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Abstract − In this study, we consider a spectral problem for one boundary value problem with
discontinuities at two interior points. The boundary conditions involve a spectral parameter.
We consider some compact, positive, self-adjoint operators to reduce the spectral problem to an
operator-pencil equation. Then, it was proven that this operator-pencil is positive definite, the
spectrum is discrete, and the system of weak eigenfunctions forms a Riesz basis of the appropriate
Sobolev space.
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1. Introduction

It’s well-known that the spectral method is used to solve many problems in natural science. Sturm-
Liouville boundary value problems (SLBVPs) lie as a theoretical basis for the spectral theory of linear
differential operators. The development of many areas of physics and technology and the need to find
solutions to new BVPs in these areas increase the significance of the Sturm-Liouville theory (SLT) and
its relevance. Due to the many SLTs in scientific research and practical engineering, this theory has
developed in different directions and found new application areas for about two centuries.

Typically, classical SLBVPs included a spectral parameter only in the second-order linear differential
equation. However, SLBVPs, which include a spectral parameter in both differential equations, and
BCs appear in the modeling of many significant problems of applied mathematics, physics, chemistry,
aerodynamics, fluid dynamics, diffusion, engineering, biotechnology finance, etc. [1–6]. An effective and
efficient approach to the new type of SLBVPs with λ− dependent BCs together with supplementary
jump conditions at some interior points of interaction is provided by Mukhtarov and his colleagues; for
example, see [7–19].

Meanwhile, the basis properties in various function spaces of the eigenfunction of the SLBVPs with
λ-dependent BCs have been considered by many mathematicians [20–24]. Lately, there has been a
significant increase in appeal to the polynomial pencils in Hilbert spaces, see [25–29]. The famous study
of Keldysh [25] contains some fundamental results in the spectral theory of polynomial pencils. Thanks
to the concept of weak eigenfunctions, a Sturm-Liouville eigenvalue problem is reduced to a polynomial
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operator equation. In the study published in 1985, the concept of generalized eigenfunctions in Hilbert
space was defined by Ladyzhenskaia [27]. A SL type BVP with an eigenvalue parameter in only one of
the BCs was examined in [30]. In these studies, Belinskiy et al. showed that the weak eigenfunctions of
this class of problems form a Riesz basis. In [22,23], the authors presented a new method to prove that
the generalized eigenfunctions form a Riesz basis for multi-interval SLBVP together with λ-dependent
BCs and additional jump conditions at the interaction points.

In this study, we investigate the SLBVP consisting of the SL equation

− d

dx

{
p(x) df

dx

}
+ q(x)f(x) = λr(x)f(x) (1.1)

on the interval 0 ≤ x ≤ π with λ− dependent BC at the end-point x = 0 given by

p(x)d(ln f)
dx

∣∣
x=0 = −λ cos α

cos α + λ sin α
, 0 < α < π (1.2)

with two symmetric discontinuities at x = c1 = c, with 0 < c < π
2 , and x = c2 = π − c satisfying the

jump conditions

f(c+
1 ) − af(c−

1 ) = 0 (1.3)

df

dx

∣∣
x=c+

1
= a−1 df

dx

∣∣
x=c−

1
+ bf(c−

1 ) (1.4)

f(c−
2 ) − af(c+

2 ) = 0 (1.5)

df

dx

∣∣
x=c−

2
= a−1 df

dx

∣∣
x=c+

2
− bf(c+

2 ) (1.6)

and BC at x = π

p(x)d(ln f)
dx

∣∣
x=π

= − cot β0 < β < π (1.7)

The coefficients of the SLBVP (1.1)-(1.7) under examination will be assumed to satisfy the following
conditions:

C1. The functions p(x), q(x) and r(x) are bounded, positive definite and Lebesgue integrable on
(0, c−

1 ), (c+
1 , c−

2 ) and (c+
2 , π),

C2. a, b ∈ R and a > 0 and θ = cos2 α > 0. The assumption is that θ = cos2 α > 0 is required for the
problem to be self-adjoint [3], and therefore for all eigenvalues to be real and bounded below.

C3. λ is a complex eigenvalue parameter.

In this study, we investigate a new type of SLP consisting of many-interval SL equation, four jump
conditions, and λ-dependent BCs. It is shown that the generalized eigenfunctions forms a Riesz basis
for modified Lebesgue space.

2. Some Auxiliary Facts

This section defines some of the modified Lebesgue spaces and provide some inequalities needed for
the examination of the noted SLBVP (1.1)-(1.7).

Definition 2.1. L2(a, b) is Hilbert space consisting of all Lebesgue measurable functions f(x) on (a, b)
for which ∫ b

a
|f(x)|2dx

) 1
2 < ∞

with the scalar product given by ⟨f, g⟩L2(a,b) :=
∫ b

a f(x)g(x)dx and the norm ∥f∥2
L2(a,b) = ⟨f, f⟩L2(a,b).
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Let ⊕L2 := L2(0, c1) ⊕ L2(c1, c2) ⊕ L2(c2, π) with the scalar product

⟨f g⟩⊕L2 :=
∫ c−

1

0
f(x)g(x)dx +

∫ c−
2

c+
1

f(x) g(x)dx +
∫ π

c+
2

f(x)g(x)dx

and the corresponding norm
∥f∥2

⊕L2 = ⟨f, f⟩⊕L2

Definition 2.2. The Sobolev space W 1
2 (a, b) is the Hilbert space consisting of all elements f ∈ L2(a, b)

having generalized derivatives f ′ ∈ L2(a, b) with the scalar product given by

⟨f, g⟩W 1
2 (a,b) =

∫ b

a
(f(x)g(x) + f ′(x)g′(x))dx

and the corresponding norm
∥f∥2

W 1
2 (a,b) = ⟨f, f⟩W 1

2 (a,b).

Introduce the appropriate inner-product space ⊕ W 1
2 by

⊕
1

W
2

=
{

f ∈ ⊕ L2
∣∣f ∈ W 1

2 (0, c1) ⊕ W 1
2 (c1, c2) ⊕ W 1

2 (c2, π), f(c+
1 ) = af(c−

1 ), f(c−
2 ) = af(c+

2 )
}

with the inner-product
⟨f, g⟩⊕ W 1

2
:= ⟨f, g⟩⊕L2 + ⟨f ′, g′⟩⊕L2

and corresponding norm
∥f∥2

⊕ W 1
2

= ⟨f, f⟩⊕ W 1
2

In the same linear space ⊕W 1
2 , we define a new inner-product as

⟨f, g⟩⊕W 1
2,p,q

:= ⟨qf, g⟩⊕L2 + ⟨pf ′, g′⟩⊕L2 (2.1)

with corresponding norm
∥f∥2

⊕W 1
2,p,q

= ⟨f, f⟩⊕W 1
2,p,q

(2.2)

Lemma 2.3. There exist 0 < M1 < M2, such that

M1∥f∥⊕W 1
2

≤ ∥f∥⊕W 1
2,p,q

≤ M2∥f∥⊕W 1
2

for all f ∈ ⊕W 1
2 .

By using the well-known embedding theorems [27], we get

|f(xj)|2 ≤ ℓ||f ′||2⊕L2 + 2
ℓ

||f ||2⊕L2 j ∈ {1, 2, 3, 4} (2.3)

|f(ξ)| ≤ C||f ||⊕W 1
2

(2.4)

for any f ∈ ⊕W 1
2 where x1 = 0, x2 = c∓

1 , x3 = c∓
2 , x4 = π and ℓ is any positive real number which is

small enough and ξ ∈ [0, π], C > 0 is a constant.

According to the following result, the function q(x) can be assumed to be positive.

Remark 2.4. Suppose that q(x)
r(x) is bounded below, then the shift λ → λ−h transforms (1.1) into a new

equation with q̃(x) = q(x) + hr(x). By taking h > supx
−q(x)
r(x)

(
where x ∈ [0, c−

1 ] ∪ [c+
1 , c−

2 ] ∪ [c+
2 , π]

)
the function q(x) can be assumed to be positive on [0, c−

1 ] ∪ [c+
1 , c−

2 ] ∪ [c+
2 , π].

Denote by H the Hilbert space consisting of all vector functions (φ, φ1) ∈ ⊕W 1
2 ⊕C. The inner product

of this space is defined by
⟨Ψ, Φ⟩H := ⟨φ, ϕ⟩⊕W 1

2
+ φ1ϕ1
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Here, Ψ = (φ, φ1) = (f(x), w1) and Φ = (ϕ, ϕ1) = (g(x), w2) ∈ H such that f(x), g(x) ∈ ⊕W 1
2 and

w1, w2 ∈ C.

Recall some definitions of basicity.

Definition 2.5. [26] A set {fn} in a Hilbert space H is called a basis if for an arbitrary function
f ∈ H there is an unique expansion f =

∑∞
k=1 akfk.

If⟨fn, fm⟩H = 0, for n ̸= m, then a basis {fn} is said to be a orthogonal basis. A orthogonal basis {fn}
is said to be an orthonormal basis of ⟨fn, fm⟩ = δnm, where δnm is the kronecker delta [26].

Definition 2.6. [26] A basis {fn}n=0,1,2,... is called a Riesz basis in H if the series
∑∞

n=0 anfn converges
in H iff

∑∞
n=0 a2

n < ∞.

Theorem 2.7. Let A : H → H be any bounded invertible operator and let {fn} be any orthonormal
basis in H. Then, the system of elements {Afn} forms a Riesz basis.

3. Operator-Polynomial Treatment of the Problem

Definition 3.1. The element (f(x), κ) ∈ H is called a generalized solution of the Sturm-Liouville
problem (1.1)-(1.7) if the equations

⟨f, ϱ⟩⊕W 1
2,p,q

+ cot βf(π)ϱ(π) − cot αf(0)ϱ(0) + b

a
f(c+

1 )ϱ(c+
1 ) + a.bf(c+

2 )ϱ(c+
2 )

− κ csc αϱ(0) = λ⟨rf, ϱ⟩⊕L2

and
− csc αf(0) − κ cot α sec2 α = λκ sec2 α

are satisfied for any ϱ ∈ ⊕W 1
2 where

κ := − cos αf(0) − sin α(pf ′)(0) (3.1)

Lemma 3.2. Let f ∈ C2[0, c1) ⊕ C2(c1, c2) ⊕ C2(c2, π], p ∈ C1[0, c1) ⊕ C1(c1, c2) ⊕ C1(c2, π], q and r

belongs to C[0, c1)⊕C(c1, c2)⊕C(c2, π] and there exists finite limit values f (k)(ci ±0), p(s)(ci ±0), q(ci ±
0), r(ci ± 0) for k = 0, 1, 2; i = 1, 2; s = 0, 1. Then, the weak (generalized) eigenfunction of the SLP
satisfies equations (1.1) − (1.7) in the classical sense.

Consider the following linear forms in ⊕W 1
2 .

Λ0(f, ϱ) =: cot βf(π)ϱ(π) − cot αf(0)ϱ(0) + b

a
f(c+

1 )ϱ(c+
1 ) + a.bf(c+

2 )ϱ(c+
2 ) (3.2)

Λ1(f, ϱ) =:
{∫ c−

1

0
+

∫ c−
2

c+
1

+
∫ π

c+
2

}
r(x)f(x)ϱ(x)dx

Λ2(κ, ϱ) =: −κ csc αϱ(0) (3.3)

where f ∈ ⊕W 1
2 , κ ∈ C.

Theorem 3.3. i. The linear functionalsΛ0(f, ϱ) and Λ1(f, ϱ) are continuous in ϱ ∈ ⊕W 1
2 for each

f ∈ ⊕W 1
2 ,

ii. The linear functionalsΛ2(κ, ϱ) is are continuous in ϱ for each κ ∈ C.

Proof. Using (3.2) and (3.3), we get

|Λ0(f, ϱ)| ≤ C1
{

|f(π)| |ϱ(π)| + |f(0)||ϱ(0)| + |f(c+
1 )| |ϱ(c+

1 )| + |f(c+
2 )| |ϱ(c+

2 )|
}

(3.4)
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|Λ1(f, ϱ)| ≤ C2∥f∥∥ϱ∥

and
|Λ2(κ, ϱ)| ≤ C3|κ||ϱ(0)|

respectively. The inequality
∥f∥ ≤ C4∥f∥⊕W 1

2,p,q
(3.5)

follows immediately from (2.1) and (2.2). By using the interpolation inequalities (2.3), (2.4), and (3.5),
we have the following inequalities

|Λ0(f, ϱ)| ≤ C5∥f∥⊕W 1
2,p,q

∥ϱ∥⊕W 1
2,p,q

|Λ1(f, ϱ)| ≤ C6∥f∥⊕W 1
2,p,q

∥ϱ∥⊕W 1
2,p,q

|Λ2(κ, ϱ)| ≤ C7|κ| ∥ϱ∥⊕W 1
2,p,q

Theorem 3.4. There are linear bounded operators Tk : ⊕W 1
2 → ⊕W 1

2 (k = 0, 1) and T2 : C → ⊕W 1
2

satisfying the following representations:

Λk(f, ϱ) = ⟨Tkf, ϱ⟩⊕W 1
2,p,q

(k = 0, 1) and Λ2(κ, ϱ) = ⟨T2κ, ϱ⟩⊕W 1
2,p,q

(3.6)

Proof. The proof follows immediately from the well-known Riesz representation theorem (see, for
example, [31]).

Lemma 3.5. The operators T0 : ⊕W 1
2 → ⊕W 1

2 T1 : ⊕W 1
2 → ⊕W 1

2 and T2 : C → ⊕W 1
2 T ∗

2 : ⊕W 1
2 → C

are completely continuous (i.e., compact), T0 and T1 are selfadjoint, T1 is positive, where T ∗
2 is the

conjugated of T2
(

where T ∗
2 f := − csc αf(0)

)
.

Proof. Since the function r(x) is bounded and positive definite, it follows that T1 is selfadjoint and
positive. Let Let f, ϱ ∈ ⊕W 1

2 . From (3.2) and (3.6) it follows that

⟨f, T0ϱ⟩⊕W 1
2,p,q

= ⟨T0ϱ, f⟩⊕W 1
2,p,q

= Λ0(ϱ, f) = Λ0(f, ϱ) = ⟨T0f, ϱ⟩⊕W 1
2,p,q

i.e. the operator T0 : ⊕W 1
2 → ⊕W 1

2 is selfadjoint. We prove that T0, T1 and T2 are compact operators.
Let {fk} be weakly convergent sequence in the Hilbert space ⊕W 1

2 and f = lim fk in the sense of weak
convergence. Show that the sequence {T0fk} converges strongly in the Hilbert space ⊕W 1

2 . Since the
operator T0 : ⊕W 1

2 → ⊕W 1
2 is bounded, the sequence {T0fk} converges weakly to T0f in ⊕W 1

2 . Since
the embedding operator J : ⊕W 1

2 ⊂ ⊕L2 is compact, it follows that∥∥fk − f
∥∥

⊕L2
→ 0 and

∥∥T0fk − T0f
∥∥

⊕L2
→ 0 as k → ∞.

Further, the compactness of the embedding operator W 1
2 [a, b] ⊆ C[a, b] ([a, b] is arbitrary closed inter-

val) implies the strong convergence of the sequences {fk(0)}, {fk(c−
1 )}, {fk(c+

1 )}, {fk(c−
2 )}, {fk(c+

2 )},
{fk(π)} and {(T0fk)(0)}, {(T0fk)(c−

1 )}, {(T0fk)(c+
1 )}, {(T0fk)(c−

2 )}, {(T0fk)(c+
2 )}, {(T0fk)(π)} in C to

f(0), f(c−
1 ), f(c+

1 ), f(c−
2 ), f(c+

2 ), f(π) and (T0f)(0), (T0f)(c−
1 ), (T0f)(c+

1 ), (T0f)(c−
2 ), (T0f)(c+

2 ), (T0f)(π),
respectively.
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Then, by using Theorem 3.4 and the inequality (3.4) we get that there is a constant C8 > 0 such that∥∥T0fk − T0fm

∥∥2
⊕W 1

2,p,q
= ⟨T0(fk − fm), T0(fk − fm)⟩⊕W 1

2,p,q
= Λ0

(
fk − fm T0(fk − fm)

)
≤ C8

{
|(fk(π) − fm(π))| · |(T0(fk − fm))(π)| + |(fk(0) − fm(0))| · |(T0(fk − fm))(0)|

+
∣∣∣(fk(c+

1 ) − fm(c+
1 ))

∣∣∣ ·
∣∣∣(T0(fk − fm))(c+

1 )
∣∣∣ +

∣∣∣(fk(c+
2 ) − fm(c+

2 ))
∣∣∣ ·

∣∣∣(T0(fk − fm))(c+
2 )

∣∣∣ }
and ∥∥T1fk − T1fm

∥∥2
⊕W 1

2,p,q
= ⟨T1(fk − fm), T1(fk − fm)⟩⊕W 1

2,p,q
= Λ1

(
fk − fm T1(fk − fm)

)

≤
∣∣∣∣∣
{∫ c−

1

0
+

∫ c−
2

c+
1

+
∫ π

c+
2

}
r(x)(fk(x) − fm(x)) · T1(fk − fm)dx

∣∣∣∣∣
≤ C9∥fk − fm∥⊕L2 · ∥T1(fk − fm)∥⊕W 1

2,p,q

Therefore,
∥∥Ti

(
fk − fm

)∥∥
⊕W 1

2,p,q
→ 0 as k, m → ∞(i = 0, 1), i.e., {Tifk}(i = 0, 1) are the Cauchy

sequence in the Hilbert space ⊕W 1
2 . Hence, the sequences {Tifk}(i = 0, 1) converges strongly in ⊕W 1

2 .
The compactness of Ti(i = 0, 1) is proven.

Similarly, one can prove that the operator T2 : C → ⊕W 1
2 is also compact. Moreover, it is easy to show

that the operator T ∗
2 has the form T ∗

2 f := − csc αf(0). Then, we get

|T ∗
2 f | ≤ C1 max

{
|f | : x ∈ [0, c1) ∪ (c1, c2) ∪ (c2, π]

}
≤ ∥f∥⊕W 1

2

i.e., the operator T ∗
2 : ⊕W 1

2 → C is bounded. Since the dimension of the range of T ∗
2 is finite and T ∗

2
is bounded linear operator, the operator T ∗

2 is also compact.

Applying Lemma 3.5, we get

⟨f, ϱ⟩⊕W 1
2,p,q

+ ⟨T0f, ϱ⟩⊕W 1
2,p,q

+ ⟨T2κ, ϱ⟩⊕W 1
2,p,q

= λ⟨T1f, ϱ⟩⊕W 1
2,p,q

(3.7)

T ∗
2 f − κ cot α sec2 α = λκ sec2 α

The arbitrariness of ϱ ∈ ⊕W 1
2 in identity (3.7) implies

f + T0f + T2κ = λT1f

Define the following two operators

R(f, κ) =
(
f + T0f + T2κ T ∗

2 f − κ cot α sec2 α
)

and
S(f, κ) =

(
T1f κ sec2 α

)
in the Hilbert space H. Consider the equation

T (λ)Ψ = 0 where T (λ) = R − λS is the operator-pencil , (3.8)

Ψ = (f(x), κ) ∈ H and κ is defined in (3.1).

Lemma 3.6. Let Ψ0 be any generalized eigenfunction of the SLP (1.1)-(1.7) which belongs to the
eigenvalue λ0. Then, the eigenpair (λ0, Ψ0) satisfies (3.8) in the Hilbert space H.

Lemma 3.7. ±2Re(
∫

fϱdz) ≥ −∥f∥2 − ∥ϱ∥2

Proof. The proof of this lemma is a direct consequence of the polar identity.
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Theorem 3.8. There exists a constant C0 > 0 such that for all λ0 ∈ C satisfying |λ0| > C0 the
operator-polynomial is positive definite.

Proof. Taking in view (3.6), we get

⟨T (−λ0)Ψ, Ψ⟩H = ⟨f(x), f(x)⟩⊕W 1
2,p,q

+ ⟨T0f(x), f(x)⟩⊕W 1
2,p,q

+ ⟨T2κ, f(x)⟩⊕W 1
2,p,q

+(T ∗
2 f(x))κ − cot α sec2 α|κ|2 + λ0

{
⟨T1f(x), f(x)⟩⊕W 1

2,p,q
+ sec2 α|κ|2

}
(3.9)

Define the functionals

P (f) := ⟨pf ′, f ′⟩⊕W 1
2
, Q(f) := ⟨qf, f⟩⊕W 1

2
and R(f) := ⟨rf, f⟩⊕W 1

2
(3.10)

Using well-known

|f(xj)|2 ≤ Cj1εjP (f) + Cj2
εj

Q(f), f ∈ ⊕W 1
2 , j ∈ {1, 2, 3, 4} (3.11)

holds for sufficiently small positive εj , where x1 = 0, x2 = c∓
1 , x2 = c∓

2 , x4 = π.

Further, it is convenient to denote

P (f) :=
{∫ c−

1

0
+

∫ c−
2

c+
1

+
∫ π

c+
2

}
p(x)|f ′(x)|2dx Q(f) :=

{∫ c−
1

0
+

∫ c−
2

c+
1

+
∫ π

c+
2

}
q(x)|f(x)|2dx

Thus,
∥f∥2

⊕W 1
2,p,q

= P (f) + Q(f) (3.12)

Since the functions q(x) and r(x) are positive and bounded, there exist constant M > 0 such that

⟨T1f(x), f(x)⟩⊕W 1
2,p,q

= Λ1(f, f) ≥ MQ(f) (3.13)

If we consider Theorem 3.4 and (3.9)-(3.13), we obtain the following inequality.

⟨T (−λ0)Ψ, Ψ⟩H ≥ Ξ1P (f) + Ξ2(λ0)Q(f) + Ξ3(λ0)|κ|2

where

Ξ1 := 1 −
(

|cot α| + 1
γ1| sin α|

)
C11ε1 −

∣∣ b

a

∣∣C21ε2 − |ab|C31ε3 − | cot β|C41ε4

Ξ2(λ0) := 1 −
(

|cot α| + 1
γ1| sin α|

)
C12
ε1

−
∣∣ b

a

∣∣C22
ε2

− |ab|C32
ε3

− | cot β|C42
ε4

+ λ0M

and

Ξ3(λ0) := −| cot α| sec2 α − γ1
| sin α|

+ λ0 sec2 α

Since θ = cos2 α > 0, there are positive numbers a, b, γ1, γ2, ε1, ε2, ε3 and ε4 and the positive parameter
λ0 such that the inequalities Ξ1 > 0, Ξ2(λ0) > 0 and Ξ3(λ0) > 0 holds. Denoting

Ξ(λ0) := min
(

Ξ1 Ξ2(λ0) , Ξ3(λ0)
)

we have

⟨T (−λ0)Ψ, Ψ⟩H ≥ Ξ(λ0)∥Ψ∥2
H

for all Ψ ∈ H. Consequently ⟨T (−λ0)Ψ, Ψ⟩H is positive definite quadratic form for sufficiently large
λ0 > 0.
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Theorem 3.9. The operators R and S are completely continuous and compact.

Proof. The proof is obvious because the operators T0, T1, T2, and T ∗
2 are completely continuous.

Theorem 3.10. The operator polynomial T (−λ0) is self-adjoint and completely continuous.

Proof. Since the linear operators R and S are completely continuous and compact, T (−λ0) = R+λ0S
is also self-adjoint and completely continuous.

Corollary 3.11. T(−λ0) is symmetric operator.

4. Basis Property of the Generalized Eigenfunctions of the SLP (1.1)-(1.7)

After the shift of the spectral parameter µ = λ + λ0, where λ0 is the parameter, from Theorem 3.8,
(3.8) takes the form

T (−λ0)Ψ = µSΨ

with the new spectral parameter µ. Now the transformation Φ =
(
T (−λ0)

) 1
2 Ψ introduced to apply

Theorem 2.7. Here
(
T (−λ0)

) 1
2 is the positive square root, which is invertible of the positive selfadjoint

operator T (−λ0).

Definition 4.1. Given a self-adjoint, bounded, and positive linear operator T : H → H, where H
is a Hilbert space. Then, a linear self-adjoint, bounded and positive operator B : H → H is called a
positive square root of T and is denoted by B =

√
T or B = T

1
2 (see [26]).

Lemma 4.2. The transformed functions Φ =
(
T (−λ0)

) 1
2 Ψ satisfy the operator equation

Φ − µL(λ0)Φ = 0

L(λ0) :=
(
T (−λ0)

) −1
2 S

(
T (−λ0)

) −1
2

which for sufficiently large, fixed λ0 has a positive compact selfadjoint operator L(λ0).

Proof. The proof of this lemma is obvious because the operator T (−λ0) is positive compact selfadjoint
operator.

Lemma 4.3. If (µn, Ψn) is any eigenpair of the Sturm-Liouville problem (1.1)-(1.7), Then, µn is
the eigenvalue of the operator L(λ0) with corresponding eigenelement Φn =

(
T (−λ0)

) 1
2 Ψn, i.e., the

functions (Φn) satisfy the operator equation

Φn − µnL(λ0)Φn = 0

Proof. From the identityT (−λ0)Ψn − µSΨn = 0 we have(
T (−λ0)

) 1
2 Ψn = µn

(
T (−λ0)

) −1
2 SΨn

Denoting Φn =
(
T (−λ0)

) 1
2 Ψn, we get the needed identity

Φn = µnL(λ0)Φn
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Theorem 4.4. The SLP (1.1)-(1.7) has infinitely many real eigenvalues {λn} with accumulation point
at +∞ and the system of corresponding generalized (weak) eigenfunctions forms a Riesz basis of the
Hilbert space H.

Proof. Since T (−λ0) is bounded positive operator and
(
T (−λ0)

) 1
2 is invertible, the proof follows

immediately from Lemma 4.2 and Theorem 2.7.

Corollary 4.5. The system of the generalized (weak) eigenfunctions of the SLP (1.1)-(1.7) is complete
system in ⊕L2.

5. Conclusion

This study investigates a new type of SLP, which differs from the regular SLPs in that the equation
has discontinuities at two interior points, and four additional conditions are specified at these points,
the so-called jump conditions. Naturally, analyzing such types of discontinuous SLPs is much more
complicated than classical SLPs since it is unclear how to adapt Sturmian theory’s known methods to
such discontinuous problems. To establish some important spectral properties of the problem under
consideration, we construct new self-adjoint polynomial operators in the appropriate Hilbert space.
In particular, we prove that this polynomial operator is positive definite, the spectrum is discrete,
and the generalized (weak) eigenfunctions system forms a Riesz basis. Many problems in physics,
engineering, and other branches of natural science lead to discontinuous Sturm-Liouville problems
with parameter-dependent jump conditions posed at the points of discontinuity. Similar or modified
methods can investigate the case where both the boundary and jump conditions depend on the spectral
parameter.
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