Gazi Universitesi
Fen Bilimleri Dergisi

PART C: TASARIM VE
TEKNOLOJI

Jous s GRS

Gazi University
Journal of Science

PART C: DESIGN AND
TECHNOLOGY

GU J Sci, Part C, 13(1): 187-199 (2025)

Design of Simulation Program for Analysis of Shortest Path Algorithms in
Grid-Based Path Planning

Ibrahim SANLIALPY

, Ibrahim YANDI*

'Kirsehir Ahi Evran University, Faculty of Engineering and Architecture, Department of Computer Engineering, Kirsehir, Turkey

Article Info

Graphical/Tabular Abstract (Grafik Ozet)

Research article

Received: 20/10/2024
Revision: 21/12/2024
Accepted: 25/01/2025

Keywords

Optimal Path Planning
Simulation Program
Shortest Path Algorithms
Grid-based Path Planning
Unity 3D

Makale Bilgisi

Aragtirma makalesi
Basvuru: 20/10/2024
Diizeltme: 21/12/2024
Kabul: 25/01/2025

Anahtar Kelimeler

Optimal Yol Planlama
Simiilasyon Programi

En Kisa Yol Algoritmalart
Izgara Tabanl Yol Planlama
Unity 3D

In this study, a simulation program was developed using the Unity 3D game engine and the C#
programming language to determine the shortest path between cells with various terrain types and
elevation levels on a hexagonal grid-based map. Figure A shows an image of the developed user
interface. / Bu ¢calismada, altigen 1zgara tabanh bir harita iizerinde farkl arazi tiirleri ve yiikseklik
seviyelerine sahip hiicreler arasindaki en kisa yolu belirlemek amaciyla Unity 3D oyun motoru ve
C# programlama dili kullanilarak bir simiilasyon programu gelistirilmistir. Sekil A, gelistirilen
kullanici arayiiziine ait bir gérseli gostermektedir.

Figure A: Designed user interface / Sekil A: Tasarlanan kullanict arayiizii

Highlights (Onemli noktalar)

»  The simulation program has been designed for the analysis of shortest path algorithms. /
En kisa yol algoritmalarvin analizi igin bir simiilasyon programi tasarlanmigtir.

» Heuristic and non-heuristic algorithms were used to find the shortest path, and these
algorithms were compared. / En kisa yolu bulmak icin icin sezgisel ve sezgisel olmayan
algoritmalart kullanilmistir ve bu algoritmalar karsilastirilmistir.

» Evaluations demonstrate that they can aid in selecting the most appropriate algorithm
for optimal path planning. / Degerlendirmeler, optimum yol planlamasi i¢in en uygun
algoritmanin segilmesine yardimci olabileceklerini gostermektedir.

Aim (Amag): The aim of this study is to analyze algorithms to find the shortest path between cells
with various terrain types and elevation levels on a hexagonal grid-based map. / Bu ¢alismanin
amaci, altigensel grid tabanli bir harita tizerinde farkli arazi tipleri ve yikseklik seviyelerine sahip
hiicreler arasindaki en kisa yolu bulmak i¢in algoritmalar: analiz etmektir.

Originality (Ozguinluk): The originality of this study lies in the development of a unique simulation
program that evaluates various shortest path algorithms on complex hexagonal grid-based maps. /
Bu calismanin 6zgiinliigii, karmagik altigen 1zgara tabanl haritalar iizerinde ¢esitli en kisa yol
algoritmalarint degerlendiren ozgiin bir simiilasyon programinin gelistirilmesidir.

Results (Bulgular): The results are summarized in three main points: (1) heuristic algorithms
demonstrated high performance in terms of computation time and the number of cells visited; (2)
the increase in the number of cells visited by the heuristic algorithms was smaller compared to non-
heuristic algorithms; (3) heuristic algorithms did not achieve optimum results in terms of traversal
cost. / Sonuglar Ui¢ ana noktada 6zetlenmektedir: (1) Sezgisel algoritmalar, hesaplama siiresi ve
ziyaret edilen hiicre sayisi agisindan yiiksek performans sergilemistir, (2) Sezgisel algoritmalarin
ziyaret ettigi hiicre sayisindaki artis, sezgisel olmayan algoritmalara kiyasla daha diisiik olmustur,
(3) Sezgisel algoritmalar, gecis maliyeti acisindan optimum sonuglara ulasamamstir.

Conclusion (Sonug): This study emphasizes the importance of optimal path planning, and its
results demonstrate that they can assist in selecting the most suitable algorithm for solving specific
pathfinding problems. / Bu ¢alisma, optimal yol planlamanin énemini vurgulamakta ve sonuglart,
belirli yol bulma problemlerinin ¢oziimii igin en uygun algoritmamin segilmesine yardimci
olabilecegini gostermektedir.

*Corresponding author, e-mail: ibrahim.sanlialp@ahievran.edu.tr

DOI: 10.29109/gujsc.1570730


https://orcid.org/0000-0002-6324-231X
https://orcid.org/0009-0007-8748-0236

GU J Sci, Part C, 13(1): 187-199 (2025)

Gazi Universitesi
Fen Bilimleri Dergisi

PART C: TASARIM VE
TEKNOLOJI

Jouau GRGEEL

Gazi University n
Journal of Science ()1 7111 1) s

RRRRE 0 ooy 0 EARARE
PART C: DESIGN AND g L YLLT e
TECHNOLOGY

mnu%ﬁm

http://dergipark.gov.tr/gujsc

Design of Simulation Program for Analysis of Shortest Path Algorithms in
Grid-Based Path Planning

Ibrahim SANLIALPY

, Ibrahim YANDI*

Kirgehir Ahi Evran University, Faculty of Engineering and Architecture, Department of Computer Engineering, Kirsehir, Turkey

Article Info

Research article

Received: 20/10/2024
Revision: 21/12/2024
Accepted: 25/01/2025

Keywords

Optimal Path Planning
Simulation Program
Shortest Path Algorithms
Grid-based Path Planning
Unity 3D

Abstract

This study focuses on the analysis of algorithms used to find the shortest path between cells with
different terrain types and elevation levels on a map comprising hexagonal cells ranging from 91
to 7651. A simulation program was designed for the analysis and developed using the Unity 3D
game engine and the C# programming language. Within the scope of the study, an intelligent
agent was incorporated into the simulation. The intelligent agent perceives its environment,
evaluates terrain type and elevation factors, and attempts to find the shortest path with the lowest
traversal cost between two points based on the selected algorithm. The performance of the
algorithms was compared in terms of computation time, the number of cells visited, and traversal
cost. The results revealed that the heuristic algorithms demonstrated high performance in
computation time and the number of cells visited. However, they did not achieve the same level
of success in terms of traversal cost. Furthermore, it was concluded that the increase in the number
of cells visited by heuristic algorithms was smaller compared to non-heuristic algorithms. The
findings of this study highlight the importance of optimal path planning in determining the most
effective algorithm under various conditions and provide valuable contributions to developers for
applications requiring efficient navigation in complex environments.

Izgara Tabanlh Yol Planlamasinda En Kisa Yol Algoritmalarinin Analizi i¢in
Simiilasyon Programi Tasarim

Makale Bilgisi

0Oz

Aragtirma makalesi
Bagvuru: 20/10/2024
Dizeltme: 21/12/2024
Kabul: 25/01/2025

Anahtar Kelimeler

Optimal Yol Planlama
Simiilasyon Programi

En Kisa Yol Algoritmalar
Izgara Tabanli Yol Planlamc
Unity 3D

Bu ¢aligma, 91 ila 7651 arasinda degisen altigen hiicrelerden olusan bir haritada farkli arazi tipleri
ve yiikseklik seviyelerine sahip hiicreler arasindaki en kisa yolu bulmak i¢in kullanilan
algoritmalarin analizine odaklanmaktadir. Analiz igin bir simiilasyon programi tasarlanmig ve
Unity 3D oyun motoru ile C# programlama dili kullanilarak gelistirilmistir. Caligma kapsaminda
simiilasyona bir akilli ajan entegre edilmistir. Akilli ajan, ¢evresini algilar, arazi tiirii ve yiikseklik
faktorlerini degerlendirir ve segilen algoritmaya gore iki nokta arasinda en diisiik gecis maliyetine
sahip en kisa yolu bulmaya ¢alisir. Algoritmalarin performansi, hesaplama siiresi, ziyaret edilen
hiicre sayis1 ve gegis maliyeti acisindan karsilastirilmistir. Sonuglar, sezgisel algoritmalarin
hesaplama siiresi ve ziyaret edilen hiicre sayis1 agisindan yiiksek performans gosterdigini ortaya
koymugtur. Ancak, geg¢is maliyetleri agisindan ayni basartyr saglayamadiklari goriilmiistiir.
Ayrica, sezgisel algoritmalar tarafindan ziyaret edilen hiicre sayisindaki artisin sezgisel olmayan
algoritmalara kiyasla daha kiigiik oldugu sonucuna varilmistir. Bu ¢alismanin bulgulari, gesitli
kosullar altinda en etkili algoritmay1 belirlemede optimum yol planlamanmn Onemini
vurgulamakta ve karmasik ortamlarda verimli gezinme gerektiren uygulamalar i¢in gelistiricilere
degerli katkilar sunmaktadir.

1. INTRODUCTION (GiRriS)

Optimization is a discipline that is commonly used
to address complex problems in a variety of
application areas [1]. Map-based pathfinding
problems have a wide range of applications and play

a crucial role in game development, optimization,
and artificial intelligence research [2, 3]. However,
pathfinding can be resource-intensive, especially
when dealing with complex maps [4]. Algorithms
such as A-Star and Dijkstra’s are commonly used;
however, on large, intricate maps, they can be

*Corresponding author, e-mail: ibrahim.sanlialp@ahievran.edu.tr

DOI: 10.29109/gujsc.1570730


https://orcid.org/0000-0002-6324-231X
https://orcid.org/0009-0007-8748-0236

Sanlalp, Yandr | GU J Sci, Part C, 13(1): 187-199 (2025)

computationally demanding. For example, while A-
Star is highly efficient in finding optimal paths, it
incurs higher processing costs. Dijkstra's algorithm,
though it consistently finds the shortest path by
exploring all nodes, requires significant
computational power, especially when using large
datasets [5]. As a result, researchers have developed
optimization techniques to reduce these costs in
game development, optimization, and artificial
intelligence research.

Unity [6] is a versatile and innovative game engine
that supports real-time 3D animations and provides
interactive content to users [7]. It enables seamless
integration of movements, environmental elements,
and user interfaces into game objects [8] through
drag-and-drop or as programmable variables in C#
[9]. Furthermore, hexagonal grid maps are more
information-rich than traditional square grids. This
framework adapts to a variety of scene requirements
and offers efficiency, flexibility, and homogeneity
[2, 10].

Several studies have focused on grid-based
pathfinding problems. In one such study, Barbour
emphasized the efficiency of hexagonal grids and
proposed a new pathfinding technique that
improves runtime and reduces algorithmic
complexity [11]. This method enhances the degree
of movement of a unit while reducing the costs
typically associated with other techniques. Bailey et
al. conducted a path-length analysis for grid-based
path planning and demonstrated that as node
connectivity increases, the percentage difference
between a grid path and the real shortest path
decreases [12]. In another study, Yang et al.
addressed the issue of origin-destination matrix
estimation by developing a hexagon-based dynamic
graph convolutional network that generates distinct
hexagon-based road graphs throughout different
time periods [13].

The purpose of this study is to analyze algorithms to
find the shortest path between cells with various
terrain types and elevation levels on a hexagonal
grid-based map. Unity 3D game engine and C# are
utilized during the development of the simulation
program.  The  proposed program  finds
neighborhood connections of each hexagonal cell,
which, in turn, defines the movement costs between

them. In addition, it helps identify efficient
pathfinding strategies for hexagonal grid
environments. The study makes a significant
contribution by introducing a simulation tool that
evaluates various shortest path algorithms on
complex hexagonal grid-based maps.

The second part of the study is about the hexagonal
grid-based map structure, and general information
about shortest path algorithms is given in Section 3.
Section 4 explains the design of the simulation
program developed within this study. The analysis
and results are explained in Section 5, followed by
a discussion in Section 6. The last section presents
the conclusions.

2. HEXAGONAL GRID-BASED MAP

STRUCTURE (ALTIGEN AG TABANLI HARITA
YAPISI)

Advances in computer graphics and game
development have enabled new  spatial
representation and design possibilities. A prominent
example is the hexagonal grid-based map, which
uses six-sided polygons to achieve more efficient
area coverage and enhanced visual appeal [2]. This
technique offers a significant alternative to
conventional square grid layouts by providing more
accurate distance metrics and facilitating smooth
user interactions [14, 15].

Hexagonal geometry is suitable for analyzing map
usage in experimental research. Hexagons
efficiently cover large areas without gaps. Their
symmetrical structure enhances spatial tasks like
estimating object positions, measuring distances,
and determining directions [16]. Figure 1 shows a
map design based on a hexagonal grid and a single
row path.

The simulation program developed using the Unity
3D game engine features a map structure composed
of hexagonal cells arranged in a regular 3D grid.
Each cell is connected to six neighboring cells,
forming a hexagonal pattern. The neighboring cell
information is assigned to each cell, simplifying the
tracking and management of connections and
transitions. For example, when moving between
cells, identifying adjacent cells enables pathfinding
algorithms to operate more efficiently [13].

188



Sanlalp, Yandr | GU J Sci, Part C, 13(1): 187-199 (2025)

Figure 1. Hexagonal grid-based map design (Altigen 1zgara tabanli harita tasarimi) [13]

2.1. Cube Coordinates (Kiip Koordinatlari)

The hexagonal grid structure consists of three main
axes: X, y, and z. Unlike square grids, which have
two axes, hexagonal grids use a symmetrical
coordinate system. There is a symmetrical
relationship between these axes [17]:

x+y+z=0 @

The equations describing the relationship between
the coordinates and column widths is given:

x=t—r/2 (2)
y=—({t-r/2+1) ©)
z=r (4)

where t represents the number of columns and
width of the hexagonal grid, r represents the
number of rows, and height, X, y, and z are the
coordinates of the cube; the sum of these three
coordinates is 0 [2].

Cube coordinate system enables more effective
management of hexagonal grid structures, improves
algorithm  performance, and enhances user
experience. In addition, the flexibility and
simplicity of cube coordinate calculations play key
roles in creating and managing hexagonal maps. As
a result, cube coordinates are applied to the cells
when designing the hexagonal grid-based map in
this study. Figure 2 illustrates the cube coordinate
system used in this study [18].

Figure 2. Cube coordinate system used in the study (Calismada kullanilan kiip koordinat sistemi) [18]

3. SHORTEST PATH ALGORITHM (EN KISA
YOL ALGORITMASI)

A computer application employs a shortest path
algorithm, along with a plotting component, to
determine the shortest route between two points,
from the source to the destination. Shortest path
algorithms are essential to identify the shortest and
most optimal paths. Many critical applications,

including video games, robotics, GPS, and
simulations, depend on these algorithms [19]. This
study discusses the shortest path algorithms in
simulation program design. The shortest path
problems are solved using A-Star, Greedy Best-
First Search, Breadth-First Search, Floyd-Warshall,
and Dijkstra’s algorithms. In the study, A-Star and
Greedy Best-First Search represent heuristic

189



Sanlalp, Yandr | GU J Sci, Part C, 13(1): 187-199 (2025)

algorithms, while Breadth-First Search, Floyd-
Warshall and Dijkstra’s algorithms represent non-
heuristic algorithms. These algorithms are
explained in order.

3.1. A-Star Algorithm (A-Yildiz Algoritmas)

The A-Star algorithm is a popular heuristic search
algorithm in pathfinding and graph traversal
because it efficiently determines the shortest route
between two nodes [20, 21]. This algorithm
evaluates positions within the search space to
identify the optimal path from the beginning point
to the target node [22]. A-Star employs an
evaluation function to guide its search. The function
is defined as [23]:

fm) = g(n) + h(n) (5)

where g(n) represents the cost from the starting
point to the current node n, and h(n) is the estimated
cost from the current node n to the goal node;
f(n) is the total estimated cost of the path through
node n [24]. The objective of the A-Star algorithm
is to find a path that minimizes f(n). The A-Star
algorithm employs a heuristic function to calculate
the cost h of moving from the current node to the
goal node and ensures that the search is both
accurate and efficient using the heuristic function
h(n) [25].

3.2. Greedy Best-First Search Algorithm (En iyi

Oncelikli Arama Algoritmast Algoritmast)

Greedy Best-First Search (GBFS) algorithm is a
heuristic search algorithm used to explore paths in a
search space, which is often represented as a tree
[26]. It prioritizes nodes based on an evaluation
function, selecting the most favorable nodes first to
efficiently reach the goal [27]. When exhaustive
exploration is too costly, the GBFS algorithm
applies a greedy heuristic to narrow down the
number of paths, frequently discarding less
promising ones [26, 28].

Let (S,s1,Sg,5c0r) be a state space, where S is a finite
collection of states, scor is the successor function, s
€ S is the beginning state, and Sg < S is the set of
target states. The algorithm defines the state space
and applies the heuristic function h to the states in
S. The GBFS algorithm generates the initial state s,
iteratively expands the generated but unexpanded
states, and stops when expanding a goal state from
Sg [29]. The preference is to expand goal states from
Sg if they are generated; otherwise, it expands the
state s with the minimum h(s) among all generated
but unexpanded states. In GBFS, state s is "opened”
when it is generated for the first time and "closed"
when it is expanded. The GBFS process involves

generating successors of the current state and
adding those that are not yet open or closed to the
open list. Once a state is expanded, it is transferred
from an open list to a closed list [28].

3.3.Breadth First Search Algorithm (Sig Oncelikli
Arama Algoritmasi)

The Breadth First Search (BFS) algorithm gradually
broadens the solution space and investigates all
possible outcomes at each stage [30]. BFS is
commonly used to discover the shortest path from a
single source in an unweighted graph [31]. BFS
operates by visiting all nodes at level n before
progressing to the next nodes at level n+1. The
search begins at the root node and traverses nodes
from left to right at each level, advancing to
subsequent levels in a systematic manner until a
solution is discovered [32,33].

One notable advantage of BFS is its ability to avoid
deadlocks; it inevitably finds a solution if it exists.
In addition, when multiple solutions are present, the
BFS ensures that the minimal solution is identified.
However, a significant drawback of this method is
its substantial memory requirement, as it needs to
store all nodes within the search tree. In addition,
BFS can be time-intensive because it must evaluate
all nodes at level n before proceeding to find a
solution at level n+1[30,32,33].

3.4. Floyd-Warshall Algorithm (Floyd-Warshall

Algoritmasi

The Floyd-Warshall algorithm is a dynamic method
for finding the shortest paths between all pairs of
nodes in a directed graph [34,35]. This algorithm
solves the problem by using previous solutions that
are interconnected, which allows for multiple
possibilities. Moreover, Floyd-Warshall algorithm
allows for the presence of negative weights on
edges, provided there are no negative weight cycles
in the graph [35,36].

Given a graph G=(V,E), where V and E represent
the set of vertices and the set of edges with weights,
respectively, the algorithm calculates the minimum
weight path between each pair of vertices. The
weights are denoted by w(e). The sum of edge
weights along a path gives the total path weight
[36,37]. This algorithm creates a distance matrix M,
with each entry representing the shortest distance
from vertex i to vertex j. M[i][j] is initially set to the
weight of edge (ij) if one exists or infinity
otherwise, with the exception of M[i][i], which is
set to zero. The algorithm then iteratively updates
this matrix by taking each vertex as an intermediate

190


https://edoc.unibas.ch/64994/

Sanlalp, Yandr | GU J Sci, Part C, 13(1): 187-199 (2025)

point and testing whether a shorter path exists
through that intermediate vertex [37].

3.5. Dijkstra’s Algorithm (Dijkstra Algoritmasi)

Dijkstra's algorithm solves the problem of
determining the shortest path between two nodes in
a graph, and it was introduced by Holland in 1970
[19]. This algorithm is designed to find the optimal
path. As it searches for the minimum-cost path by
evaluating all possible routes starting from the
initial point, the search area expands outward in
concentric circles. Therefore, it suffers from low
search efficiency and extended search times,
particularly when the distance to the destination is
significant. Both Dijkstra's algorithm and the A-Star
algorithm are among the most commonly used
shortest-route optimization methods [39,40].

4, DESIGN OF SIMULATION PROGRAM
(SIMULASYON PROGRAMI TASARIMI)

The simulation program design consists of five
stages. In the first stage, the definition and algorithm
of the simulation program are created. In the second
stage, the terrain structure and starting and ending
points are modeled as hexagonal maps using Unity
3D. In the third stage, the shortest path algorithms
are programmed using the C# programming
language. In the final stage, the user interface is
designed, and the simulation program is tested.
Each stage is presented sequentially.

4.1. Simulation Program Definition (Simiilasyon
Programi Tanimi)

In the developed simulation program, a
geographical area is represented by a map
comprising hexagonal cells. This map consists of
cells representing plains, forests, swamps, plateaus,
mountain terrains and elevation levels. Each cell on
the map is connected to other cells through
neighborhood ties, and these ties determine the cost
of movement between cells. An intelligent agent
integrated into this hexagonal map structure is
added to the proposed program. The intelligent
agent evaluates its environment by calculating it
according to terrain type and elevation parameters
and attempts to find the shortest path between two
points using the selected shortest pathfinding
algorithm. The proposed program solves the
problem of finding the shortest path between two
given points in this way. The developed simulation
program helps determine the most effective
pathfinding strategies for the complex structure of
hexagonal cells and evaluates the performance of
the shortest pathfinding algorithms. The workflow
diagram of the developed simulation program is
shown in Figure 3.

4.2. Map Modeling (Harita Modelleme)

A variety of map sizes are used at this stage, each
revealing different terrain types and slope costs. The
map sizes in the simulation program consist of 91,
331, 721, 1261, 1951, 2791, 3781, 4921, 6211, and
7651 cells. In addition, the maps include slope costs.
A hexagonal map is constructed by arranging
hexagonal cells in a regular grid in 3D space, where
each cell is connected to six neighboring cells. The
hexagonal map containing the terrain types of the
cells created for this study is shown in Figure 4.

191



Sanlalp, Yandr | GU J Sci, Part C, 13(1): 187-199 (2025)

start the project

setmapsize

_

tetermining the costs of
temain types

speciying starting cel
with eft cick

—

‘ atd neighbers 1o ‘ | Calcue
]
dtendcell
on nghi cick
m
(A-Star] select the ode 1|
e 2d stat node o o open st by cast he open st and fies the targ
choasing e iype of i open st = heurste vaue mark 25 the cument celreacned
aigoritim node
- yes
crsale  queus and o . Best Fis) e
ladd the starting cell o e e e open kst and s
he quste gornm b {Gornm dosed it pe
¥

dae me deances
removes a cel from o Sartopen st by 3 neighanrs 1o
the tai Difstras, the staring note and hewisic value open
mark starling o2l 25 he tistances rom
vited e starsng node 1o
Y fhese neighborng
00es.

estbas ot e oo |
laueu 2nd mark hem italze the dstance ‘Select he shorisst mark it o5 e current
2 isied mati and the next node

each node

0,206 2l
ces o =

pa- 200 current node o
s the tan open it and dlosed
it

celr

o
o

mark selecied node
as visted

Igenty neighiors,
calculate distances,
and updste aist and
next mainiss

o
updats fhe distances \
of noges adacent o i

ine selected noge *yrnﬂlialr::
Wil e distances 1o een isil

ine selecied nods

Calcaiting st .
Updst dstance and

tnucting the =
shariest path next matrices

fnish the:

poject

Figure 3. Flow chart of the simulation program (Simiilasyon programmin akis semast)

192



Sanlalp, Yandr | GU J Sci, Part C, 13(1): 187-199 (2025)

K

" o

Figure 4. Experimental setup and workflow (Deney tasarin ve is akisi)

4.3. Intelligent Agent (Akilli Ajan)

The intelligent agent is programmed using the C#
programming language in Unity and used to
perform simulations on a hexagonal map. This
intelligent agent perceives its environment,
evaluates terrain type and elevation factors, and
attempts to find the shortest path between two points
using the selected shortest path algorithm. The

representations of the starting and ending points are
shown in Figure 5. Here, the starting point
represents the intelligent agent model, depicted in
the red hexagonal cell. The other end point
represents the tent model and is in the blue
hexagonal cell.

Figure 5. Displaying representations of starting and ending points (Baslangig ve bitis noktalarmm temsillerinin

gorlntilenmesi)

To allow the created intelligent agent model to
work, an animator is added to the model in Unity,
and it is allowed to work on the paths obtained by
associating it with the shortest path algorithms.

4.4, User Interface (Kullanic Arayiizii)

The user interface is designed for the developed
simulation program. This interface is developed
using the C# programming language and Unity 3D
game engine. With the help of the developed user
interface, users can visualize the analysis of the
shortest path algorithms and perform simulations.
An image taken from the developed user interface
unit is shown in Figure 6.

The user interface of the simulation program is
composed of several control units, including the cell
labeling panel, the shortest path algorithms panel,
the information panel, the line panel, the algorithm
and navigated cells animation, the parameter editing
required to create a hexagonal map, and an option
for exiting the simulation program.

The cell labeling panel provides features for
displaying the index and movement cost of cells,
where the index uniquely identifies each cell, and
the movement cost represents the terrain-dependent
traversal cost. These values can be toggled using a
checkbox control; selecting the "Hide" option
ensures that the information remains concealed
when not needed. Furthermore, the shortest path
algorithm panel allows users to choose from a
variety of algorithms, including A-Star, GBFS,
BFS, Floyd-Warshall, and Dijkstra’s.

The starting point is defined by clicking the left
mouse button, whereas the ending point is selected
using the right mouse button, enabling the
computation of the shortest path based on the
chosen points and algorithm. In addition, the
information panel offers comprehensive details
about the simulation, such as the total cost of the
calculated path, the number of cells visited during
the algorithm’s execution, the total number of cells
on the map, and the execution times of the
algorithms measured in microseconds. Moreover,

193



Sanlalp, Yandr | GU J Sci, Part C, 13(1): 187-199 (2025)

the interface includes a button that visually
represents the cells visited by the algorithm. It also
has a button that animates the movement of the
intelligent agent character as it transitions from the
starting to the ending cell. To enhance usability, the
camera reset control repositions the camera to its

Dijkstra's

Cell Label

Floyd-Warshall

Dijkstra's

Info
Total Cost 410

Visited Coll Count
2106

Total cell count 2107

Time (us): 5588

Line

initial alignment with the intelligent agent character,
while the random map button generates a new
hexagonal map based on the specified radius,
thereby introducing dynamic map variations.

Algorithm Animation
Unit Animation

Map Settings

Radius

Heuristic
10

Plains
2

Forest

Marsh
) e— 14
Highlands

18

Mountain
28

Slope Cost

Random Map

Locked Camera

Figure 6. Design of the simulation interface (Simiilasyon arayiiziiniin tasarimi)

By integrating these features into a cohesive design,
the user interface provides an interactive simulation
environment that seamlessly combines visualization
and analysis, facilitating an in-depth exploration of
various pathfinding algorithms.

5. ANALYSIS AND RESULTS (ANALiZ VE
BULGULAR)

The process of creating hexagonal cells in Unity 3D
begins by representing each cell with 6 triangles.
These triangles form each side of the hexagon,

ensuring the geometric integrity of the hexagonal
shape. The map creation process follows a spiral
pattern from the center outwards. This arrangement
is performed based on the radius value determined
by the user. In other words, the radius determined
by the user directly affects the size of the map and
the number of hexagons. In the simulation, the
radius values are limited to between 5 and 50, and
the analyses were carried out in this range. Tests
conducted with different radius values for the
performance of the algorithms are presented in
Figure 7.

Figure 7. Testing the performance of algorithms with different radius: A-star a) radius 5 b) radius 26 c)
radius 50 (Farkh yarigaplarla algoritmalarm performansimnin test edilmesi: A-Star a) yarigap 5 b) yarigap 26 c) yarigap 50)

The analyses were carried out in the form of
scenario-based performance comparisons for
different terrain types, elevation levels, and
difficulty levels. The performance of each algorithm
was measured 100 times. This study was developed
and analyzed in the Unity 2021.3.16f1 environment

on a computer: Windows 10, Intel i7, 2.2-GHz CPU,
and 32-GB RAM.

Tests were conducted to analyze the shortest path
algorithms on maps comprising hexagonal grid-
based cells. These tests are scenario-based. In this

194


https://dl.acm.org/doi/pdf/10.1145/98949.99120

scenario, the distance between the starting and
ending points on the cube grid maps is calculated as
the maximum distance. The distance was calculated
using the Manhattan metric [41]. The performance
results were comparatively analyzed for various

Table 1. Comparison of the algorithm results for 100 runs (100 calistirma igin algoritma sonuglarmin

Sanlalp, Yandi | GU J Sci, Part C, 13(1): 187-199 (2025)

radii. All algorithms were compared on maps with

an equal number of cells, and each test was run for

100 iterations. Table 1 lists the number of cells

visited by the algorithms, the shortest path cost, and
the computation time results.

karsilagtirilmast)
Greedy Best Breadth First
A - Star First Search Search Floyd-Warshall Dijkstra’s

Cell | Cells Cells Cells Cells Cells

Count | Visited | Cost| Time | Visited | Cost | Time | Visited| Cost [ Time |Visited|Cost| Time |[Visited| Cost | Time

91 54 | 238 | 145 31 242 | 97 91 242 901 91 | 222 | 6.503 90 228 | 512
243.23

331 101 | 364 | 410 61 472 | 174 331 472 5.701 331 | 260 3 330 272 883
2.187.5

721 150 | 502 | 633 91 524 | 309 721 650 25.141 721 | 372 07 720 372 | 1.795
10.782.

1.261 185 | 324 | 938 121 650 | 500 | 1.261 | 524 84.210 | 1.261 | 224 | 611 1.260 | 228 | 2.734
37.462.

1.951 293 | 428 |2.303| 151 792 | 783 [ 1.951 | 792 | 216.216 | 1.951 | 314 | 657 1.950 | 314 | 4.564
101.33

2.791 337 | 520|2559| 181 914 |1.392| 2.791 | 914 | 461.616 | 2.791 | 350 | 8.671 | 2.790 | 350 | 6.911
246.22

3.781 | 365 |[764(3.028| 211 [1.006|1.290( 3.781 |1.166 | 863.089 | 3.781 | 472 | 9.475 | 3.780 | 472 | 9.532
532.02

4921 | 424 | 654 |4.731( 241 |1.166|2.229( 4.921 |1.214(1.430.888| 4.921 | 424 | 4.244 | 4.920 | 476 | 16.562
1.062.6

6.211 | 451 |[764 [5.811| 271 [1.074(2.666| 6.211 |1.006 (2.334.501| 6.211 | 476 [41.112| 6.210 | 402 |26.792
1.933.9

7.651 502 | 626 |5.954| 301 |1.214|4.633| 7.651 |1.074]3.540.228( 7.651 | 402 | 18.809 | 7.650 | 424 |28.933

The comparison of the algorithms in terms of
transition cost is shown in Figure 8. A comparison

shown in Figure 9. Figures 8 and 9 give the average

values obtained over 100 runs of the algorithms.

of the algorithms in terms of computation time is

195




Sanlalp, Yand: | GU J Sci,

Part C, 13(1): 187-199 (2025)

= A* == Greedy BestFirst Breadth First Search == Floyd-Warshall == Dijkstra's
1250 -
1000 + /
e
>

g 750 +
O
ki
% 500 <= f‘——/
= /

250 +

91 331 721 1261

1951 2791 3781 4921 6211 7651

Number of Cells

Figure 8. Algorithm comparison of traversal cost (Gegis maliyetinin algoritma karsilastirmast)

= A" == GreedyBestFirst

1000000000

10000000

100000

Microsecond

Breadth First Search

== Floyd-Warshall == Dijkstra's

91 331 721

1261

1951 2791 3781 4921 6211 7651

Number of Cells

Figure 9. Algorithm comparison of computation times (Hesaplama siirelerinin algoritma karsilastirmasi)

In the analyzed algorithms, the number of cells
visited increases as the radius expands. However,
the increase in the number of cells visited by the
heuristic algorithms is smaller than that of the non-
heuristic algorithms. Table 1 and Figures 8 and 9
demonstrate that the Floyd-Warshall and Dijkstra
algorithms are the most efficient in terms of
traversal cost. However, Floyd-Warshall is the least
efficient with respect to computation time. The
GBFS algorithm is the fastest algorithm in terms of
computation time but incurs the highest traversal
cost. Similarly, BFS is another algorithm with high
traversal costs and visits a large number of cells. In
contrast, both A-Star and GBFS visit fewer cells in
the generated maps. Among these algorithms,
however, A-Star identifies a path with a nearly
optimal traversal cost.

6. DISCUSSION (TARTISMA)

The A-Star algorithm demonstrates balanced
performance by effectively finding the shortest
paths while maintaining reasonable computation
times. Although the number of cells visited
increases with larger radii, the resulting path cost
remains relatively low. Its computation time, while
moderate, increases proportionally with problem
size. In contrast, the Greedy Best-First Search
(GBFS) algorithm reaches the target quickly by
visiting fewer cells. However, it does not guarantee
optimal path costs, making it more suitable for
scenarios where fast but suboptimal solutions are
acceptable. On the other hand, the Breadth-First
Search (BFS) algorithm explores all possible paths,
leading to the visitation of a large number of cells.
Consequently, it consumes substantial

196



Sanlalp, Yandi | GU J Sci, Part C, 13(1): 187-199 (2025)

computational resources and exhibits long running
times, particularly for larger radii. Due to its
exhaustive search nature, the resulting path costs
tend to be higher, rendering BFS inefficient for
large-scale  problems. The  Floyd-Warshall
algorithm, while capable of determining the shortest
paths between all node pairs by visiting a fixed
number of cells, suffers from extremely long
computation times, especially as problem size or
radii increase. Despite its optimal or near-optimal
path costs, this characteristic makes it impractical
for solving large-scale problems. Lastly, Dijkstra's
algorithm systematically evaluates all possible
paths by incorporating movement costs and
effectively finds the shortest path with the least
overall cost. This property makes it a practical
solution for addressing large-scale problems.

7. CONCLUSION (sonug)

This study examines algorithms used to find the
shortest path between cells with different terrain
types and elevation levels on a map consisting of
varying numbers of hexagonal cells. The developed
simulation program features a unique interface that
allows the comparison of shortest path algorithms in
a simulated environment. The performance of these
algorithms are compared at different radii and
problem sizes. As the radius expands, the number of
cells visited by each algorithm increases. The
analysis results of shortest path algorithms can be
summarized in three main points: (1) heuristic
algorithms demonstrated high performance in terms
of computation time and the number of cells visited;
(2) the increase in the number of cells visited by the
heuristic algorithms was smaller compared to non-
heuristic algorithms; (3) heuristic algorithms did not
achieve optimum results in terms of traversal cost.

In conclusion, these evaluations demonstrate that
they can assist in selecting the most appropriate
algorithm  for solving specific pathfinding
problems. When considering performance criteria,
it becomes evident that a balance must be
established between traversal cost and computation
time. The algorithm should be chosen based on the
requirements of the target problem. Therefore, this
study contributes to identifying the most effective
algorithm  under different conditions and
emphasizes the importance of optimal path planning
in determining the best algorithm for various
scenarios. Additionally, this study provides
valuable insights for developers working on
applications that require efficient navigation in
complex environments.

ACKNOWLEDGMENTS (TESEKKUR)

This study was supported by Kirsehir Ahi Evran
University Scientific Research Projects
Coordination Unit (Project Number:
MMF.A4.24.004). / Bu ¢alisma Kirsehir Ahi Evran
Universitesi Bilimsel Arastirma Projeleri Birimi
tarafindan  desteklenmistir  (Proje  Numarast:
MMF.A4.24.004).

DECLARATION OF ETHICAL STANDARDS
(ETIK STANDARTLARIN BEYANI)

The author of this article declares that the materials
and methods they use in their work do not require
ethical committee approval and/or legal-specific
permission.

Bu makalenin yazari ¢alismalarinda kullandiklar1 materyal ve
yontemlerin etik kurul izni ve/veya yasal-6zel bir izin
gerektirmedigini beyan ederler.

AUTHORS’ CONTRIBUTIONS (YAZARLARIN
KATKILARI)

Ibrahim SANLIALP: He directed the study,
designed the simulation program, carried out
experiments, analyzed the results, wrote and revised
the manuscript.

Calismay1 yonlendirmis, simiilasyon programini tasarlamis,
deneyleri gergeklestirmis, sonuglart analiz etmis, makaleyi
yazmig ve gdzden gegirmistir.

Ibrahim YANDI: He developed the simulation
program and significantly contributed to performing
experiments and writing.

Simulasyon  programini  gelistirmis  ve  deneylerin
gerceklestirilmesi ile makale yazimina 6nemli 6lgiide katkida
bulunmustur.

CONFLICT OF INTEREST (CIKAR CATISMASI)

There is no conflict of interest in this study.
Bu ¢alismada herhangi bir ¢ikar ¢atigsmasi yoktur.

REFERENCES (KAYNAKLAR)

[1] Ruszczynski, A (2011). Nonlinear
optimization. Princeton university press.

[2] Xing, H., Chai, M., Song, Y. (2024). Artificial
intelligence pathfinding based on Unreal
Engine 5 hexagonal grid map. In 2024 IEEE 4th
International Conference on Neural Networks,
Information and Communication (NNICE),
1708-1711.

197



Sanlalp, Yandi | GU J Sci, Part C, 13(1): 187-199 (2025)

[3] Adaixo, M. C. G. (2014). Influence Map-Based
Pathfinding Algorithms in Video Games, M.S.
Thesis, Universidade da Beira Interior.

[4] Lawande, S. R., Jasmine, G., Anbarasi, J., Izhar,
L. I. (2022). A systematic review and analysis
of intelligence-based pathfinding algorithms in
the field of video games. Applied
Sciences, 12(11), 5499.

[5] Johner, R., Lanaia, A., Dornberger, R., Hanne,
T. (2022). Comparing the Pathfinding
Algorithms A*, Dijkstra’s, Bellman-Ford,
Floyd-Warshall, and Best First Search for the
Paparazzi Problem. In Congress on Intelligent
Systems: Proceedings of CIS, 561-576.

[6] Real-Time 3D Development Platform, Unity,
https://unity.com/products/unity-engine

[7] Jeong-Shick, Y. (2023). Unity: A Powerful
Tool for 3D  Computer  Animation
Production. Journal of the Korea Computer
Graphics Society, 29(3), 45-57.

[8] Boyraz G, Kirct, P. (2019). 3D Game Design
with UNITY 3D Game Simulator. International
Journal of Multidisciplinary Studies and
Innovative Technologies, 3(2), 225-229.

[9] Gunes, M., Dilipak, H. (2020). Shortest Path
Approach in Pedestrian Transfers Application
in  Unity. Gazi  Mduhendislik  Bilimleri
Dergisi, 6(2), 111-119.

[10] Zhang, X., Zhang, X. (2022). Based on
Navmesh to implement Al intelligent
pathfinding in three-dimensional maps in UE4.
In Proceedings of the 2022 5th International
Conference on Algorithms, Computing and
Artificial Intelligence, 1-5.

[11] Barbour Jr, R. D. (2008). Reduction of
complexity in path finding using grid-based
methods. Faculty of Graduate Studies and
Research, University of Regina.

[12] Bailey, J. P., Nash, A., Tovey, C. A., Koenig,
S. (2021). Path-length analysis for grid-based
path planning. Artificial Intelligence, 301,
103560.

[13] Yang, Y., Zhang, S., Zhang, C., James, J. Q.
(2021). Origin-destination matrix prediction
via hexagon-based generated graph. In 2021
IEEE International Intelligent Transportation
Systems Conference (ITSC), 1399-1404.

[14] Wathrich, C. A., Stucki, P. (1991). An
algorithmic comparison between square-and
hexagonal-based grids. CVGIP:  Graphical
Models and Image Processing, 53(4), 324-339.

[15] Duszak, P. (2022). SLAM on the Hexagonal
Grid. Sensors, 22(16), 6221.

[16] Edler, D., Keil, J., Bestgen, A. K., Kuchinke,
L., Dickmann, F. (2019). Hexagonal map

grids—an  experimental study on the
performance in  memory of object
locations. Cartography ~ and  Geographic

Information Science, 46(5), 401-411.

[17] Her, 1. (1995). Geometric transformations on
the hexagonal grid. IEEE Transactions on
Image Processing, 4(9), 1213-1222.

[18] Hex Map 1, Hexagonal Grid,
https://catlikecoding.com/unity/tutorials/hex-
map/part-1/

[19] Rafig, A., Kadir, T. A. A., Ihsan, S. N. (2020).
Pathfinding algorithms in game development.
In IOP Conference Series: Materials Science
and Engineering, 769(1), 012021.

[20] Yan, Y. (2023). Research on the A Star
Algorithm for Finding Shortest
Path. Highlights in Science, Engineering and
Technology, 46, 154-161.

[21] Wayahdi, M. R., Ginting, S. H. N., Syahputra,
D. (2021). Greedy, A-Star, and Dijkstra’s
algorithms in finding shortest
path. International Journal of Advances in Data
and Information Systems, 2(1), 45-52.

[22] Deng, Z., Wang, D. (2023). Research on
Parking Path Planing Based on A-Star
Algorithm. Journal of New Media, 5(1).

[23] Candra, A., Budiman, M. A., Pohan, R. I
(2021). Application of a-star algorithm on
pathfinding game. InJournal of Physics:
Conference Series (IOP Publishing), 1898(1),
012047.

[24] Saian, P. O. N. (2016). Optimized A-Star
algorithm in hexagon-based environment using
parallel bidirectional search. In 2016 IEEE 8th
International Conference on Information
Technology and Electrical Engineering
(ICITEE), 1-5.

[25] Zhang, H., Tao, Y., Zhu, W. (2023). Global
path planning of unmanned surface vehicle

198


https://unity.com/products/unity-engine

Sanlalp, Yandi | GU J Sci, Part C, 13(1): 187-199 (2025)

based on improved A-Star

algorithm. Sensors, 23(14), 6647.

[26] Frasinaru, C., Raschip, M. (2019). Greedy
best-first search for the optimal-size sorting
network problem. Procedia Computer
Science, 159, 447-454,

[27] Heusner, M. (2019). Search behavior of greedy
best-first ~ search (Doctoral dissertation,
University_of_Basel).

[28] Heusner, M., Keller, T., Helmert, M. (2017).
Understanding the search behaviour of greedy
best-first search. In Proceedings of the
International Symposium on Combinatorial
Search, 8(1), 47-55.

[29] Heusner, M., Keller, T., Helmert, M. (2018).
Best-case and worst-case behavior of greedy
best-first search. International Joint
Conferences on Atrtificial Intelligence, 1463-
1470.

[30] Lina, T. N., Rumetna, M. S. (2021).
Comparison analysis of breadth first search and
depth limited search algorithms in sudoku
game. Bulletin of Computer Science and
Electrical Engineering, 2(2), 74-83.

[31] Fayed, H. A., Atiya, A. F. (2013). A mixed
breadth-depth first strategy for the branch and
bound tree of Euclidean  k-center
problems. Computational Optimization and
Applications, 54, 675-703.

[32] Sihotang, J. (2020). Analysis Of Shortest Path
Determination By Utilizing Breadth First
Search  Algorithm. Jurnal  Info  Sains:
Informatika dan Sains, 10(2), 1-5.

[33] Cormen, T. H., Leiserson, C. E., Rivest, R. L.,
Stein, C. (2022). Introduction to algorithms.
MIT press.

[34] Pandika, I. K. L. D., Irawan, B., Setianingsih,
C. (2018). Apllication of optimization heavy
traffic path with floyd-warshall algorithm.
In 2018 IEEE International Conference on
Control, Electronics, Renewable Energy and
Communications (ICCEREC), 57-62.

[35] Mirino, A. E. (2017). Best routes selection
using Dijkstra and Floyd-Warshall algorithm.
In 2017 IEEE 11th International Conference
on Information & Communication Technology
and System (ICTS), 155-158.

[36] Hougardy, S. (2010). The Floyd-Warshall
algorithm on  graphs  with  negative
cycles. Information Processing Letters, 110(8-
9), 279-281.

[37] Azis, H., Lantara, D., Salim, Y. (2018).
Comparison of Floyd-Warshall algorithm and
greedy algorithm in determining the shortest
route. In 2018 IEEE 2nd East Indonesia
conference on computer and information
technology (EIConCIT), 294-298).

[38] Noto, M., Sato, H. (2000). A method for the
shortest path search by extended Dijkstra
algorithm. InSmc 2000  conference
proceedings. 2000 IEEE international
conference on systems, man and cybernetics, 3,
2316-2320.

[39] Salem, I. E., Mijwil, M. M., Abdulgader, A.
W., Ismaeel, M. M. (2022). Flight-schedule
using Dijkstra's algorithm with comparison of
routes findings. International  Journal of
Electrical and Computer Engineering, 12(2),
1675.

[40] Cui, X., Shi, H. (2011). A*-based pathfinding
in modern computer games. International
Journal of Computer Science and Network
Security, 11(1), 125-130.

[41] Du, D. Z., Kleitman, D. J. (1990). Diameter
and radius in the Manhattan metric. Discrete &
computational geometry, 5, 351-356.

199



