system us-
ing the SVM-Regression (SVM-R) is shown in Figure 1.

where u and y’s  refer sytem input and outputs. y is the actu-
al one belonging to system given. ŷ  is the one of the SVM-R 
modeling, e refers the error inbetween outputs of the actual 
and the modelled systems. This is a modeling error and also de-
pends on the approximate ability. 

It is presumed that the structure of the actual system or its 
mathematical model is not known. SVM modeling data set is 
planned as to input - output values batch of the system. Usual-
ly, the outputs of each systems at the  k+1 time, can be stated 
as a function with former output specimens, and-with former 
input specimens. 
y (k +1)= f (y (k ),....,y (k −n +1),u(k −d ),...,

u(k −d −m+1),η(k ),....,η(k − l ))= f (x(k ))
 (10)

where, η(k )  is uncertainness (including some noises, unmod-
eled dynamics… etc), d is the time lag being in samples (when 
Ts is the sampling period, the system dead time is d.Ts) n, m, l 

Figure 1. Propsed modelling using SVM-R
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is the maximum delay of the output, input and noise respec-
tively, and (.)f  is a nonlinear function. To enter the SVM, the 
vector is as follows:

x(k )= [y (k ),....,y (k −n +1),u(k −d ),....,u(k −d −m+1),
η(k ),....,η(k − l )]T

 (11)
 

  

where x ∈Rn+m+l , k = d+1, .… ,d+N. y (k +1)  is output. 
ŷ (k +1)  refers predicted output value at time (k+1). As a re-
sult, this nonlinear system model is rewritten as folows: 

ŷ (k +1)= (α i
* −α i ).K (xix(k ))+b

i=1

SVs

∑  (12)

Modeling algorithm with  SVM-R 
Stage 1: Create training data set (

!xi ,y i ), i =1,...,N{ } . The num-
ber of training data pairs in the group is N.   

Stage 2: Parameter and kernel function selections depending 
on user are done. (C and ε)

Stage 3: SVM is trained with training data. 

Stage 4: Various test and input data are used for testing of  the 
performance of the SVM based model. 

Examples 

Linear system modeling example
A first order dead system is seen as below [8].  

y (k +1)=0.9512.y (k )+0.07316.u(k −d )  (13)

• Sample period is 0.1s., delay step is d=5 . The design pa-
rameters are selected and applied as follows.

• u(t )=1+ sin(10.t +5)+ sin(2.t +1)  is the selected sign 
as input. The system is run for a period of time to collect 
input - output training data. 

• X (k )= [y (k .) y (k −1) u(k .) u(k −1)]T , Y (k )= y (k +1)  
are the selected input and output of the SVM.

• User defined parameters are selected like C:  200, also ε: 
0.01. Every training set involves 150 components. 

• This method  is applied for both RBF and also polynomial 
kernel function. RBF is tested for σ =0.5,2,3,4  and poly-
nomial kernel parameter p is selected as p=1, 2, 3, 4. In 
addition, 3 different test inputs are applied for compari-
son (Table 1). The outputs for different inputs are shown 
in Figure 2, 3.

Nonlinear system modeling example
The method was applied to a nonlinear dead time system after 
it was applied to a linear system. Here a nonlinear second order 
dead time system is considered.

The system considered with 3 varied dead times T=0.25sec., 
1sec., 2sec., are given like follows [9]. 

!!y (t )+ !y (t .)+ y (t .)+ y 3(t )=u(t −T )  (14)

The design parameters are selected and applied as follows.

• u(t )=1+ sin(10.t +5)+ sin(2.t +1)  is the selected sign as 
input. the system is run for a period of time to collect input 
- output training data. 

• X (k )= [y (k .) y (k −1) u(k .) u(k −1)]T , Y (k ) = y (k +1)  
are the selected input and output of the SVM.

• User defined parameters are selected like C: 200, ε : 0.001. 
Every training set involves 200 components.

• This method  is applied for both RBF and also polyno-
mial kernel function. RBF is tested for σ = 9,10  and 
polynomial kernel parameter p is selected as p=1, 2.  
In addition, 3 different test inputs are applied for compar-
ison (Table 2). The outputs for different inputs are shown 
in Figure 4, 5.

Conclusion

In this work, a method based on modeling of dead time sys-
tems using SVM regression algorithm is presented. In the pro-
posed method, any mathematical or theoretical forms of the 
system do not need to be known. The system is modeled by 
the SVM-R method constituted via a loss function. The SVM 
regression has high generalization potency and gives very 
good results even with a small number of training data. As 
it guarantees a global minimum it is also a very dependable 
approach. The method has been applied on linear time and 

Figure 3. RBF kernel (σ=0.5), u=exp(-t)+1+sin(5t+5)
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Figure 2. Polinomial kernel (p=3), u=random

0 20 40 60 80 100

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

ou
tp

ut

real output
svm output

t



4

Electrica 2018; 18(1): 1-5
Kabaoğlu and Ortaç Kabaoğlu. Modelling of a Dead-Time System via SVM

Table 1. Training and testing errors for different kernel parameters and different inputs (for linear system) 

Kernel function
Kernel  

parameter Training error Testing error Step error
Error of u=exp  

(-t)+1+sin(5t+5)
Error of 

random signal

Polinomial

p=1 0.0047 0.0057 0.0047 0.0052 0.0035

p=2 0.0070 0.0065 0.0073 0.0064 0.0053

p=3 0.0059 0.0062 0.0065 0.0059 0.0084

p=4 0.0057 0.0053 0.0087 0.0080 0.0089

RBF

σ=0.5 0.0065 0.0069 0.0109 0.0087 0.0136

σ=2 0.0058 0.0060 0.0081 0.0084 0.0081

σ=3 0.0059 0.0064 0.0083 0.0082 0.0062

σ=4 0.0052 0.0057 0.0088 0.0073 0.0072

Table 2. Training and testing errors for different kernel parameters and different inputs (for nonlinear system) 

Kernel  
function

Kernel 
parameter

Dead 
time 

(second)
Training 

error
Testing 

error
Step 
error

Error of 
u= exp(-t) 

+1+sin(5t+5)

Error 
of 1. 

random 
signal

Error 
of 2. 

random 
signal

Error 
of 3. 

random 
signal

Error 
of 4. 

random 
signal

Polinomial

p=1

0.25 0.0047 0.0046 0.0018 0.0028 0.0091 0.0098 0.0085 0.0095

1 0.0049 0.0046 0.0022 0.0031 0.0091 0.0097 0.0080 0.0095

2 0.0051 0.0048 0.0027 0.0036 0.0094 0.0093 0.0081 0.0099

p=2

0.25 0.0037 0.0035 0.0025 0.0037 0.0093 0.0102 0.0097 0.0099

1 0.0049 0.0045 0.0028 0.0043 0.0099 0.0108 0.0100 0.0096

2 0.0052 0.0048 0.0033 0.0038 0.0101 0.0109 0.0101 0.0099

RBF

σ=9

0.25 0.0062 0.0061 0.0025 0.0035 0.0145 0.0166 0.0122 0.0162

1 0.0064 0.0062 0.0028 0.0038 0.0140 0.0157 0.0112 0.0155

2 0.0065 0.0064 0.0032 0.0043 0.0152 0.0145 0.0112 0.0160

σ=10

0.25 0.0063 0.0062 0.0027 0.0036 0.0128 0.0149 0.0112 0.0145

1 0.0066 0.0065 0.0029 0.0040 0.0130 0.0144 0.0106 0.0143

2 0.0067 0.0066 0.0033 0.0045 0.0140 0.0135 0.0106 0.0148

Figure 4. Polinomial kernel (p=3), u=random
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Figure 5. RBF kernel ( σ=9), u=random
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nonlinear dead time systems, and a very high modeling and 
generalization success has been observed even at various 
inputs. These results are evident from the small size of the 
modeling errors. Also, it has been found that as the dead time 
increased, there was a small increase in modeling errors and 
the modeling performance was not adversely effected by the 
change of the system’s dead time. This is very important in 
terms of modeling performance. As Table 2 shows, the error 
grows as the polynomial level grows for the polynomial ker-
nel, and the error decreases as the variance for the rbf kernel 
grows.  On the other hand, selecting kernel and its parame-
ters is a very important question of the SVM. This can be seen 
on the tables. the choice of parameters depends on the user, 
there are still studies focusing on making the right choice [9]. 
increasing the training data provides a better performance, 
but this can lead time problems in some complex systems. 
Various studies have also been done on this topic [10-12].
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