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Introduction

Image fusion is the process of combining relevant information from multitude images, often 
acquired by different sensors and imaging technologies. The most common approach is the 
fusion of a high spatial resolution image with a high spectral resolution image. If the high 
spatial resolution image is a panchromatic image, then the fusion process is called pansharp-
ening.

Pansharpening, in its original form, is the process which combines multispectral (MS) imag-
es with high spatial resolution panchromatic (PAN) images in order to construct high spatial 
resolution MS images. Pansharpening has long been an important field of research because it 
enables the construction of images with high spatial and high spectral resolution, which is not 
directly obtainable from imaging sensors due to various technical limitations. Pansharpening 
was originally applied to PAN an MS images, but have evolved to include fusion of PAN and 
hyperspectral (HS) images, and MS and HS images, among others. At its basis, pansharpening 
is the process of extracting spatial information from one image and injecting this information 
to the other image in order to enhance spatial resolution. 

There are various pansharpening reviews in the literature. In [1], the pansharpening perfor-
mance of four pan-sharpening approaches have been compared and it is stated that con-
text-based decision approach gives the best result. In [2], it has been demonstrated that 
methods in accordance with the Amélioration de la Résolution Spatiale par Injection de Struc-
tures (Improving Spatial Resolution by Structure Injection-ARSIS) concept prevent spectral 
distortion for pansharpened images. In [3], performances of the pansharpening algorithms 
in commercial software packages have been compared for images acquired from IKONOS, 
QuickBird, GeoEye-1, and WorldView-2 satellites, and the best fusion quality is reported by 
principal component analysis (PCA). In [4], eight pansharpening approaches are compared 
for performance with several spatial and spectral quality indexes, and it has been stated that 
approaches combining A Tróus wavelet transform with Intensity-Hue-Saturation (IHS) trans-
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form and PCA provide the best spatial–spectral tradeoff. In 
[5], advanced pansharpening approaches such as Generalized 
Laplacian Pyramid with Modulation Transfer Function (MTF-
matched filter) and Context-Based Decision injection scheme 
(MTF-GLP-CBD) have been applied to datasets acquired by 
IKONOS-2 and WorldView-2 satellites, and best pansharpen-
ing results are obtained from Gaussian MTF-matched filter 
with High Pass Modulation injection model (MTF-GLP-HPM) 
method. In a recent review, eleven different state-of-the-art 
pansharpening methods are adapted to the HS images, and 
Bayesian Sparse approach has provided the best performance 
for hyperspectral pansharpening [6]. In [7], pansharpening 
approaches in the literature are classified into different cat-
egories according to the main technique they use by Amro 
and et al. In study [8], twenty one pansharpening techniques 
are presented and evaluated for the VNIR and SWIR bands of 
Sentinel-2 and MTF-GLP-CBD provides the best consistency 
pansharpened result.

This paper is concerned with pansharpening performances 
for RASAT images. RASAT is the first earth observation satellite 
designed and produced in Turkey by TÜBİTAK-UZAY (TÜBİTAK 
Space Technologies Research Institute). RASAT has been in op-
eration since 2011, and is the second remote sensing imaging 
satellite of Turkey after BİLSAT. RASAT provides 7.5 meter spa-
tial resolution PAN and 15 meter spatial resolution RGB images. 
There are some works on the literature on pansharpening for 
RASAT images. In [9], nine different pansharpening approach-
es are evaluated for RASAT images by utilizing six assessment 
quality metrics, and Hyperspherical Color Space (HCS) and 
High Pass Filter (HPF) methods are shown to provide the best 
performances. In [10], GPU speed-up is assessed for pansharp-
ening on RASAT images. In [11], automatic image processing 
workflow is drawn for RASAT and GÖKTÜRK-2 satellite images. 
In [12], the performance evaluation of IHS, Brovey and PCA 
pansharpening methods are evaluated for RASAT and GÖK-
TÜRK-2 images.

In this paper, a wide range of pansharpening methods, both 
benchmark and state-of-the-art, are evaluated and compared 
for performance on RASAT images. The evaluation is performed 
over several images, both visually and quantitatively, by utiliz-
ing a wide array of metrics, i.e. root mean squared error (RMSE), 
correlation coefficient (CC), spectral angular mapper (SAM), Er-
reur Relative Globale Adimensionnelle de Synthese (ERGAS), peak 
signal-to-noise ratio (PSNR), structural similarity index (SSIM), 
and universal image quality index (UIQI). This work’s main con-
tribution is the utilization of the largest number of pansharp-
ening approaches and performance metrics used up-to-date in 
any pansharpening review work in the literature. 

The paper is organized as follows. Section 2 summarizes and 
explains the pansharpening approaches. The experimental re-
sults obtained on various RASAT images are provided in Sec-
tion 3. The paper is concluded in Section 4 with some possible 
future study lines. 

Review of Pansharpening Approaches

The aim of the pansharpening process is the integration of high 
frequency information, which is extracted from the PAN image, 
with the lower level spatial information from the MS image in 
order to obtain high spatial resolution MS image.

Although there is no universal classification, pansharpening 
approaches can be basically grouped into five categories ac-
cording to fusion mechanism. These are component substi-
tution (CS), modulation based (MB), multi-resolution analysis 
(MRA), hybrid methods and variational approaches. These cat-
egories and the respective methods in each category that are 
used in this paper are explained below.

Component Substitution (CS) Methods

CS approach consists of three steps:
1. MS image is upsampled to the resolution of PAN image, and 

transformed to a new space. This new space aims to separate the 
spectral and spatial information, which will be kept and changed 
with the spatial information from the PAN image, respectively.

2. The component of the MS image in the new space that is 
related or is of similar characteristics with the PAN image 
is substituted by the high spatial resolution PAN image. In 
this step, often a histogram matching process is also uti-
lized in an effort to equalization mean and standard devia-
tion for reducing the spectral distortion for both images. 

3. The MS image with the substituted PAN image informa-
tion is transformed back into its original space, resulting in 
a pan-sharpened image.

CS approach is commonly simplified into the equations below, 
which basically mean that the PAN image is added to the MS 
image while the intensity or spatial information derived from 
the MS image is removed. This addition and removal is multi-
plied by a coefficient that is determined by the transformation 
utilized in the process [13].

 (1)

 (2)

where  denotes the pan-sharpened image, N is the number of 
bands,  denotes the MS image upsampled to the resolution of 
PAN image, P is the PAN image and  is the image synthesized 
from the MS image bands with weight factors, and  is a gain fac-
tor determined by the utilized transformation in the method [13].

Easy implementation and fast computational time are the ma-
jor advantages in CS based approaches. In these techniques, if 
the correlation is very high between PAN and MS images, then 
the pansharpened MS image has better spatial resolution. The 
main shortcoming of CS based techniques is the spectral dis-
tortion which is also called color or radiometric distortion [14]. 
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IHS is one of the standard pansharpening algorithms in the 
CS category. Pan-sharpening by IHS involves utilizing the IHS 
transformation to derive the intensity component of the MS 
image. This intensity component is substituted by the PAN 
image that is histogram matched to the intensity component. 
An inverse IHS transformation is used to obtain the pan-sharp-
ened MS image [15].

PCA based pan-sharpening involves utilizing the PCA transfor-
mation on the MS image. The first principal component is as-
sumed to be the component with the most spatial information. 
The PAN image is histogram matched to the first principal com-
ponent and substituted prior to inverse PCA transformation 
[16]. The spatial information from the PAN image substituted to 
the principal component leads to a pan-sharpened MS image 
after the inverse PCA transformation. 

Gram-Schmidt (GS) based pan-sharpening is another standard 
pan-sharpening approach with utilizes CS. GS transformation re-
sults in vectors which are orthogonal with respect to each other. 
However, the selection of the initial vector, i.e. image, is crucial, 
and GS based pan-sharpening has several modes to address this 
issue. In Mode-1, this initial image is formed by taking the aver-
age of the MS bands, whereas in Mode-2 the image is formed by 
the low-pass filtering of the PAN image and in Mode-3 the min-
imum least square approach is used [17]. GS based pan-sharp-
ening involves applying GS transformation on the MS image in 
order to obtain the orthogonal vectors, substituting the histo-
gram matched PAN image in place of the initial vector and using 
inverse GS process to obtain the pan-sharpened image. GS fu-
sion process can also expressed in the form of equation (1) using 
the injection gain factor calculated as follows [5]:

 (3)

where cov(.) emphasize the covariance matrix and var(.) de-
notes the variance value.   

In HCS pansharpening approach, MS image is transformed into 
n-dimensional color space. The squares of the intensity com-
ponent of the MS image in the color space and the PAN image 
evaluated. P2 is then histogram matched to I2 using the means 
and standard deviations of P2 and I2. The square root of the his-
togram matched P2 is used in reverse HCS transformation in 
order to obtain the pan-sharpened image [18].

The main idea in HPF based pan-sharpening is to extract the 
high frequency details from the PAN image and then inject 
these details to the MS bands. In the CS based HPF pansharp-
ening, the high frequency details obtained from the PAN image 
by high-pass filtering are added to each of the MS bands in or-
der to obtain the pan-sharpened image [19]. 
 
Modulation-Based (MB) Methods 
In modulation-based pan-sharpening approaches, the ratio of 
the PAN image and the synthetic PAN image obtained from the 

MS image is utilized. This normalized term is multiplied by the 
MS image bands in order to obtain the pan-sharpened image, 
as seen in the following equation [20]: 

 (4)

where  emphasizes the pan-sharpened image,  denotes 
the MS image upsampled to the resolution of PAN image, P de-
notes the PAN image and the synthetic image (Syn) is obtained 
from the MS bands, often by a weighted summation such as:

 (5)

where  is a weight factor, determined according to the uti-
lized pansharpening method.

It should be noted that some reviews opt out the use of MB 
group, and instead include the methods presented here in CS 
or MRA groups, based on some transformations. If such as clas-
sification is preferred, BT and UNB methods may be included in 
the CS group, whereas SFIM and SSCN methods may be includ-
ed in the MRA group.

Brovey Transformation (BT) is one of the basic pan-sharp-
ening approaches in the modulation-based category. In BT 
pan-sharpening, the average of the MS bands is taken as the 
synthetic PAN image in equation (5). This synthetic image is 
used to normalize the PAN image, and the resulting term is 
multiplied by each MS band in order to obtain the pan-sharp-
ened image [21]. 

Smoothing Filter based Intensity Modulation (SFIM) is a modu-
lation based pansharpening technique which assumes that the 
radiance ratio between high spatial resolution MS band and 
original PAN image is equal to the resolution ratio between 
original MS band and low-pass filtered PAN image. The syn-
thetic image is derived by using a kernel whose size is based 
on this resolution ratio. The high resolution details, obtained by 
the normalization of the PAN image with its low-pass synthetic 
version, is multiplied with the original MS bands in order to cre-
ate the pansharpened image [22].

University of New Brunswick (UNB) approach utilizes least 
squares regression between the MS and PAN images in order 
to find the weight factors. These weights are multiplied by each 
MS band to obtain the synthetic PAN image. In order to create 
the pansharpened image, each MS band is multiplied by the 
ratio between the original PAN and the obtained synthetic PAN 
image [23]. In this work, Fully Constraint Least Squares (FCLS) 
algorithm is utilized for the regression analysis.

Spectral Simulation Color Normalization (SSCN) based pan-
sharpening utilizes the concept of sensor spectral response 
functions (SRF). By using the FCLS regression analysis, the 
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weights to approximate the PAN SRF from the MS SRFs are cal-
culated, and then the simulated PAN image is obtained by us-
ing these weights. Each MS band is then multiplied by the ratio 
between the PAN image and the simulated PAN image which is 
histogram matched with PAN, in order to obtain the pan-sharp-
ened image [24].

Multi-Resolution Analysis (MRA) 
In order to overcome the spectral distortion shortcoming of 
the CS approach, MRA methods have been developed. In MRA 
methods, MS and PAN images are first decomposed into fre-
quency bands. Then, the details coming from high frequency 
component of the PAN image are injected into the frequency 
bands of the MS image which have been interpolated to the 
PAN resolution. In this way, MRA based approaches preserve 
spectral information better than CS methods. MRA approach is 
obtained as follows [5]:

 (6)

where  means the pan-sharpened image,  denotes the 
MS image upsampled to the resolution of PAN image,  de-
notes element-wise multiplication, P is the PAN image and  
denotes that low pass version of the PAN image P.

The most popular MRA approaches are the wavelet transforma-
tion and Laplacian pyramids based approaches. Both of those 
groups can be represented in a pyramidal scheme as in [2], and 
are often commonly termed as the ARSIS concept. ARSIS con-
cept is motivated by obtaining the missing spatial information 
of the MS image from the high frequencies of PAN image be-
tween level-0 and level-1 on the pyramid.

MRA based pansharpening techniques have the advantages 
of temporal cohorence, spectral consistency and robustness to 
aliasing, whereas the complexity and higher computation time 
with respect to CS methods can be counted as the disadvan-
tages of MRA [25].

Wavelet Transformation (WT) is the name of a family of methods 
used to decompose an image into its frequency components 
based on the utilized basis function. This decomposition is com-
monly conducted into four components, the first of which is the 
approximation component, the second and third components 
are the horizontal and vertical details and the fourth includes the 
frequency components that are both horizontal and vertical. 

Wavelet Transformation based pan-sharpening starts with the 
histogram matching of the PAN image with each of the MS bands. 
For each MS band, WT is applied to the histogram matched PAN 
image, and the second, third and fourth components are set to 
zero, resulting in only the approximation component remaining. 
Inverse WT is applied to this component, and the result is sub-
tracted from the original PAN image in order to obtain the high 
frequency details. These details are added to the respective MS 
bands, and the pan-sharpened image is obtained [26].

In the literature, instead of the regular discrete WT, stationary 
WT, more commonly named as A Tróus WT (ATWT) is preferred 
because of the enhanced pansharpening performance it pro-
vides. In this work, for ATWT, the following cubic-spline kernel 
developed by Starck and Murtagh is utilized [27].

 (7)

Laplacian Pyramids (LP), which was first introduced by Burt and 
Adelson, is derived from Gaussian Pyramid (GP) which utilizes 
low-pass filter recursively by using reduction and decimation 
[28]. In GP, the first level is taken as original image, and each up-
per level image is obtained by low pass filtered lower level im-
age, sequentially. In LP, each level includes a detail image which 
is obtained by the subtraction of the interpolated lower level 
image from the same level image.  Hence, while GP can be con-
sidered as a set of images which constitutes the low-pass filtered 
versions of an original image, LP can be seen as a set of image de-
tails obtained as the difference between the lower level images 
and their band-pass filtered versions. LP based pansharpening is 
motivated by extracting high spatial details from the PAN image 
by the use of LPs, and adding these details to the MS bands. 

Enhanced Laplacian Pyramid (ELP) is an MRA technique in 
which the successive levels of the pyramid should have the 
lower correlation and zeroth level entropy properties [29]. In 
ELP, unlike in LP, it is possible to construct different types of ker-
nels for the expansion and reduction operations. Generalized 
Laplacian Pyramid (GLP) is generalized from ELP by enabling 
the use fractional numbers as scale ratios. GLP approach is re-
ported to be more advantageous than A Tróus Wavelet trans-
form [30]. In the literature, GLP has also been recently adopted 
as the name of all LP based pan-sharpening approaches.

Taking into consideration the frequency response functions of 
different kernels, 23tap filter is suggested in the literature for 
constructing the LP, i.e. for the expansion of the lower level im-
ages, for the higher performances it provides [31], and is also 
adopted in this work. 

Modulation transfer function (MTF) is the amplitude spectrum 
of the system point spread function. MTFs of the imaging sys-
tem are different from each other for both MS and PAN images. 
Generalized Laplacian Pyramid with MTF-matched filter (MTF-
GLP) is another MRA based technique. In MTF-GLP pan-sharp-
ening approach, MTFs of the imaging sensor are exploited to 
design the GLP reduction filter. After the PAN image is reduced 
by using the MTF filter, interpolation is performed on the his-
togram matched PAN image by utilizing a 23-tap kernel. Then, 
the detail image is calculated by subtracting the obtained low 
resolution PAN image from the original PAN image. Finally, 
these details are added into the original MS bands to obtain 
the pan-sharpened image [32].
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MTF-GLP-HPM pan-sharpening approach follows the steps of MTF-GLP 
pan-sharpening, but in the last step high pass modulation injection 
method is employed in order to obtain the pan-sharpened image [33].

Hybrid Methods
Hybrid pansharpening approaches are a cross between the differ-
ent pansharpening approach groups and do not belong to a single 
one. Among such methods, Ehlers fusion, guided filter PCA (GFP-
CA), and IHS based wavelet transform may be counted among oth-
ers [34]. In this work, Ehlers fusion is included as a hybrid pansharp-
ening method. Ehlers fusion uses IHS transformation and filtering in 
the Fourier domain. For the first step, MS bands are transformed to 
IHS domain. The intensity component and the PAN image is trans-
formed into Fourier domain for filtering. After the low-pass filtering 
of the intensity component and the high pass filtering of the PAN 
image, inverse Fourier transform is applied to the filter outputs. Fil-
tered PAN image is added to the filtered intensity component in the 
IHS domain and inverse IHS transformation is applied in order to 
obtain the pansharpened image [35].

Variational Approaches
P+XS is a variational pansharpening technique which aims to min-
imize an energy function by using the Gradient Descent algorithm. 
The energy function utilized in P+XS is motivated by the assump-
tion that the geometry of the spectral bands are contained in the 
topographic map of the PAN image and the relationship between 
the MS bands and the PAN image. P+XS also assumes a low-pass 
filtering and subsampling approximation relationship between the 
MS bands and the PAN image in order to construct the energy func-
tion [36]. The energy function involves three terms to enforce and 
utilize these assumptions and is optimized by gradient descent in 
order to obtain the pan-sharpened image. The derivation of the en-
ergy function and its terms are explained in detail in [36]. 

Experimental Results

Datasets
The datasets used in this study are captured by RASAT remote 
sensing satellite from different regions of Turkey. The datasets 
are downloaded from the GEZGİN geoportal, and subsets of the 
downloaded images are used for computational purposes. MS im-
ages are taken as 150×150 pixels, and have three bands, whereas 
the PAN images have 300×300 pixels coinciding with the same 
region as in the MS images. The pixel size difference is caused by 
the resolution ratio as the spatial resolution of the MS images are 
15m, whereas the spatial resolution of the PAN images are 7.5m. 

Experimental results are provided in this work for three pairs 
of datasets. The datasets were carefully selected based on the 
properties of their captured scenes. The first image pair are 
captured on 15.06.2015 from Mersin region, and contain ex-
tensive farm fields, which results in homogeneous patches and 
unpronounced edges. The second image pair are captured on 
12.01.2014 from İstanbul region, and comprise of high spatial 
frequency containing urban areas, and coast-to-land transi-
tions. The third image pair are captured on 31.08.2015 from 

Sin- region, and contain roads, land-cover and sea surfaces. The 
color and grayscale visuals for the MS and PAN images, respec-
tively, are provided below in Figure 1-3. 

Wald’s protocol
In order to evaluate the performance of pan-sharpening methods 
quantitatively, a reference image is required to compare with the 
resulting pan-sharpened images. To overcome this shortcoming, 
various approaches have been proposed in the literature for per-
formance comparison purposes. The most widely accepted and 
utilized of these approaches is the Wald’s protocol [37]. In Wald’s 

Figure 1. RGB and PAN images for the Mersin dataset

Figure 2. RGB and PAN images for the İstanbul dataset

Figure 3. RGB and PAN images for the Sinop dataset



114

Electrica 2018; 18(1): 109-120
Kahraman and Ertürk. RASAT Pansharpening Review

protocol, which is also adopted in this work, the spatial resolution 
of the MS and PAN images are first reduced, and pan-sharpening 
methods are applied on these reduced resolution images. The re-
sulting pan-sharpened image is compared with the original MS 
image to evaluate the pan-sharpening performance. 

Results and Discussion
Experimental results obtained in accordance with Wald’s pro-
tocol are provided in this section. Three datasets have been 
utilized and the results are provided both visually and quan-
titatively. For the quantitative results, the performance metrics 
of RMSE, CC, SAM, ERGAS, PSNR SSIM and UIQI are used. The 
quantitative results for the three datasets with seven quality as-
sessment metrics and using seventeen pan-sharpening meth-
ods are provided in Table 1-3, for the Mersin, İstanbul and Sinop 
datasets, respectively. The visual results are provided in Figure 
4-6, for the Mersin, İstanbul and Sinop datasets, respectively. 

It can be observed from the Tables that the state-of-the-art 
MTF-GLP-HPM method provides the best results overall, fol-
lowed closely by MTF-GLP, which is in turn followed by ATWT. 
This is to be expected as utilizing sensor MTFs in the pan-sharp-
ening process enables to obtain better performances than clas-

sical approaches [31]. Because of this, whereas ATWT outper-
forms the basic form of GLP, the inclusion of MTFs to GLP results 
is significantly better performances.

As can be seen from Figure 4-6, the visual results are also in ac-
cord with the quantitative evaluations in that the MTF-GLP-HPM 
provides the sharpest pan-sharpened images without any color 
distortion, followed closely in performance with MTF-GLP, ATWT 
and SFIM. Among the more classical approaches in the CS and 
MB categories which do not utilize sensor specifications, often 
blur effects or slight color distortions can be observed in the 
pan-sharpened visuals. The spatial degradation, i.e. the blurry 
appearance, is easier to observe on the farm borders in Figure 
4, sea-coast border and the small structures in Figure 5, and the 
main road and the buildings in Figure 6. This afore mentioned 
effect is more prevalent in the visual outputs of Ehlers, GLP (with-
out the utilization of MTFs), and GS2 methods.

An important point to note is that all methods performed bet-
ter in Mersin image than in Sinop image. This is also expected, 
as the high number of high frequency components in the Sin-
op image makes it a more challenging dataset with respect to 
Mersin image.

Table 1. Quantitative pan-sharpening results for Mersin dataset

RMSE CC SAM ERGAS PSNR SSIM UIQI

IHS 4.10 0.98 <0.01 1.51 35.0 0.97 0.97

PCA 4.07 0.98 <0.01 1.50 35.2 0.98 0.97

GS1 4.06 0.98 <0.01 1.50 35.1 0.97 0.97

GS2 4.76 0.97 <0.01 1.76 33.8 0.97 0.96

GS3 4.07 0.98 <0.01 1.50 35.1 0.97 0.97

HCS 4.08 0.98 <0.01 1.51 35.1 0.97 0.97

HPF 4.60 0.97 <0.01 1.70 34.0 0.97 0.96

BT 3.86 0.98 <0.01 1.43 35.5 0.98 0.98

SFIM 3.62 0.98 <0.01 1.33 36.4 0.98 0.98

UNB 4.02 0.98 <0.01 1.49 35.1 0.97 0.97

SSCN 4.13 0.98 <0.01 1.53 34.9 0.97 0.97

ATWT 3.24 0.99 <0.01 1.20 37.1 0.99 0.98

GLP 4.28 0.98 <0.01 1.58 34.8 0.97 0.97

MTF-GLP 2.73 0.99 <0.01 1.01 38.4 0.99 0.99

MTF-GLP-HPM 2.71 0.99 <0.01 1.01 38.5 0.99 0.99

Ehlers 4.91 0.97 <0.01 1.81 33.6 0.96 0.96

PXS 3.59 0.98 <0.01 1.33 36.2 0.98 0.98

RMSE: root mean squared error; CC: correlation coefficient; SAM: spectral angular mapper; ERGAS: Erreur Relative Globale Adimensionnelle de Synthese; PSNR: peak 
signal-to-noise ratio; SSIM: structural similarity index; UIQI: universal image quality index
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Table 2. Quantitative pan-sharpening results for İstanbul dataset

RMSE CC SAM ERGAS PSNR SSIM UIQI

IHS 4.10 0.96 <0.02 2.77 34.5 0.95 0.93

PCA 4.06 0.96 <0.02 2.74 34.5 0.95 0.93

GS1 4.08 0.96 <0.02 2.75 34.5 0.95 0.93

GS2 4.57 0.95 <0.02 3.08 33.5 0.93 0.91

GS3 4.07 0.96 <0.02 2.75 34.5 0.95 0.93

HCS 4.21 0.96 <0.02 2.84 34.3 0.95 0.93

HPF 4.31 0.95 <0.02 2.91 34.1 0.95 0.93

BT 3.89 0.96 <0.02 2.62 34.9 0.96 0.95

SFIM 3.69 0.97 <0.02 2.50 35.6 0.96 0.95

UNB 4.07 0.96 <0.02 2.74 34.5 0.95 0.93

SSCN 4.12 0.96 <0.02 2.77 34.4 0.95 0.93

ATWT 3.41 0.97 <0.02 2.30 36.1 0.97 0.96

GLP 4.48 0.95 <0.02 3.02 33.7 0.94 0.92

MTF-GLP 3.12 0.97 <0.01 2.10 36.8 0.97 0.96

MTF-GLP-HPM 3.10 0.98 <0.01 2.08 36.8 0.97 0.96

Ehlers 5.02 0.94 <0.02 3.39 32.7 0.92 0.90

PXS 3.74 0.96 <0.02 2.52 35.3 0.96 0.95

RMSE: root mean squared error; CC: correlation coefficient; SAM: spectral angular mapper; ERGAS: Erreur Relative Globale Adimensionnelle de Synthese; PSNR: peak 
signal-to-noise ratio; SSIM: structural similarity index; UIQI: universal image quality index

Table 3. Quantitative pan-sharpening results for Sinop dataset

RMSE CC SAM ERGAS PSNR SSIM UIQI

IHS 5.92 0.98 <0.01 3.18 32.4 0.97 0.97

PCA 6.13 0.98 <0.02 3.29 32.2 0.97 0.97

GS1 5.97 0.98 <0.01 3.20 32.4 0.97 0.97

GS2 6.14 0.98 <0.01 3.29 32.1 0.97 0.97

GS3 6.22 0.98 <0.02 3.33 32.1 0.97 0.97

HCS 7.05 0.98 <0.01 3.77 30.8 0.96 0.95

HPF 5.27 0.98 <0.01 2.82 33.5 0.98 0.98

BT 5.67 0.98 <0.01 3.04 32.8 0.98 0.98

SFIM 4.56 0.99 <0.01 2.44 34.9 0.99 0.98

UNB 5.81 0.98 <0.01 3.11 32.5 0.97 0.97

SSCN 6.51 0.97 <0.01 3.48 31.5 0.97 0.96

ATWT 4.37 0.99 <0.01 2.34 35.3 0.99 0.99

GLP 6.09 0.98 <0.01 3.26 32.2 0.97 0.97

MTF-GLP 3.98 0.99 <0.01 2.14 36.0 0.99 0.99

MTF-GLP-HPM 3.91 0.99 <0.01 2.10 36.2 0.99 0.99

Ehlers 6.77 0.97 <0.01 3.63 31.3 0.96 0.96

PXS 5.02 0.98 <0.01 2.69 33.9 0.98 0.98

RMSE: root mean squared error; CC: correlation coefficient; SAM: spectral angular mapper; ERGAS: Erreur Relative Globale Adimensionnelle de Synthese; PSNR: peak 
signal-to-noise ratio; SSIM: structural similarity index; UIQI: universal image quality index
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Figure 4. Pan-sharpening visual results for Mersin dataset
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Figure 5. Pan-sharpening visual results for İstanbul dataset
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Figure 6. Pan-sharpening visual results for Sinop dataset
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In [7], it is mentioned that HPF and HCS approaches give the best 
pansharpening performance results among the other utilized 
methods in [7], which is also in accordance with the results of 
this work. In [10], it is stated that PCA provides the best perfor-
mance quantitatively, but BT provides the best visual result for 
RASAT satellite images. However, in our experiments BT showed 
better performance with respect to IHS and PCA approaches 
both qualitatively and quantitatively. In [5], state-of-the-art pan-
sharpening approaches were studied and applied to IKONOS-2 
and WorldView-2 satellites, and the MTF-GLP-HPM approach 
provided the best performance, as it also did in this study.  

Conclusions

The aim of this paper was to provide the most comprehensive 
review and performance comparison of pansharpening meth-
ods for RASAT images up-to-date. The experimental validation 
procedure followed Wald’s protocol in accordance with current 
literature. Experimental results were provided for three data-
sets of different properties due to their scenes.

It was determined through both qualitative and quantitative 
analysis that MTF-GLP-HPM provides the best performance 
overall among all groups of pan-sharpening approach, wheth-
er CS, MB, MRA, hybrid or variational. This points out that utiliz-
ing the MTFs of the sensor provides a significant boost in the 
pan-sharpening performance.

It was also observed that overall, the MRA based pansharpen-
ing methods provide enhanced performance with respect to 
CS or MB based methods. Whereas there was no clear best per-
forming method in the CS group, SFIM outperformed the other 
methods in the MB group. The variational P+XS method is seen 
to be competing with SFIM in terms of performance, whereas 
the hybrid Ehlers method is outperformed by many of the uti-
lized methods.

Future studies may include a similar review of pan-sharpening 
methods’ performance for GÖKTÜRK-2 images, which also con-
tain the near infrared spectral band, or adapting the various 
methodologies for the fusion of different sensor images, such 
as hyperspectral – multispectral fusion. 
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