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Introduction

Electrical signal disturbance detection is of significant importance in electrical networks. The 
disturbances in signal quality may threat electrical devices which are vulnerable to these dis-
turbances such as harmonics, sags, high frequency discharges [1] etc. There are various studies 
have been conducted for detection of these disturbances recently [2-5].

Most of the disturbances exhibit non-linear signal waveforms and oscillations. For this pur-
pose, time-series signal analysis and frequency spectrum investigations are required for prop-
er analysis. To improve the performance of the proposed techniques, time series decomposi-
tion has been investigated for detecting the oscillations [6-7]. Investigated signals (especially 
proposed HV discharges) may display time varying characteristics where adaptive time series 
decomposition is quite effective tool and required. In this study, a comparative research of em-
pirical mode decomposition (EMD) and variational mode decomposition (VMD) is conducted.

As an efficient decomposition method, EMD has been introduced for non-linear signals (espe-
cially signals with non-stationary characteristics) [8]. EMD is used for effective decomposing of 
original time-series signal into signal components, which are called intrinsic mode functions 
(IMFs). Most of the EMD applications contain non-linear time series signal denoising approach-
es [9-13]. Due to the limitations of EMD, the improper (mode mixing error) IMFs or redundant 
IMFs can be obtained where the reconstruction of original signal could be challenging task [8].

Variational mode decomposition is a robust and recently introduced non-recursive adaptive time 
series decomposition method [14]. Unlike EMD, the VMD is computed in frequency domain by 
updating center frequencies for each mode, which is namely variational computation. In VMD, in-
vestigated signal is transformed into a few modes, in which these modes are updated by using 
Wiener filter. By the aid of the filter, VMD is not prone to background noise [14]. VMD has numerous 
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ABSTRACT

Signal quality is the key issue for maintaining effective power transmission in electrical networks. In most cases, a high voltage (HV) is transmitted in 
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signal decomposition in the time domain, facilitating the evaluation of deeper characteristics of the investigated signal. The HV discharges were obtained 
using 0.4/40 kV and 8 kVA transformers in a laboratory, and all the current and voltage signal waveforms were recorded using high-frequency current and 
high-voltage probes. The results demonstrate distinct calculations of EMD and VMD techniques in terms of signal decomposition and extracting intrinsic 
mode functions (IMFs), which define low- and high-frequency components.
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applications in literature such as biomedical signals, power sig-
nals, speech signals and mechanical systems signals [15-19] etc.

In order to investigate highly oscillated HV discharge signals 
a single-phase transformer with 0.4kV/40kV, 50Hz, 8kVA rat-
ed values is employed. During the tests, voltage signals and 
current signals are obtained and analyzed. Voltage signals are 
measured via capacitive HV probe (2000:1) and current read-
ings are measured high frequency sensitive current probe. All 
the signal waveforms recorded via high-speed oscilloscope. Af-
ter adaptive time series decomposition of voltage and current 
signals, the IMFs are obtained and analyzed for the compari-
son. Each IMFs cross correlation coefficients with investigated 
decomposed time series signal are computed.

This paper is organized as follows. In section 2, the test setup 
and employed equipment is introduced. In section 3 and sec-
tion 4 the mathematical background of EMD and VMD meth-
ods are presented respectively. In section 5, the test results are 
provided. Finally, in section 6, the conclusion is given.

Test Setup

High voltage discharge signals are collected by using test set-
up, which is given in Figure 1. The discharge signal is generated 
approximately at 5.5kV. In the setup, transformer’s secondary 
winding is open circuited and secondary voltage and discharge 
currents are recorded. In order to utilize all the aspects of the 
discharge current signal (evaluate all the frequency compo-

nents) the current probe is employed. The current probe is 
capable of measuring frequency components up to 30MHz.  
Capacitive HV probe (2000:1 turn ratio) is used for measuring 
voltage of the transformer.

The block diagram of the test setup is given in Figure 2. In order 
to eliminate time delay between voltage and current record-
ings an equal length data cables are used to connect high-
speed oscilloscope and probes. 

Empirical Mode Decomposition (EMD)

Empirical mode decomposition method is a novel method for 
decomposing nonlinear, multicomponent time series signals 
iteratively [8]. The decomposed time series functions (modes) 
are called IMFs, which exhibit instantaneous frequency and 
amplitude characteristics processed by Hilbert transform. The 
EMD algorithm is computed by experimental concept (empiri-
cal) rather than analytical calculations [20,21].

According to the EMD criterions, the IMFs should satisfy two 
limitations: (a) the number of extrema (over-shoot and un-
der-shoot) and the number of zero crossing of the signal must 
be equal or they might be different at most by one; and (b) the 
average of the upper and lower envelope which is defined by 
the local extrema points should be zero everywhere. The local 
average is zero for each point [8]. 

EMD process is the iterative method, which is computed sys-
tematically. Initially the local extrema points are computed 
for a given time series signal x(t). The envelope signals of local 
minima (emin(t)) and local maxima(emax(t)) are obtained. The next 
step is to calculate local average [9-10]: 

m t( ) = emin t( )+ emax t( )⎡⎣ ⎤⎦ / 2  (1)

The IMFs are calculated recursively (by the i parameter) by us-
ing local average.

ci t( ) = x t( )−m t( )  (2)

The IMF function is checked for whether calculated IMF is valid 
according to the criterions mentioned previously. If IMF is not 
valid, the iterative process is repeated [8,18]. If IMF is valid then 
IMF is set to z1(t)=ci(t).

Figure 1. Test Setup

Figure 2. Block Diagram of Test Setup
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x1 t( ) = x t( )− z1 t( )  (3)

This iteration is repeated for i=1….n where signal decomposi-
tion is completed and IMFs are generated.

Variational Mode Decomposition (VMD)

Variational Mode Decomposition is a robust process, which 
decomposes the given signal into different signal waveforms 
(modes). These modes are characterized by their center fre-
quencies [14]. As a variational approach, the modes (ck) are 
evaluated for k values where sum of each mode (IMF) is equal 
to the given time series signal x(t). Hilbert transform is conduct-
ed for obtaining frequency spectrum for each mode [14].

σ (t)+ j
π t

⎛
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⎞
⎠⎟
ck (t)  (4)

By using computed center frequency, spectrum shifting is ful-
filled for each mode where wk is the center frequency.
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By definition the constrained variational evaluation for the giv-
en signal x(t) is the described as:
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where ck=c1,c2….ck and wk=w1,w2….wk are given. In order to 
solve variational problem the Lagrangian multipliers are used. 
In the given solution, a quadratic penalty term α and a Lagrang-
ian multiplier (dual ascent)  λ are used to solve unconstrained 
problem [14-15], [18].

L ck ,wk ,λ( ) =α ∂t σ (t)+ j
π t
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As an initial step, VMD process is employed for calculation of 
ck

1, wk
1 and λ1, which are updated (ck

n+1, wk
n+1 and λn+1) for fur-

ther orders (n) in upcoming steps. The further calculations are 
conducted in frequency domain where parameters in frequen-
cy domain are given by ^ [18]. 
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The analyzed signal is decomposed into modes (ck) by employ-
ing center frequencies (wk) [14].
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According to the VMD algorithm, each mode is updated in the 
frequency domain and the center frequencies are re-calculated 
for each iteration. 

Test Results

HV discharges are recorded and investigated via high-speed 
oscilloscope. High frequency discharges are observed on volt-
age and current waveforms. The voltage signal of the trans-
former secondary is given in Figure 3.

The corresponding current signal of the transformer secondary 
is given in Figure 4.

HV discharges tend to produce harmonic components with 
high frequencies. In order to analyze frequency spectrum 
fast Fourier transform (FFT) of discharge signals are ob-
tained. The frequency spectrum of voltage signal is given in 
Figure 5.

The frequency spectrum of current signal is given in Figure 6. 
Both voltage and current signals exhibit higher harmonics.

Figure 3. Voltage signal of transformer

Figure 4. Current signal of transformer
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The time series current and voltage signals are analyzed 
by using EMD and VMD algorithms and IMFs are obtained. 
Decomposed modes are interpreted for comparison pur-
poses.

EMD analysis
The non-linear signals contain higher harmonics where signal 
decomposition may reveal signal characteristics. In this study, 
EMD method is employed for time series analysis. The decom-
posed IMFs of EMD algorithm for voltage signal are given in 
Figure 7.

All the modes (IMFs) are expected to exhibit investigated signal 
characteristics in small scale. The decomposed IMFs of EMD al-
gorithm for current signal are given in Figure 8.

Each IMF (mode) is given sequentially where IMFS are lined up ac-
cording to their frequencies from high to low frequency modes. By 
definition, summation of all IMFs should generate original time series 
signal. In order to compare the produced IMFs and the correlation of 
the original signal, the cross correlation coefficients are calculated. 
To facilitate comparison between IMFs, cross-correlation coefficient 
analysis is quite effective tool [22]. The cross correlation coefficients of 
IMFs and original signals for EMD algorithm is given in Table 1. 

The IMFs (intrinsic mode functions from first to fourteenth) are 
decomposed sequentially from high frequency based mode to 
low frequency based mode as mentioned. Considering current 
signal, high center frequency modes have higher correlation 
coefficients. However, voltage signal exhibit distributed char-
acteristics in terms of mode coefficients.

Figure 5. Frequency spectrum of voltage signal Figure 7. Decompositions of EMD on voltage signal

Figure 6. Frequency spectrum of current signal Figure 8. Decompositions of EMD on current signal
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VMD Analysis
Unlike EMD, VMD have a few modes to reconstruct original 
non-linear signal. In this study, only there decomposed mode 
(IMF) is considered. The decomposed IMFs of VMD algorithm 
for voltage signal are given in Figure 9.

VMD is more efficient method than the EMD algorithm, since it 
is capable of decomposing given signal into lesser modes with 
non-recursive iteration. The decomposed IMFs of VMD algo-
rithm for current signal are given in Figure 10.

The cross correlation coefficients are calculated by employing 
VMD algorithm for comparison purposes.  The cross correlation 
coefficients of IMFs (intrinsic mode functions from first to third) 
and original signals for VMD algorithm is given in Table 2.

The correlation coefficients especially current signal coefficients 
are significantly displaying signal characteristic since they have 
higher coefficients. Additional modes have similar coefficients 
with the first three modes and hence proposed three VMD modes 
are assumed to be adequate. VMD algorithm can analyze charac-
teristics of discharges with a few modes in contrast to EMD algo-
rithm. Besides results have revealed that current characteristics of 
discharge signals are distinctive in terms of mode decomposition.

Conclusions

It is a quite challenging task to quantify non-linearity of dis-
charge signals in electrical networks. Decomposing non-linear 
signals based on their distributed signal frequency components 
is an efficient technique to quantify non-linearity of a discharge 
signal. For this purpose, EMD and recently introduced VMD al-
gorithms are employed to investigate HV discharge signals. A 
comparative study of EMD and VMD on non-linear HV discharge 
signals is conducted and modes (IMFs) are decomposed in time 
domain. In order to analyze obtained modes, cross correlation 
coefficients are computed and investigated. According to the 

Table 1. The cross correlation coefficients of IMFs and 
original signals for EMD algorithm

IMF

The correlation 
coefficients for 
current signal

The correlation 
coefficients for 
voltage signal

IMF1 0.470 0.195

IMF2 0.280 0.142

IMF3 0.208 0.174

IMF4 0.188 0.075

IMF5 0.153 0.116

IMF6 0.062 0.164

IMF7 0.085 0.233

IMF8 0.130 0.302

IMF9 0.144 0.209

IMF10 0.135 0.223

IMF11 0.191 0.303

IMF12 0.007 0.423

IMF13 0.017 0.025

IMF14 0.027 0.006

Table 2. The cross correlation coefficients of IMFs and 
original signals for VMD algorithm

IMF

The correlation 
coefficients for 
current signal

The correlation 
coefficients for 
voltage signal

IMF1 0.420 0.195

IMF2 0.458 0.142

IMF3 0.481 0.174

Figure 9. Decompositions of VMD on voltage signal

Figure 10. Decompositions of VMD on current signal
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results, distinctive coefficients are observed on EMD and VMD 
algorithms for noisy signals. Especially current modes have high-
er correlation with the given noisy current signals. Besides VMD 
can reveal signal modes with a few decompositions rather than 
EMD algorithm. The proposed algorithms are capable of on-line 
monitoring of non-linear signal modes in time domain. By using 
these algorithms (especially VMD algorithm) an efficient detec-
tion of system signals with discharges is plausible.
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