

1145

DOI: 10.18039/ajesi.1570205

The Impact of Solo and Pair Programming Modes on Problem-solving

Skills and Motivation: Students' Reflections on Pair Programming

Ömer DEMİR1*, Murat ÇINAR2, Süleyman Sadi SEFEROĞLU3

Date submitted: 22.10.2024 Date accepted: 17.07.2025 Type4: Research Article

Abstract

This study primarily investigates the effects of solo and pair programming on students’ problem-solving
skills and motivation. Additionally, it aims to identify key factors and tensions associated with pair
programming based on students’ reflections. An embedded mixed-methods research design was
employed. The sample consisted of 42 undergraduate students. Participants in the control group,
comprising 19 students, worked individually on computational tasks, while those in the experimental
group engaged in the same tasks in pairs. All participants took part in computational thinking activities
over seven weeks, structured around game development projects. Data were collected through
questionnaires and in-depth interviews. The results indicated no statistically significant differences
between the two groups in terms of overall motivation and problem-solving scores. However, the
experimental group scored higher in the sub-dimension related to conceptualizing problems through
modeling. Student motivation was found to be high across both groups following the intervention,
regardless of the programming mode. After analyzing the qualitative data obtained from five students, a
total of 122 codes were identified and categorized under six themes: 'team dynamics', 'task and platform
characteristics', 'affective domain', 'cognitive strategies and problem-solving', 'pedagogical framework',
and 'roles'. The qualitative findings suggest that the pedagogical benefits of pair programming can only
be fully realized through the effective management of pairing strategies, peer communication, task
difficulty, and collaborative processes.

Keywords: motivation, pair programming, problem-solving skill, solo programming, student
reflections

Cite: Demir, Ö., Çınar, M., & Seferoğlu, S. S. (2025). The Impact of Solo and Pair Programming Modes
on Problem-solving Skills and Motivation: Students' Reflections on Pair Programming. Anadolu Journal
of Educational Sciences International, 15(3), 1145-1170. https://doi.org/10.18039/ajesi.1570205

1* Dr., The Department of Computer Technologies of Colemerik (Çölemerik) Vocational School of Higher Education,

Hakkari University, Hakkari, Türkiye. omerdemir1986@gmail.com
2 Dr., Borsa Istanbul Vocational and Technical Anatolian High School, Republic of Türkiye Ministry of National

Education, Adana, Türkiye. murat_cinar@rocketmail.com
3 Prof. Dr., The Department of Computer Education and Instructional Technology, Faculty of Education, Hacettepe

University, Ankara, Türkiye. sadi@hacettepe.edu.tr
4 This research study was conducted with Research Ethics Committee approval of Hacettepe University, dated

29.03.2018 and issue number 35853172/433-1408.

https://doi.org/10.18039/ajesi.1570205
mailto:omerdemir1986@gmail.com
mailto:murat_cinar@rocketmail.com
mailto:sadi@hacettepe.edu.tr

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1146

Introduction

Programming means to prepare a set of instructions that can be executed by a

machine. Programming education is important in teaching students how to solve problems

based on computational concepts and principles. In programming education, there is a growing

interest in using collaborative programming as a pedagogical tool (Chorfi et al., 2020; Dybå

Arisholm et al., 2007; Tan et al., 2024). Pair programming is one of the techniques used in

collaborative endeavors in programming education. It involves two programmers working

together on a single screen to fulfill a specific computational task (Bowman et al., 2020). In this

process, one student plays the role of the driver, controlling the input devices, and conducting

the programming processes (i.e., writing the codes), while the other undertakes the role of the

navigator, guiding and supervising the driver by providing resources and offering guiding

questions when necessary. Roles are interchangeable on a time or task basis. In a nutshell,

each partner has responsibilities and tasks that need to be fulfilled on a rotating basis.

Numerous studies in the literature report positive student outcomes with regard to pair

programming in terms of both cognitive and affective aspects (e.g., Çal & Gülcan, 2020; Demir

& Seferoğlu, 2021a; Demir & Seferoglu, 2021b; Hawlitschek et al., 2023). Increasing course

achievement, memory retention and code quality, reducing errors encountered in the

programming process, experiencing high-level thinking processes, and increasing learner

motivation, self-confidence, and satisfaction are just a few of them (Demir & Seferoğlu, 2021a;

Hanks et al., 2011; Yang et al., 2016). Pair programming increases student interaction,

provides opportunities for teamwork and collaborative learning, and facilitates the sharing of

technical knowledge (Hanks et al., 2011; Xu & Correia, 2024). An important outcome is that

students participate in gaining experience in collaboration that they need before entering the

workforce (Demir & Seferoğlu, 2021b). In addition, students do not need to be in the same

physical location to take advantage of pair programming, in that collaborative programming

activities can be effectively conducted from distributed locations (Baheti et al., 2002; Lubarda

et al., 2024). Hawlitschek et al. (2023) concluded from their review of the literature that pair

programming produced more positive outcomes than solo programming in the case of

university students. However, researchers also pointed to gaps in appropriate pedagogical

frameworks and learning tasks. Balijepally et al. (2009) found that, regardless of task

complexity, pair programming helps increase software quality and the programming

confidence of low-performing students, and reduces the performance gap between them and

high-performing students. Further studies also revealed that pair programming produces more

effective outcomes in terms of computational thinking and programming, especially among

less experienced students (Denner et al., 2014). This might be because novices (e.g., first-

year students) are commonly more prone to failure due to inexperience in programming, a

relatively low sense of belonging, and underdeveloped problem-solving strategies (Lubarda et

al., 2024). In fact, the complex nature of programming leads to high dropout rates among first-

year computing students (Navarro-Cota et al., 2025). This paves the way for the need for better

guidance in computing endeavors.

Today, increasing digital data traffic, speed of technological development, variable

characteristics of the target audience, complex business processes, and multidimensional

analysis techniques have increased the demand for and dependence on software products.

On the other hand, traditional software development practices have evolved into agile

programming processes that are based on collaboration and self-organization among

developers, and are more responsive to customer expectations and emerging technologies

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1147

(Balijepally et al., 2009; Mehta & Sood, 2023). Thus, collaborative programming enables the

creation of large-scale or advanced products and shortens the development time.

The outputs of a programming education greatly depend on two fundamental factors:

motivation and the ability to solve problems (Denner et al., 2021). However, there is also

evidence in the literature to suggest that the impact of pair programming on problem-solving

skills (e.g., Zhong & Li, 2020) and motivation (e.g., Krizsan & Lambic, 2024) remains limited.

This is also valid for the general practice of programming that goes beyond the pair

programming approach (e.g., Kalelioglu & Gülbahar, 2014; Psycharis & Kallia, 2017). The

incongruence of the results found in the literature mainly stems from the social dynamics of

pair programming affecting the collaboration process. The role of collaboration in programming

education, therefore, needs to be further examined (Lai & Wong, 2020). In addition, the

imbalance in workload distribution, irregularity in role switching between pairs, one-sided

commitment, and low interaction between partners are among the main problems encountered

(Tsompanoudi et al., 2015). The conflicting findings in the literature deserve attention as to

how collaborative programming processes or practices are guided in terms of pair selection

methods, team dynamics, programming knowledge and experience levels of partners,

frequency of role change, workload distribution between partners, task difficulty, the

pedagogical framework, etc. This is exactly why the social dynamics and the instructional

framework are so important in pair programming. All this motivates us to explore whether pair

programming provides a bonus effect in programming education. Although the current study

examines the effectiveness of pair programming compared to solo programming in terms of

problem-solving skills and motivation, it also explores the driving factors and tensions that

influence the pair programming process.

Problem-Solving

Programming is inherently a problem-solving activity because programs are often

written to solve problems. However, programming entails that the organization of ideas is

grounded on computational principles. This necessarily involves the use of cognitive and

affective tool sets that involve multi-level abstractions and representations that go far beyond

knowing codes or combining them with a set of syntactic rules as we might when using a route

map. With regard to this point, Wing (2006) pointed out that the approach conceptualized as

computational thinking can be functional in terms of solving problems in different disciplines

and also offers a universal attitude and skill set from which everyone can benefit. On the other

hand, some studies indicate that programming commonly has a limited effect when it comes

to making a significant difference in students' problem-solving skills (e.g., Çınar & Tüzün, 2021;

Çiftci & Bildiren, 2020; Kalelioglu & Gülbahar, 2014). A similar trend applies to pair or solo

programming modes. Zhong and Li (2020) found that students who worked in pairs achieved

higher troubleshooting scores when making robotic artefacts, but their overall troubleshooting

performance remained similar to that of solo programmers. This suggests that in some, but not

overall, aspects, the pair mode in programming is a good catalyst for improving students'

problem-solving skills.

Problem-solving approaches are not a single monolithic concept but involve different

sets of cognitive and affective skills. Thus, it seems reasonable to examine sub-dimensions

rather than meta-concepts related to problem-solving. In addition, despite the diversity of

programming tools, environments, techniques, or activity types, the vast majority of studies in

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1148

the literature are based on solo programming activities. One of the emerging benefits of pair

programming is that it encourages the verbal expression of mental processes during the

problem-solving process. This facilitates reasoning, logical thinking, recognizing and thinking

about intellectual models, exchanging ideas, and thus knowledge awareness and transfer.

Peer interaction, which paves the way for capturing different perspectives with regard to the

solution of a particular problem, provides significant educational benefits, especially in

introductory programming courses (Hanks et al., 2011). The meta-analysis by Lai and Wong

(2022) reported that collaborative problem-solving in programming led to better cognitive and

affective learning outcomes than did solo programming activities.

Motivation

Students' commitment to engage in and sustain computational thinking while seeking

solutions to problems is an important determinant of programming. Programming courses are

based on practical applications that require reasoning with regard to abstract and complex

concepts (Pilkington, 2018). Additionally, command expressions and the syntactic rules of

programming languages pose an additional challenge. Programming courses are generally

perceived by students as difficult and boring, resulting in low motivation and course completion

rates (Alammary, 2019; Alturki, 2016; Noone & Mooney, 2018; Tsai, 2019). Pair programming

makes the programming process more enjoyable through social interaction and peer

collaboration (Hanks et al., 2011). However, excessive differences in the level of programming

knowledge and poor communication within a student pair can lead to discomfort, which can

negatively affect their effectiveness and motivation (Zarb & Hughes, 2015). Krizsan and

Lambic (2024) reported no significant difference in motivation between solo and pair

programming groups where pairs were matched with different matching patterns according to

their skill level, including good-good, good-weaker and weaker-the lowest pairs. The topic of

student motivation in the context of pair programming has received scant attention in the extant

literature. Yang et al. (2016) reported that pair programming did not lead to a significant

increase in student motivation in the ARCS model, except in terms of the confidence sub-

dimension.

Although one-laptop-per-child projects have been gaining momentum around the world

since the mid-2000s, most classroom arrangements require a few students to share a single

device. While this is often seen as a factor that limits access to and use of digital resources in

the classroom, it can create new pedagogical opportunities (Demir & Seferoğlu, 2017). At this

point, traditional classrooms might lay the groundwork for collaborative pedagogies, which are

often difficult to implement in education and allow for the structuring of knowledge through

social interaction. In pair programming, only one team member uses the programming

environment and hardware resources at a given time. In this regard, compared to the

conventional classroom setting, the need for resources decreases and thus more students are

included in the programming process. Moreover, these resources are not limited to screen-

based programming tools but also apply to various physical programming hardware (e.g.,

robotic kits), especially those that are difficult to procure in the classroom. On the other hand,

the joint engagement of the partners with computational problems as part of a collaborative

process is an important parameter that determines the learning outcomes. Problems with task

sharing, low task difficulty, social pressure on those who know less, time pressure,

interruptions in the collaborative process, etc., can cause peers to drop out of the problem-

solving process and miss out on the educational benefits of pair programming activities (Plonka

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1149

et al., 2012). Therefore, it is necessary to identify the experiences of partners in the peer

programming process and the key factors that influence collaboration. In this context, the

present study mainly addressed problem-solving skills and student motivation, which have

contradictive findings in terms of their outcomes in programming modality, with their sub-

dimensions. It also examines students' attempts to solve computational problems through pair

programming and their reflections on the computational process in detail, such as the

collaboration process, instructional setting, task type, etc.

Research Questions

The main aim of the present study was to scrutinize the effects of solo and pair

programming modalities on motivation and problem-solving skills. It also aims to consider

student reflection on pair programming as well as the key factors and tensions that influence

collaboration. Based on these objectives, the following research questions were posed.

1. Is there a statistically significant difference between the motivation of the solo and

pair programming groups?

2. Do the problem-solving skills of the solo programming group show a statistically

significant improvement?

3. Is there a statistically significant improvement in the problem-solving skills of the pair

programming group?

4. Are there any statistically significant differences between the problem-solving skills

gained after solo and pair programming group activities?

5. What are the prominent pedagogical design elements in pair programming?

6. What are the major drawbacks and tensions that influence collaboration in pair

programming?

Method

An embedded mixed research design (Creswell & Plano-Clark, 2006) was used in the

study. This research design is preferred when more than one type of data needs to be collected

due to the nature of the study. In the study, qualitative data were collected to facilitate the

interpretation of the quantitative results. A quasi-experimental research design with a pretest-

posttest control group was adopted in the quantitative dimension of the study. This

experimental design involves non-random assignment of participants to the test groups

(Fraenkel et al., 2012). Participants were not randomly assigned to the experimental group in

the study.

Study Group

A total of 42 volunteer senior students enrolled in an elective course at the Computer

Education and Instructional Technology (CEIT) division of a public university in Türkiye

participated in the study. Of these, 19 were placed in the control group (4 female, 15 male),

and 23 were in the experimental group (10 female, 13 male). To compare the groups in terms

of their programming self-efficacy, the Mann–Whitney U test was employed. As a result of the

Mann–Whitney U test, no statistically significant difference was found between the control

group (mean rank = 21.47) and the experimental group (mean rank = 21.52) in terms of

programming self-efficacy (Z = .013, p = .990). Similarly, the comparison of problem-solving

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1150

skills also revealed no statistically significant difference between the control group (mean rank

= 21.34) and the experimental group (mean rank = 21.63) (Z = .076, p = .940). For the

qualitative part of the study, five students (three female and two male) from the experimental

group were selected based on gender and pre-test scores, using the maximum diversity

method.

Data Collection Tools

Five data-collection instruments were used in this study. These tools were ‘personal

information form’, ‘programming self-efficacy scale’, ‘motivation scale’, ‘problem-solving skill

scale’, and lastly ‘semi-structured interview form’.

Personal Information Form

This form includes questions about the participants’ gender, their block-based

programming experience, game development experience, their number of programming-

related courses they have taken, etc.

Programming Self-Efficacy Scale

The original form of the programming self-efficacy scale was developed by

Ramalingam and Wiedenbeck (1998). This consisted of 32 items under four factors. This scale

was adapted to Turkish by Mazman (2013). The new form of the scale consisted of nine items

with two factors. These factors were performing simple programming tasks and performing

complex programming tasks. The overall Cronbach Alpha reliability coefficient of the 7-point

Likert-type scale was calculated as 0.93 in both the original and this study.

Motivation Scale

The scale, originally developed by Keller (1987), consisted of 36 items under four

factors. The scale was developed on the theoretical basis of Keller's ARCS motivation model.

Kutu and Sözbilir (2011) reported that the Turkish version of the scale consisted of 24 items

under two factors. These factors were attention-relevance (11 items) and confidence-

satisfaction (13 items). The overall reliability coefficient of the Turkish form of the original scale

was calculated as 0.83, while it was 0.92 in this study. The scale was designed as a 5-point

Likert type (1 = I totally disagree, 5 = I totally agree). Consequently, it is possible to obtain a

maximum of 120 points, and a minimum of 24. Higher scores indicate higher motivation. ‘I

studied with pleasure’ is a typical sample item of the scale.

Problem-Solving Skill Scale

The problem-solving skill scale was developed by Yaman and Dede (2008). The scale

contains 18 items under five factors. These factors were 1) thinking about the effects of the

solution to the problem (five items), 2) problem-solving through modeling (three items), 3)

probing alternative solutions (four items), 4) commitment to apply the determined solution

(three items), and 5) analyzing the problem encountered (three items). The scale explained

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1151

82% of the total variance. The overall Cronbach Alpha reliability coefficient of the original scale

was reported as 0.88, whereas it was reported as 0.91 in this study. The scale was a 5-point

Likert type (1 = Never, 5 = Always). Consequently, it is possible to obtain a maximum of 90

points, and a minimum of 18. Higher scores signify higher problem-solving skills. ‘I consider

every solution when solving a problem’ is a sample item of the scale.

Semi-Structured Interview Form

The semi-structured interview form comprised eight questions. This form was revised

after being checked by two subject-matter experts in the field of instructional technology. The

wording of the interview questions was revised to improve clarity in line with expert opinions.

The interview form includes a set of questions addressing pair selection and partner

characteristics, cooperation, task sharing, problems experienced in pair programming, and

finally the effect of pair programming on coding motivation, skill development, and code quality

(See Appendix 1).

Experimental intervention

Learning Tasks

The Scratch 3.0 environment was preferred as the programming environment. Scratch

was used because it is a block-based tool with a free, easy-to-use and rich visual toolkit.

Students were given a different arcade game programming task each week. In both the

experimental and control groups, the game development was started by the instructor in the

first class. Subsequently, the students were asked to code the remaining part during the

second lesson by conforming to the predetermined features of the game. In this process, the

instructor was present to guide the students.

Implementation of Pair Programming

Before implementation, general introductory information about pair programming was

given to the students in an effort to make it more fruitful. Subsequently, dyads were formed for

pair programming in the experimental group. For this, each student was asked to choose

different peers with whom they would like to work. The students were matched to one of these

students each week. Those who had been matched once were not allowed to be re-matched.

This was done because the students were expected to experience unique interactions with

different peers. Programming dyads changed their driver and navigator roles every 20 minutes.

Data Collection Process

To begin with, ethical approval was obtained from the ethics committee of the university

where the research was conducted. Prior to computational activities, the Scratch environment

and its basic features were introduced to the students for a week as part of the programming

course. Then, a personal information form, pre-test of the problem-solving skill scale, and the

programming self-efficacy scale were administered to students. In addition, there was a

random selection of which group would be the experimental group prior to implementation.

Then, the seven-week implementation was performed. At the end of the implementation

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1152

process, students' problem-solving skills were re-measured in addition to their motivation.

Finally, semi-structured interviews were conducted with the five students (three female and

two male) from the experimental group. The experimental design of the research is shown in

Table 1. One of the researchers was the faculty member teaching the course, while one of the

other researchers assisted in the above-mentioned course and collected the research data.

Table 1
Details of the Experimental Research Design.

Groups Pre-test
Experimental
intervention

Post-test Interview

Control
Personal information form,
Problem-solving skill,
Programming self-efficacy

Solo
programming

Problem-solving
skill, Motivation

-

Experiment
Personal information form,
Problem-solving skill,
Programming self-efficacy

Pair
programming

Problem-solving
skill, Motivation

Semi-
structured

Data Analysis

In the quantitative analysis, MS Excel and IBM SPSS Statistics (ver. 24) were used.

Prior to analysis, missing data was filled using the linear trend method. Then, factor and overall

scale scores were obtained by taking the average of the relevant items. While the groups were

considered as independent variables, motivation, and problem-solving skills were considered

as dependent variables. Since the data set was small, non-parametric statistical analysis

methods were used. Frequency, arithmetic mean, and standard deviation were used to

describe the data. The Wilcoxon Signed Ranks Test was used to examine the development of

each group. The gain scores were obtained by subtracting the pre-test from the post-test

scores. The gain scores of the groups were compared with the help of the Mann-Whitney U

test. The significance level was determined as .05. When a statistically significant difference

was achieved, the r effect size was calculated to help interpret the significance in practice and

was interpreted according to Cohen (1998). In the qualitative analysis, semi-structured

interview recordings were transcribed by an experienced student for a fee. This transcript

comprised 32 pages, 8,200 words and 42,911 characters (without spaces) with the format of

12 point, Times New Roman font and 1.5 line spacing. Qualitative content analysis was applied

to the transcript. With regard to the content analysis, qualitative data were analyzed in depth

without predetermined concepts in mind so that relationships existing in the data were

unearthed (Strauss & Corbin, 1990). Two experts were involved in the qualitative analysis

process. Both experts totally agreed on the codes after discussing the disputed codes in order

to ensure inter-coder reliability. The NVivo (ver. 10) qualitative analysis tool was used in the

process. Open, axial, and selective coding were used during the analysis process. After free

coding, a total of 224 free codes were obtained. The codes were then revisited, with 55 codes

deleted, and a total of 45 code pairs or trios were merged. At the end of this process, the

remaining 122 codes were grouped into six themes.

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1153

Findings

The findings were reported in the order of the research questions.

The Difference Between the Motivations of the Solo and Pair Programming

Groups

The results demonstrated that there was no statistically significant difference between

the solo and pair programming groups in terms of attention-relevance (Z = 1.166, p = .244),

confidence-satisfaction (Z = 1.292, p = .196) factors, and motivation in general (Z = 1.267, p =

.205) (See Table 2).

Table 2
Results of the Mann-Whitney U Test on the Motivation Differences of the Solo and Pair Programming
Groups

Motivation Groups1 M2 MR3 SD Z p

Overall
Control 3.79 18.87 .67

1.267 .205
Experiment 4.08 23.67 .48

1) Attention-relevance
Control 3.73 19.08 .72

1.166 .244
Experiment 4.04 23.50 .61

2) Confidence-Satisfaction
Control 3.85 18.82 .72

1.292 .196
Experiment 4.28 23.72 .50

1 Nctrl = 19, Nexp = 23, 2 The scale is 5 Likert type, 3 MR = Mean Rank.

The Gain in the Problem-Solving Skills of the Solo Programming Group

The solo programming experience did not cause a statistically significant gain in

thinking about the effects of the solution of the problem (Z = 1.117, p = .264), problem-solving

through modeling (Z = .175, p = .861), probing alternative solutions (Z = .810, p = .418),

commitment in applying the determined solution (Z = .860, p = .390) factors and overall

problem-solving skill (Z = 1.025, p = .305). When it comes to the factor of analyzing the problem

encountered, a statistically significant gain of medium effect size was found (Z = 1.960, p =

.050, r = .318) (See Table 3).

Table 3
Results of the Wilcoxon Signed-Rank Test on the Gain in the Problem-Solving Skill of the Solo
Programming Group

Problem-Solving Skill Groups M1 SD1 Ranks2 Z p r

Overall
Pre-test 4.02 .52 NR=6

PR=12
T=1

1.025 .305 N/A
Post-test 4.20 .43

1) Thinking about the effects
of the solution of the
problem

Pre-test 4.02 .57 NR=6
PR=11

T=2
1.117 .264 N/A

Post-test 4.24 .64

2) Problem-solving through
modeling

Pre-test 3.98 .68 NR=8
PR=7
T=4

.175 .861 N/A
Post-test 3.95 .52

3) Probing alternative
solutions

Pre-test 3.76 .76 NR=8
PR=9
T=2

.810 .418 N/A
Post-test 3.99 .65

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1154

4) Commitment to apply the
determined solution

Pre-test 4.30 .60 NR=7
PR=7
T=5

.860 .390 N/A
Post-test 4.49 .50

5) Analyzing the problem
encountered

Pre-test 4.12 .51 NR=4
PR=12

T=3
1.960 .050* .318

Post-test 4.39 .46

* Significant at the level of .05, Nctrl = 19, 1 The scale is 5 Likert type. 2 NR = Negative Ranks (Pre-test
> Post-test), PR = Positive Ranks (Post-test > Pre-Test), T = Ties (Post-test = Pre-test).

Gain on the Problem-Solving Skill of the Pair Programming Group

A statistically significant problem-solving skill gain in the case of the pair programming

group was achieved in terms of thinking about the effects of the solution of the problem (Z =

2.625, p = .009, r = .387, medium effect size), problem-solving through modeling (Z = 3.680, p

= .000, r = .543, large effect size) factors and problem-solving skill in general (Z = 2.311, p =

.021, r = .341, medium effect size). No statistically significant finding was obtained in terms of

probing alternative solutions (Z = 1.858, p = .063), commitment to apply the determined

solution (Z = .000, p = 1.000), and analyzing the problem encountered (Z = .318, p = .751)

factors (See Table 4).

Table 4
Results of Wilcoxon Signed-Rank Test on the Gain of Problem-Solving Skill of the Pair-Programming
Group

Problem-Solving Skill Groups M SD Ranks Z p r

Overall
Pre-test 4.04 .52 NR=9

PR=13
T=1

2.311 .021* .341
Post-test 4.33 .43

1) Thinking about the effects of
the solution of the problem

Pre-test 3.97 .67 NR=4
PR=16

T=3
2.625 .009** .387

Post-test 4.40 .52

2) Problem-solving through
modeling

Pre-test 3.72 .63 NR=1
PR=18

T=4
3.680 .000** .543

Post-test 4.28 .43

3) Probing alternative solutions
Pre-test 3.76 .69 NR=6

PR=12
T=5

1.858 .063 N/A
Post-test 4.11 .67

4) Commitment to apply the
determined solution

Pre-test 4.51 .57 NR=8
PR=7
T=8

.000 1.000 N/A
Post-test 4.51 .50

5) Analyzing the problem
encountered

Pre-test 4.38 .55 NR=7
PR=7
T=9

.318 .751 N/A
Post-test 4.41 .56

* Significant at the level of .05, ** Significant at the level of .01, Nexp = 23.

The Difference Between the Problem-Solving Skill Gain of the Solo and Pair

Programming Groups

In terms of problem-solving skills in general (Z = .443, p = .658), thinking about the

effects of the solution of the problem (Z = .903, p = .367), probing alternative solutions (Z =

.584, p = .559), commitment to apply the determined solution (Z = .542, p = .588), and

analyzing the problem encountered (Z = 1.432, p = .152) factors, no statistically significant

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1155

difference was noted between the problem-solving skill gain of the solo and pair programming

group (See Table 5). In terms of the problem-solving through modeling factor, a statistically

significant difference of medium effect size was found in favor of the experimental group (Z =

3.005, p = .003, r = .464).

Table 5
Results of the Mann-Whitney U Test on the Differences in Problem-Solving Skill Gain of the Solo and
Pair Programming Groups

Problem-Solving Skill Groups
Gain

scorea
MR SD Z p r

Overall
Control .18 20.58 .54

.443 .658 N/A
Experimental .29 22.26 .53

1) Thinking about the effects of
the solution of the problem

Control .22 19.63 .75
.903 .367 N/A

Experiment .43 23.04 .69

2) Problem-solving through
modeling

Control -.04 15.37 .42
3.005 .003** .464

Experiment .41 26.57 .44

3) Probing alternative solutions
Control .22 20.29 .91

.584 .559 N/A
Experiment .35 22.50 .80

4) Commitment to apply the
determined solution

Control .19 22.61 .76
.542 .588 N/A

Experiment .00 20.59 .67

5) Analyzing the problem
encountered

Control .26 24.42 .52
1.432 .152 N/A

Experiment .03 19.09 .60
** Significant at the level of .01. a Post-test - pre-test, Nctrl = 19, Nexp = 23.

Students' Reflections on and Prominent Pedagogical Issues Related to Pair

Programming

Students' perceptions of the motivational and problem-solving effects of pair

programming, and the prominent pedagogical issues that emerged during pair programming,

are the other research questions of the study. To answer these questions, the interview data

were analyzed using qualitative content analysis involving a ground-up approach. The 122 free

codes revealed after qualitative data analysis were grouped into 21 categories under six

themes (See Figure 1). These themes could be listed as team dynamics (32 codes), task and

platform characteristics (10 codes), affective domain (10 codes), cognitive strategies and

problem-solving (19 codes), the pedagogical framework (40 codes), and roles (11 codes).

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1156

Figure 1
Themes and Categories Emerging from the Qualitative Analysis

With regard to the theme of team dynamics, there are five categories: partner change,

criteria, team harmony, pairing, and tensions. Although changing partners was not welcomed

at the beginning of the implementation, it was later perceived as beneficial for enhancing peer

learning and minimizing persistent interpersonal issues within teams. However, it should be

noted that pair change frequency (such as at the task level, or on a weekly or monthly basis)

is critical. At this point, it would be more reasonable to change pairs every couple of weeks

instead of after each session or task. The partner's interest in the topic, and being thoughtful

and open to learning are the most prominent criteria for choosing a partner. The factors

affecting team harmony are knowledge-level differences between peers, task sharing, peer

communication, and rules. It was observed that peer-to-peer communication creates a

synergistic driving force in terms of task performance. The task share and accompanying

responsibilities here generally were seen not to change throughout the problem. However, the

students frequently reflected on the exchange of ideas during the tasks. One of the partners

was more related to the learning environment (e.g., subject matter, teacher, peers), and the

other was more focused on the problem itself. The difference in the level of subject matter

knowledge between the team members came to the fore as a factor that positively contributed

to team harmony and task engagement or lack thereof. However, this difference should remain

at such a level that it does not cause any of the team members to become disengaged from

the task, and allows the members to learn from each other. The rules among the partners are

very functional in terms of preventing tensions. Peer communication ensures a clear

understanding of the messages to be conveyed and increases cooperation within the pair. It

was observed that when communication is poor, tasks are carried out with individual effort and

sometimes left unfinished.

P1: Again, like I said, I couldn't tell him [his partner] to get on with it and leave the

other thing, because I didn't have a lot of communication and I wasn't very close to

him. He kept doing his job, I kept writing code on Scratch. Something like that

happened that week, I couldn't finish the issue [task] that week, it was half done.

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1157

Low intimacy between team members led to the need for increased explanation, the

personalization of criticism, and a reluctance to communicate. Grade level is very critical for

pair members to get to know each other. Especially in the lower classes, the time needed for

the pair to get to know each other can increase. Students found it beneficial to partner with

their best friends and to work with their partners for longer periods of time. One student found

that being paired with more knowledgeable others led to increased effort and better learning.

Students also addressed that there are also risks in terms of good communication with the

partners they are forced to be paired with. At this point, it is recommended that the student be

given the choice of partner as much as possible. The main causes of tension were

communication problems, the perception of insufficient effort on the part of the partner, and

the overburdening of one of the partners during the task.

P3: Because I was in a team with some people who knew more [high prior

knowledge]. In this way, I made more effort to compensate for my own deficiency.

Students reported that initially the task difficulty was at a level they could manage, but

became cognitively challenging in the later stages. Lack of peer support at the desired level

led to difficulty in completing tasks in some cases, increased the time spent on the task, and

even resulted in disengagement from the task. The fact that the learning tasks are artifact-

based allows students to reflect on their knowledge and makes it more visible. Pair

programming has been reported to affect the quality of artifacts as well as task performance

and efficiency. On the other hand, the fact that the tasks are artifact-based has raised

questions about how to understand the nature and quality of the work (e.g., code length). The

students stated here that the complexity of the problem and its openness to more than one

solution highlighted the quality of the computational solutions. Game design and programming

activities were found to be very effective in this regard, providing students with opportunities

for authentic work. At this point, Scratch and the ready-made object library made it easier to

implement computational strategies and to create artefacts that were more aesthetically

pleasing and appropriate. Interestingly, students indicated that pair programming was more

suitable for in-class computational tasks, such as problems and projects, and content learning,

but not for out-of-class tasks, including homework, projects, and presentations.

P4: That's why I think the purpose is important here. If we do something to learn, I

prefer to do it with a partner. But if I have to present something, for example, I would

prefer to do this project assignment and final project individually. However,

personally, I would prefer to work with my peers during class.

Students' negative attitudes and prejudices with regard to pair programming prior to the

intervention changed over time. Students reported that pair programming made the process of

solving computational problems more enjoyable when the pair was in harmony, which had a

positive impact on their motivation and also increased their belief in task performance. Pair

programming increased the sense of community in the class. However, those in the navigator

role within the group sometimes felt left out.

P5: Well, at first I thought pair programming would be bad... But later, when I came

to the class and found a partner, I saw that it [pair programming] is not like that.

P3: It was more fun to chat and code [with someone] at the same time. If I was

alone, I might get bored and break away [from the task] after a while.

In the pre-solution phase of computational problems, analyzing the problem,

envisioning the solution, and creating algorithms became prominent cognitive processes. In

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1158

pair programming, sharing ideas with a partner, such as saying them out loud, makes the

students aware of their thoughts about the task or problem and allows them to think about

them. It also reduced the trial-and-error approach to finding solutions and allowed more time

for thinking (analysis, decomposition, creating algorithms, etc.). Students emphasized that pair

programming increases the diversity of ideas at every stage of problem-solving. However, one

participant noted that the diversity of ideas about the problem also caused complexity, slowed

the transition to the solution-stage, and required going back to the beginning (understanding

the problem phase).

P4: I can say that I learn more when I program with a partner. Because in one of

these modalities, namely if I were alone, I would look at the problem and try to find

a solution. If I could not, I would look again and try to find a solution and think on

my own. But in pair programming, there were times when I would say it out loud to

someone, I would hear it from someone else, and I would reinforce my learning by

explaining it to someone else.

P5: First, we discussed how we could do it, but I didn't do it directly like, let's take

this [code block] and put it just here.

Students found pair programming beneficial in terms of code quality and efficiency,

especially in using less code. The selection of appropriate code blocks, the removal of

unnecessary codes, and the shortening of codes stood out as factors that increased efficiency.

It also contributed to the rapid implementation of the developed strategies into appropriate

code blocks. In solo programming, students generally applied the first solution that came to

mind; however, in pair programming, they spent more time thinking while sharing strategies

with their partners, providing an opportunity to revise ideas.

P4: If I were alone [solo], I would look at [the problem] and try to find a solution. If I

couldn't, I would look again and try to find a solution [trial and error] and think on

my own. But in pair programming, there were times when I would say it out loud,

and there were times when I would hear it from someone else, and I would reinforce

my learning by explaining it to someone else.

Contrary to usual computational problems, game programming in pairs allows students

to address different user behaviors, and design issues and thus increase the quality of the

codes by adding new functionalities. Here, game programming has also paved the way for

creative work to emerge as part of the design process. However, the increase in quality has

been limited in computational problems where there is no design element, and where there is

only one correct answer. In addition, the pair programming mode offers a variety of ideas when

it comes to designing the user interface, such as placing design objects, beyond just coding.

However, although this mode might increase the task completion rate and catalyze the search

for a solution, the diversity of ideas sometimes leads to additional workload and loss of time.

In addition, there has also been criticism that as the number of code blocks increases, pair

programming creates more distractions and reduces the control of code blocks.

P2: As two coders, we come up with an idea and build the code blocks and a game.

Well, this also enables higher quality.

Regarding the pedagogical framework, the prominent issues are learning

enhancement, support requirements, pair and solo programming, and programming modality

preference. Pair programming encourages peer learning, the scaffolding of subject learning,

the opportunity to acquire a better understanding, self-evaluation, and the closing of subject

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1159

gaps. In addition, the vocal expression of thoughts helps students to retain, remember, and

reinforce what has been learned. However, the lack of opportunities for practice in the

navigator role was mentioned as a problem. There are also negative impressions. Students

have stated that pair programming can increase teacher workload and cause some difficulties

in terms of classroom management. In addition, pair programming can be a bit time-consuming

in terms of problem-solving.

P3: The classmate next to me who knew better [pair programming] told me the key

issues, what they were for, and where to use them. It is difficult for an instructor to

take care of others [the whole class] and deal with everyone personally.

P5: The topics stayed better in my mind when my colleague told me things I didn't

know or had missed.

Students' support needs became more evident as they progressed through the learning

topics. Students had asked for and expected support, especially from their teammates, other

classmates, and the instructor. They reported that when they had difficulty solving

computational problems, they sought external resources and received support from other

teams. Team mates stated that they complemented each other, and corrected each other's

deficiencies, especially during the programming process. At the same time, the knowledge gap

between teammates decreased over time. The shared decision-making in pair programming

is reported to increase the quality of the resulting product; however, conflicting views have

emerged about the number of computational problems solved per unit of time. Team building

with diverse individuals in pair programming improves their social and teamwork skills. In

addition, it has been noted that pair programming is reported to increase individual effort.

However, prior knowledge stood out as a determining factor in this increased effort. Students

emphasized that this increase in effort would not be the case for a student with insufficient

knowledge of the material. Pair programming is said to improve programming skills and task

performance, while sharing ideas and building common understanding encourages them to

tackle more complex problems. One of the students recommended shaping coding modality

according to purpose. Some students, especially those who used to learn individually, stated

that they prefer pair programming for computational tasks, especially for learning purposes,

but solo programming for student assessments such as homework/projects. This also shows

that students' test anxiety affects their modality preferences.

P4: You know, we solved it together with a person I am not very close to... If two

people agree on something without knowing anything, they can handle these

[problems].

In pair programming, students participate in teamwork in the roles of navigator or driver.

The students in the navigator role played a bridging role in the team's communication with the

other teams and the instructor. When teammates were engaged in developing strategies for

computational problems, students in the driver role were more interested in translating

strategies into code. Students stated that if their partner in the navigator role did not have

sufficient prior knowledge, they would remain passive and might have difficulty learning the

topic just by following the code. Students perceive that those in the driver role become more

familiar with the code and learn better than their partner. In terms of role distribution, it was

observed that the first student to sit in front of the computer preferred to be the driver. This

means that the driver role is more popular and prioritized among students. Role change was

typically done based on the course session with, for example, one role change per course

hour. However, when role switching was based on the class session, it was found that it was

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1160

difficult for the new driver to analyze the existing codes and continue based on those codes.

In this case, a more reasonable approach was to change roles based on tasks rather than

time.

P2: I feel like I am learning when I control the keyboard and mouse. On the other

hand, when my pair buddy controls the devices, I feel like he is managing the

process and only he is learning.

P1: You know, when my partner sits at the computer in the second lesson, it might

be a little difficult for him to understand the code blocks.

Discussion

Pair programming is a form of collaborative learning. Students in pairs learn from each

other. Peer tutoring that is also seen in pair programming is one of the most effective forms of

collaborative learning based on empirical results (Yang et al., 2016). However, uncovering the

pedagogical dynamics underlying pair programming will also reveal how instructional

interventions should be designed.

The Effect of Pair Programming on Motivation (RQ1)

Motivation is an internal process stimulating an individual to meet their needs (Lussier,

1996). It is one of the cognitive structures that acts as a driving force for effective learning.

However, there are very few quantitative studies on the impact of pair programming on

motivation. In the current study, there was no significant difference between the motivation

scores of the test groups (RQ1). However, an examination of the results reveals that the

motivation scores of the experimental group were relatively higher than those of the control

group. The average item score above four on a 5-point scale also indicates that the learner's

motivation after the computational activities is quite high in the case of the experimental group.

Similarly, the average score of the comparison group was above three (M = 3.79>3.00), which

indicates that the motivation of the students in the control group was also high. From these

results, it can be concluded that the motivation of the students with regard to the computational

activities is high, regardless of the modality. In addition, game-based design and programming

incorporate highly motivating elements (Demirkıran & Hocanin, 2021) such as rich multimedia

objects, concrete elements, rules, stages, score tables, rewards, storyboards, and learning

scenarios to foster computational thinking skills. These gameplay elements may have

influenced the students’ motivation scores in our study.

Yang et al. (2016) examined the effects of pair programming activities on motivation

using the ARCS model. The results showed that participants in the pair programming group

had higher levels of (self) confidence than those in the solo programming group. On the other

hand, there were no significant differences between the groups in terms of the other three

dimensions in the form of attention, relevance, and satisfaction. On the other hand, when

evaluating the results regarding the pedagogical outcomes of pair programming, the way

dyads are formed stands out as an issue that needs to be considered. Unlike the voluntary

pairing in our study, the pairing method in Yang et al.’s study was based on programming skills.

Thus, students with higher programming scores were asked to pair up with those with lower

programming scores. The positive impact of pair programming on students' confidence has

been over-emphasized so far. For instance, another study reported that students in the pair

programming group enjoyed computational activities more and had greater confidence than

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1161

those in the solo programming group (Bishop-Clark et al., 2006). Krizsan and Lambic (2024)

also reported that solo and pair programming modalities did not cause any significant

difference in student motivation levels, although they did observe an increase in efficiency in

terms of pair programming. The overall results overlap to some extent with the results of our

study.

Investigation of Students' Problem-solving Skills According to Solo and Pair

Programming Modalities (RQ2, RQ3, and RQ4)

Pair programming requires students to get together to construct co-meanings and

engage in computational thinking and problem-solving collaboratively (Xu et al., 2023).

Problem-solving skill involves knowing what to do in uncharted territory (Jonassen, 2000). One

of the crucial functions of education is to help students develop the attitudes and strategies

they will use to deal with problems they will face in the later stages of their lives. Programming

is essentially a problem-solving process that involves reframing a problem in a way that a

computer can interpret and execute (Fanchamps et al., 2021). The mindset used in

programming can be applied to a wide range of problems encountered in other areas of life or

daily routines. In line with this idea, the current study also evaluated the impact of

computational thinking and programming on problem-solving skills. Well-structured problems

(i.e., problems in which the steps to be taken and the overall result are well-defined) are not

sufficient to prepare students for problems in real and professional lives. In contrast to concept

or rule learning, programming instruction includes the use of various analyses based on an

abstraction of multiple inputs and hierarchical task decomposition to develop problem-solving

skills. Furthermore, design problems are inherently complex and ill-structured because there

are no clear goals and no limited and definitive solution, and they often require the integration

of more than one discipline (Jonassen, 2000). Design thinking is a human activity that paves

the way for creative ideas in generating solutions to problems (Razzouk & Shute, 2012). In this

study, students engaged in computational thinking based on game design activities. In the

control group, there was no significant change observed between the students' problem-

solving overall and sub-factor scores (except for analyzing problems) following the

computational activities required for game programming (RQ2). However, students' analysis

competence regarding problems was significantly enhanced in the control group. On the other

hand, students' problem-solving competencies improved significantly after the computational

activities in the pair programming group (RQ3). It is noteworthy that the factor scores related

to modeling the problem, conceptualizing it in some way, and understanding the implications

of problem-solving increased significantly in terms of the subfactors in the experimental group.

When it comes to group comparisons, there is no statistically significant difference between

the scores of the solo and pair programming groups with regard to overall problem-solving

scores and the subfactors, with one exception (RQ4). This exception is the modeling of the

problem, which was higher in the case of the pair programming group.

Our results have both overlapping and differing aspects with regard to the relevant

literature. In essence, collaborative engagement with computational problems can be

beneficial for students when it comes to acquiring cognitive, affective, and interpersonal skills.

A meta-analysis has revealed that collaborative problem-solving in computer programming is

more effective than computational thinking related to individual problem-solving in terms of

cognitive (decomposition of the problems, design of the solutions, creating artifacts,

abstraction, troubleshooting, generalization, etc.), and affective (engagement, positive

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1162

feelings, self-efficacy, satisfaction, interest, etc.) learning outcomes (Lai & Wong, 2022).

However, a similar effect was not found for the social aspect. In addition, task design,

programming environment, and duration have attracted attention as having a moderating effect

on the attainment of these outcomes. Kazimoglu et al. (2012) reported that students found

serious games beneficial in terms of improving their problem-solving skills in the context of an

introductory programming course at the undergraduate level. There are also contradictory

findings on the effects of programming activity on problem-solving competency in the literature.

Kalelioglu and Gülbahar (2014) reported that block-based programming activities did not make

a significant difference to the problem-solving skills of 5th-grade students. That study was

based on solo programming activities in primary education. Another study found that while

engagement in programming activities improved students' problem-solving scores in math, it

did not result in a significant difference compared to those who did not participate (Psycharis

& Kallia, 2017). Previous reports have also disputed the benefits of pair programming over

solo programming in terms of the cognitive aspects of learning. For instance, Harsley et al.

(2017) reported no significant differences in learning gains between pair and solo programmers

using an intelligent tutoring system. However, the students working in pairs completed the task

faster and more efficiently. Similarly, Demir and Seferoğlu (2021a) found no difference

between the two modalities regarding code quality and achievement.

Pedagogical Design (RQ5), and Major Drawbacks and Tensions in Pair

Programming (RQ6)

The discrepancies between the results raise the question of how to appropriately

incorporate pedagogies into programming instruction. Although comparative studies suggest

that pair programming produces more positive outcomes than solo programming, the

appropriate instructional design and task types are questions that remain to be answered

(Hawlitschek et al., 2023). Therefore, studies in the literature on the effects of pair

programming on motivation and problem-solving should be approached with caution. This is

because the instructional design settings could be argued to be the most important factor in

determining the pedagogical benefits of pair programming.

In the current study, based on the qualitative findings of the pair programming process

based on student reflections, the prominent pedagogical design elements identified were as

follows (RQ5): (1) team dynamics, (2) task and platform characteristics, (3) affective domain,

(4) cognitive strategies and problem-solving, (5) pedagogical framework, and (6) roles (See

Figure 1). Therefore, these issues need to be addressed while considering the previous

findings. A literature review that examined 61 experimental studies of pair programming

between 2010 and 2020 underlines a need for research on the knowledge, guidelines, and

problem-solving strategies used during tensions that occurred in teams to obtain a deeper

understanding of effective instructional designs in this programming modality (Hawlitschek et

al., 2023).

The qualitative part of this research sheds light on the authentic experiences of

students during the pair programming. The main outcome of tracing this authentic experience

was the identification of major drawbacks and tensions that emerged during the process

(RQ6). The tensions were found to be mainly due to prejudice against pair programming, low

intimacy, and communication problems between the partners, pair incompatibility, imbalance

in task effort, and disengagement from the task. Although there was some initial reluctance,

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1163

prejudices against pair programming diminished over time in the study. In accordance with the

qualitative results, the most significant indicator of team harmony was identified as dialogue

between pairs. The lack of dialogue between pair members during pair programming

constitutes a challenging scenario. The prevailing academic consensus identifies low intimacy

and communication as a significant barrier to the pedagogical outcomes of pair programming

and as one of the main contributors to failure (Zarb & Hughes, 2015). In addition, dialogue

patterns also affected the quality of pair programming (Tan et al., 2024).

The biggest obstacles to students working in pairs are achieving team harmony and

scheduling the programming process (Hanks et al., 2011). We concluded that pairing strategy,

role changes, and student characteristics are all determinants of team compatibility. The

frequency of partner change, communication between pair members, differences in knowledge

levels, distribution of responsibilities, and rules are also pillars of team harmony and tension

management. In particular, rules and criteria served not only to mitigate tensions but also to

improve communication. These results are consistent with the literature to a certain extent.

Criteria and guidelines were reported to improve communication between partners (Zarb &

Hughes, 2015). Pair incompatibility can cause problems in the classroom, which can lead to

an increase in teacher workload. Student behavior, communication, and socio-emotional

states in pair programming lead to the formation of different collaboration patterns, which in

turn affect the quality of collaboration (Xu et al., 2023). Xu et al. (2023) reported that the pairs

which exhibited consensus patterns and achieved group regulation showed the highest

cooperation performance and outcomes. Team harmony and awareness also ensure that task-

related cognitive load is distributed among team members (Zhong & Wang, 2021). When there

was a lack of communication and mental effort within a pair, it was observed that tensions

arose and there was a disengagement from the task. As the present study also found, Bowman

et al. (2020) posit that the workload is not equitably distributed between the partners and that

ethical differences among paired students can engender tensions and reduce the effectiveness

of pair programming.

It is important to keep pairing as optional as possible to minimize communication

problems. Students found it more beneficial to partner with their best friends. However, Demir

and Seferoğlu (2021b) revealed that although homogeneity in terms of friendship in pairing

improves the flow experience, this is not reflected in code performance, and even

heterogeneity results in higher code quality. Based on our results, it seemed that the difference

in knowledge level between students contributes to the increased effort and learning of the

subject. Heterogeneity in prior knowledge may have facilitated knowledge transfer among

peers. By supporting this idea, students with lower scores commonly benefit more from

programming partnerships, especially in the long term (Smith et al., 2018). Denner et al. (2014)

also found that differences in students' prior experience impacted pair programming

partnerships. However, Demir and Seferoğlu (2021b) reported that homogeneity or

heterogeneity in terms of the level of prior knowledge among peers did not make a difference

in terms of group harmony, flow experience, and coding performance. Additionally, the

researchers also stated that students with a higher level of prior knowledge are not willing to

inform those with a low level of prior knowledge, which in turn results in these students

assuming a passive role. Similarly, Bodaker and Rosenberg-Kima (2023) found that students

take a more passive role when their partners are more skilled or knowledgeable.

In our study, it was found that the student in the navigator role felt like a passive

participant and perceived that the teammate in the driver role learned better. Bodaker and

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1164

Rosenberg-Kima (2023) pointed out that this sense of learning (dis)engagement due to role

reversal may also arise from differences in knowledge levels. One option to prevent this

situation is to focus on role definition. At this point, the role of the navigator as a link between

the driver, the teacher, and the other teams can be emphasized. In addition, two computers

may also be used in pair programming as a way to ensure more flexible collaboration. Game

design and programming activities are inherently open-ended and ill-defined tasks that are

open to different solutions. These aspects make them very suitable for demonstrating

computational thinking skills from a variety of different perspectives. However, the students

emphasized that success criteria should be defined clearly.

Pair programming encourages students to tackle more complex and difficult tasks.

Similarly, it has been reported in the literature that the difficulty of the programming tasks has

an impact on student collaboration (Xu et al., 2023). Another study stated that as the cognitive

load or difficulty level of the task increases, students tend to prefer working in pairs to alleviate

intrinsic cognitive load (Zhong & Wang, 2021). Although today's job market is based on a

complex software development process that requires collaborative work, programming

instruction is traditionally viewed as an individual task and predominantly conducted with

screen-based and isolated learning practices (Lai & Wong, 2020). There also appears to be

resistance among educators to pair programming, and essentially working with others on the

program is often stigmatized by them as cheating (Harsley et al., 2017). The underlying

rationale for their bias is due to reservation in the asymmetric distribution of participation and

effort between partners in pair programming. It does not seem reasonable for educators to

evaluate the pairs' programming performance based on summative assessments or test

scores alone, as the students' scores may not be a reliable reflection of their individual efforts

(Hahn et al., 2009). Briefly, holistic and comprehensive assessment remains a challenge for

educators in evaluating the individual performance and benefits of each partner in a pair.

Conclusion, Limitations, and Implications

This study highlights the high level of student motivation with regard to game

programming activities, regardless of the solo or pair programming modality. There was no

significant difference in motivation between these programming modalities, although pair

programming significantly improved students' problem-solving skills. However, compared to

the control group, this improvement is statistically significant only in the area of conceptualizing

the problem through modeling. From this standpoint, it can be concluded that pair

programming yields more fruitful pedagogical results than solo programming does. Qualitative

data also supports this in some ways. The vocal expression of ideas in pair programming not

only supports a set of mental models ranging from understanding and analyzing the problem

to representing the solution steps, but also allows increased awareness and increased thinking

about them. Team dynamics are a primary determinant of learning outcomes. Team

compatibility greatly relies on communication and prior knowledge differences between peers,

task sharing, and adherence to rules and responsibilities. Game design and programming was

found to be an appropriate task type for demonstrating computational skills. These tasks

provide students with a highly manipulative and flexible setting for programming.

For practitioners, it seems reasonable to take advantage of the pedagogical outcomes

of pair programming in computational thinking education. Especially in the pre-coding process,

the verbal expression of thoughts in pair programming helps to model and conceptualize a

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1165

problem. Pair programming encourages students to tackle more complex problems. It also

reduces teacher dependency and workload. Computer sharing, which seems to be a limitation

in settings with inadequate hardware or large class sizes, can be turned into an opportunity.

However, the roles of navigator and driver must be clearly defined. Otherwise, the navigator

may feel excluded and isolated. It is useful to change partners during the semester, but it is

recommended that the period not be too short, such as course hours or assignments. It should

be noted that pairing should be voluntary, but that differences in knowledge levels between

participants also have a positive effect on team harmony. As the difficulty of the tasks gradually

increased, it was observed in our study that the cooperation patterns were more intense in the

more challenging tasks. Although game design tasks are suitable for CT skills because they

are open-ended and ill-defined, it is critical to clearly define success criteria. More recently,

artificial intelligence (AI) software or chatbots have become an option as programming buddies

to help students learn and progress better in programming (Groothuijsen et al., 2024; Liu & Li,

2024). However, the learning ecosystem, technical requirements, ethical considerations and

opportunities and risks need to be carefully considered.

To understand how students organize their ideas in the pair programming process, how

these ideas change during the process, or what stages the students go through, in further

studies contextual details about the collaborative problem-solving process can be captured by

examining sketches, mind maps, think-aloud processes, flowcharts, and algorithms rather than

programming artifacts. In addition, the effectiveness of pair programming can be examined in

terms of the communication patterns between pairs. The small sample size in both the

quantitative and qualitative parts of our research is a limitation to the generalizability of the

findings. Future attempts may be conducted with larger samples.

Contribution Rate of the Researchers

Ö. D., and S. S. S. contributed to the conception and design of the study. Data collection

was performed by Ö. D., M. Ç., and Ö. D. performed the data analysis and interpretation of the

results. All authors contributed to writing the original draft of the manuscript. They all read and

approved the final version of the manuscript.

Statement of Conflict of Interest

The authors declare that they have no conflict of interest.

Data availability statement

The research data analyzed during the current study are available from the

corresponding author on reasonable request.

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1166

Appendix 1:

Interview Questions

1. What are your thoughts on pair programming or the selection of a partner for coding?

2. What are the qualities of an ideal partner?

3. Have you encountered any problems while pair programming? If so, how did you resolve

these problems?

4. How did you divide the tasks and collaborate during pair programming? What form do you

think collaboration should take in pair programming?

5. What do you think are the benefits and drawbacks of pair programming? Why do you think

these issues arise?

6. What impact has pair programming had on your interest in programming courses or coding?

Why do you think this effect occurs?

7. What do you think is the impact of pair programming on your learning of programming?

8. What are your thoughts on the impact of pair programming on the quality of the code you

write?

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1167

References

Alammary, A. (2019). Blended learning models for introductory programming courses: A systematic

review. PLOS ONE, 14(9), e0221765. https://doi.org/10.1371/journal.pone.0221765

Alturki, R. A. (2016). Measuring and improving student performance in an introductory programming

course. Informatics in Education, 15(2), 183-204. https://doi.org/10.15388/infedu.2016.10

Baheti, P., Gehringer, E., & Stotts, D. (2002). Exploring the efficacy of distributed pair programming. In

D. Wells & L. Williams (Eds.), Extreme programming and agile methods–XP/agile universe

2002 (pp. 208-220). Springer Press. https://doi.org/10.1007/3-540-45672-4_20

Balijepally, V., Mahapatra, R., Nerur, S., & Price, K. H. (2009). Are two heads better than one for

software development? The productivity paradox of pair programming. MIS Quarterly, 33(1),

91-118. http://dx.doi.org/10.2307/20650280

Bishop-Clark, C., Courte, J., & Howard, E. V. (2006). Programming in pairs with Alice to improve

confidence, enjoyment, and achievement. Journal of Educational Computing Research, 34(2),

213-228.

Bodaker, L., & Rosenberg-Kima, R. B. (2023). Online pair-programming: elementary school children

learning scratch together online. Journal of Research on Technology in Education, 55(5), 799-

816. https://doi.org/10.1080/15391523.2022.2036653

Bowman, N. A., Jarratt, L., Culver, K. C., & Segre, A. M. (2020). Pair programming in perspective:

Effects on persistence, achievement, and equity in computer science. Journal of Research on

Educational Effectiveness, 13(4), 731-758. https://doi.org/10.1080/19345747.2020.1799464

Chorfi, A., Hedjazi, D., Aouag, S., & Boubiche, D. (2020). Problem-based collaborative learning

groupware to improve computer programming skills. Behaviour & Information Technology,

41(1), 139–158. https://doi.org/10.1080/0144929X.2020.1795263

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum Press.

Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research. Sage

Press.

Çal, H., & Can, G. (2020). The influence of pair programming on secondary school students’

confidence and achievement in computer programming. Trakya Journal of Education, 10(1),

221-237. https://doi.org/10.24315/tred.575098

Çınar, M., & Tüzün, H. (2021). Comparison of object-oriented and robot programming activities: The

effects of programming modality on student achievement, abstraction, problem solving, and

motivation. Journal of Computer Assisted Learning, 37(2), 370-386.

https://doi.org/10.1111/jcal.12495

Çiftci, S., & Bildiren, A. (2020). The effect of coding courses on the cognitive abilities and problem-

solving skills of preschool children. Computer Science Education, 30(1), 3-21.

https://doi.org/10.1080/08993408.2019.1696169

Demir, Ö., & Seferoğlu, S. S. (2017, October 11-13). Examination of pair programming as a reflection

of cooperative problem solving on teaching programming [Paper presentation]. ITTES 2017,

İzmir, Türkiye.

Demir, Ö., & Seferoğlu, S. S. (2021a). A comparison of solo and pair programming in terms of flow

experience, coding quality, and coding achievement. Journal of Educational Computing

Research, 58(8), 1448-1466. https://doi.org/10.1177/0735633120949788

https://doi.org/10.1371/journal.pone.0221765
https://doi.org/10.15388/infedu.2016.10
https://doi.org/10.1007/3-540-45672-4_20
http://dx.doi.org/10.2307/20650280
https://doi.org/10.1080/15391523.2022.2036653
https://doi.org/10.1080/19345747.2020.1799464
https://doi.org/10.1080/0144929X.2020.1795263
https://doi.org/10.24315/tred.575098
https://doi.org/10.1111/jcal.12495
https://doi.org/10.1080/08993408.2019.1696169
https://doi.org/10.1177/0735633120949788

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1168

Demir, Ö., & Seferoglu, S. S. (2021b). The effect of determining pair programming groups according to

various individual difference variables on group compatibility, flow, and coding performance.

Journal of Educational Computing Research, 59(1), 41-70.

https://doi.org/10.1177/0735633120949787

Demirkıran, M. C., & Hocanin, F. T. (2021). An investigation on primary school students’ dispositions

towards programming with game-based learning. Education and Information Technologies,

26(4), 3871-3892. https://doi.org/10.1007/s10639-021-10430-5

Denner, J., Green, E., & Campe, S. (2021). Learning to program in middle school: How pair

programming helps and hinders intrepid exploration. Journal of the Learning Sciences, 30(4-

5), 611-645. https://doi.org/10.1080/10508406.2021.1939028

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it

advantageous for middle school students? Journal of Research on Technology in Education,

46(3), 277-296. https://doi.org/10.1080/15391523.2014.888272

Dybå, T., Arisholm, E., Sjoberg, D. I. K., Hannay, J. E., & Shull, F. (2007). Are two heads better than

one? On the effectiveness of pair programming. IEEE Software, 24(6), 12-15.

https://doi.org/10.1109/MS.2007.158

Fanchamps, N., Slangen, L., Hennissen, P., & Specht, M. (2021). The influence of SRA programming

on algorithmic thinking and self-efficacy using Lego robotics in two types of instruction.

International Journal of Technology and Design Education, 31(2), 203-222.

https://doi.org/10.1007/s10798-019-09559-9

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in

education (8th ed.). The McGraw-Hill Press.

Groothuijsen, S., van den Beemt, A., Remmers, J. C., & van Meeuwen, L. W. (2024). AI chatbots in

programming education: Students’ use in a scientific computing course and consequences for

learning. Computers and Education: Artificial Intelligence, 7, Article e100290.

https://doi.org/10.1016/j.caeai.2024.100290

Hahn, J. H., Mentz, E., & Meyer, L. (2009). Assessment strategies for pair programming. Journal of

Information Technology Education-Research, 8, 273-284.

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair programming in

education: A literature review. Computer Science Education, 21(2), 135-173.

https://doi.org/10.1080/08993408.2011.579808

Harsley, R., Fossati, D., Di Eugenio, B., Green, N. (2017, March 8). Interactions of individual and pair

programmers with an intelligent tutoring system for computer science [Paper presentation].

2017 ACM SIGCSE Technical Symposium on Computer Science Education, Seattle,

Washington, USA. https://doi.org/10.1145/3017680.3017786

Hawlitschek, A., Berndt, S., & Schulz, S. (2023). Empirical research on pair programming in higher

education: A literature review. Computer Science Education, 33(3), 400-428.

https://doi.org/10.1080/08993408.2022.2039504

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology

Research and Development, 48(4), 63-85. https://doi.org/10.1007/BF02300500

Kalelioglu, F., & Gülbahar, Y. (2014). The effects of teaching programming via Scratch on problem

solving skills: A discussion from learners' perspective. Informatics in Education, 13(1), 33-50.

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A serious game for developing

computational thinking and learning introductory computer programming. Procedia - Social

and Behavioral Sciences, 47, 1991-1999. https://doi.org/10.1016/j.sbspro.2012.06.938

https://doi.org/10.1177/0735633120949787
https://doi.org/10.1007/s10639-021-10430-5
https://doi.org/10.1080/10508406.2021.1939028
https://doi.org/10.1080/15391523.2014.888272
https://doi.org/10.1109/MS.2007.158
https://doi.org/10.1007/s10798-019-09559-9
https://doi.org/10.1016/j.caeai.2024.100290
https://doi.org/10.1080/08993408.2011.579808
https://doi.org/10.1145/3017680.3017786
https://doi.org/10.1080/08993408.2022.2039504
https://doi.org/10.1007/BF02300500
https://doi.org/10.1016/j.sbspro.2012.06.938

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1169

Keller, J. M. (1987). IMMS: Instructional materials motivation survey. Florida State University Press.

Krizsan, T., & Lambic, D. (2024). Examining the impact of pair programming on efficiency, motivation,

and stress among students of different skills and abilities in lower grades in elementary

schools. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12859-

w

Kutu, H., & Sözbilir, M. (2011). Adaptation of instructional materials motivation survey to Turkish: A

validity and reliability study. Necatibey Faculty of Education Electronic Journal of Science &

Mathematics Education, 5(1), 292-312

Lai, X. Y., & Wong, G. K. W. (2022). Collaborative versus individual problem solving in computational

thinking through programming: A meta-analysis. British Journal of Educational Technology,

53(1), 150-170. https://doi.org/10.1111/bjet.13157

Liu, J., & Li, S. (2024). Toward artificial intelligence-human paired programming: A review of the

educational applications and research on artificial intelligence code-generation tools. Journal

of Educational Computing Research, 62(5), 1385-1415.

https://doi.org/10.1177/07356331241240460

Lubarda, M. V., Phan, A. M., Schurgers, C., Delson, N., Ghazinejad, M., Baghdadchi, S., . . . Qi, H.

(2024). Virtual pair programming and online oral exams: effects on social interaction,

performance, and academic integrity in a remote computer programming course. Computer

Science Education, 1-41. https://doi.org/10.1080/08993408.2024.2344401

Lussier, R. N. (1996). Human relations in organizations: A skill-building approach. Irwin Press.

Mazman, S. G. (2013). Modeling the influence of cognitive based individual differences on

programming performance (Unpublished doctoral dissertation). Hacettepe University, Institute

of Educational Sciences, Ankara, Türkiye.

Mehta, K., & Sood, V. M. (2023). Agile software development in the digital world – Trends and

challenges. In S. Hooda, V. M. Sood, Y. Singh, S. Dalal, & M. Sood (Eds.), Agile software

development (pp. 1-22). Scrivener Publishing-Wiley Press.

Navarro-Cota, C., Molina, A. I., Redondo, M. A., & Lacave, C. (2025). Individual differences in

computer programming: a systematic review. Behaviour & Information Technology, 44(2), 357-

375. https://doi.org/10.1080/0144929X.2024.2317377

Noone, M., & Mooney, A. (2018). Visual and textual programming languages: a systematic review of

the literature. Journal of Computers in Education, 5(2), 149-174.

https://doi.org/10.1007/s40692-018-0101-5

Pilkington, C. (2018). A playful approach to fostering motivation in a distance education computer

programming course: Behaviour change and student perceptions. International Review of

Research in Open and Distributed Learning, 19(3), 282-298.

http://dx.doi.org/10.19173/irrodl.v19i3.3664

Plonka, L., Sharp, H., & van der Linden, J. (2012). Disengagement in pair programming: Does it

matter? In M. Glinz, G. Murphy, & M. Pezze (Eds.), 34th International Conference on Software

Engineering (pp. 496-506). IEEE Press. http://dx.doi.org/10.1109/ICSE.2012.6227166

Psycharis, S., & Kallia, M. (2017). The effects of computer programming on high school students'

reasoning skills and mathematical self-efficacy and problem solving. Instructional Science,

45(5), 583-602. https://doi.org/10.1007/s11251-017-9421-5

Ramalingam, V., & Wiedenbeck, S. (1998). Development and validation of scores on a computer

programming self-efficacy scale and group analyses of novice programmer self-efficacy.

Journal of Educational Computing Research, 19(4) 365-379. https://doi.org/10.2190%2FC670-

Y3C8-LTJ1-CT3P

https://doi.org/10.1007/s10639-024-12859-w
https://doi.org/10.1007/s10639-024-12859-w
https://doi.org/10.1111/bjet.13157
https://doi.org/10.1177/07356331241240460
https://doi.org/10.1080/08993408.2024.2344401
https://doi.org/10.1080/0144929X.2024.2317377
https://doi.org/10.1007/s40692-018-0101-5
http://dx.doi.org/10.19173/irrodl.v19i3.3664
http://dx.doi.org/10.1109/ICSE.2012.6227166
https://doi.org/10.1007/s11251-017-9421-5
https://doi.org/10.2190%2FC670-Y3C8-LTJ1-CT3P
https://doi.org/10.2190%2FC670-Y3C8-LTJ1-CT3P

AJESI, 2025; 15(3): 1145-1170 Cınar, Demir and Seferoglu

1170

Razzouk, R., & Shute, V. (2012). What is design thinking and why is it important? Review of

Educational Research, 82(3), 330-348. https://doi.org/10.3102/0034654312457429

Smith, M. O., Giugliano, A., & DeOrio, A. (2018). Long term effects of pair programming. IEEE

Transactions on Education, 61(3), 187-194. https://doi.org/10.1109/TE.2017.2773024

Strauss, A., & Corbin, J. (1990). Basics of qualitative research. Sage Press.

Tan, J. B., Wu, L., & Ma, S. S. (2024). Collaborative dialogue patterns of pair programming and their

impact on programming self-efficacy and coding performance. British Journal of Educational

Technology, 55(3). https://doi.org/10.1111/bjet.13412

Tsai, C. Y. (2019). Improving students' understanding of basic programming concepts through visual

programming language: The role of self-efficacy. Computers in Human Behavior, 95, 224-232.

https://doi.org/10.1016/j.chb.2018.11.038

Tsompanoudi, D., Satratzemi, M., & Xinogalos, S. (2015). Distributed pair programming using

collaboration scripts: An educational system and initial results. Informatics in Education, 14(2),

291-314. https://doi.org/10.15388/infedu.2015.17

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

https://doi.org/10.1145/1118178.1118215

Xu, F., & Correia, A. -P. (2024). Adopting distributed pair programming as an effective team learning

activity: a systematic review. Journal of Computing in Higher Education, 36(2), 320-349.

https://doi.org/10.1007/s12528-023-09356-3

Xu, W., Wu, Y., & Ouyang, F. (2023). Multimodal learning analytics of collaborative patterns during

pair programming in higher education. International Journal of Educational Technology in

Higher Education, 20(1), 8. https://doi.org/10.1186/s41239-022-00377-z

Yaman, S., & Dede, Y. (2008). A scale for adults’ problem solving skills. Journal of Educational

Sciences & Practices, 7(14), 251-269

Yang, Y. F., Lee, C. I., & Chang, C. K. (2016). Learning motivation and retention effects of pair

programming in data structures courses. Education for Information, 32(3), 249-267.

https://doi.org/10.3233/efi-160976

Zarb, M., & Hughes, J. (2015). Breaking the communication barrier: Guidelines to aid communication

within pair programming. Computer Science Education, 25(2), 120-151.

https://doi.org/10.1080/08993408.2015.1033125

Zhong, B., & Wang, J. (2021). Exploring the non-significant difference on students’ cognitive load

imposed by robotics tasks in pair learning. International Journal of Social Robotics, 14, 3-13.

https://doi.org/10.1007/s12369-021-00764-y

Zhong, B. C., & Li, T. T. (2020). Can pair learning improve students' troubleshooting performance in

robotics education? Journal of Educational Computing Research, 58(1), 220-248.

https://doi.org/10.1177/0735633119829191

https://doi.org/10.3102/0034654312457429
https://doi.org/10.1109/TE.2017.2773024
https://doi.org/10.1111/bjet.13412
https://doi.org/10.1016/j.chb.2018.11.038
https://doi.org/10.15388/infedu.2015.17
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/s12528-023-09356-3
https://doi.org/10.1186/s41239-022-00377-z
https://doi.org/10.3233/efi-160976
https://doi.org/10.1080/08993408.2015.1033125
https://doi.org/10.1007/s12369-021-00764-y
https://doi.org/10.1177/0735633119829191

