
 Gazi Üniversitesi Gazi University

Fen Bilimleri Dergisi Journal of Science

PART C: TASARIM VE

TEKNOLOJİ

PART C: DESIGN AND

TECHNOLOGY

GU J Sci, Part C, 13(1): 187-199 (2025)

*Corresponding author, e-mail: ibrahim.sanlialp@ahievran.edu.tr DOI: 10.29109/gujsc.1570730

Design of Simulation Program for Analysis of Shortest Path Algorithms in

Grid-Based Path Planning

İbrahim ŞANLIALP1* , İbrahim YANDI1

1Kırşehir Ahi Evran University, Faculty of Engineering and Architecture, Department of Computer Engineering, Kırşehir, Turkey

Article Info

Research article
Received: 20/10/2024

Revision: 21/12/2024

Accepted: 25/01/2025

Keywords

Optimal Path Planning
Simulation Program

Shortest Path Algorithms

Grid-based Path Planning

Unity 3D

Makale Bilgisi

Araştırma makalesi

Başvuru: 20/10/2024
Düzeltme: 21/12/2024

Kabul: 25/01/2025

Anahtar Kelimeler

Optimal Yol Planlama
Simülasyon Programı

En Kısa Yol Algoritmaları

Izgara Tabanlı Yol Planlama
Unity 3D

Graphical/Tabular Abstract (Grafik Özet)

In this study, a simulation program was developed using the Unity 3D game engine and the C#

programming language to determine the shortest path between cells with various terrain types and

elevation levels on a hexagonal grid-based map. Figure A shows an image of the developed user

interface. / Bu çalışmada, altıgen ızgara tabanlı bir harita üzerinde farklı arazi türleri ve yükseklik

seviyelerine sahip hücreler arasındaki en kısa yolu belirlemek amacıyla Unity 3D oyun motoru ve

C# programlama dili kullanılarak bir simülasyon programı geliştirilmiştir. Şekil A, geliştirilen

kullanıcı arayüzüne ait bir görseli göstermektedir.

Figure A: Designed user interface / Şekil A: Tasarlanan kullanıcı arayüzü

Highlights (Önemli noktalar)

➢ The simulation program has been designed for the analysis of shortest path algorithms. /

En kısa yol algoritmalarının analizi için bir simülasyon programı tasarlanmıştır.

➢ Heuristic and non-heuristic algorithms were used to find the shortest path, and these

algorithms were compared. / En kısa yolu bulmak için için sezgisel ve sezgisel olmayan

algoritmaları kullanılmıştır ve bu algoritmalar karşılaştırılmıştır.

➢ Evaluations demonstrate that they can aid in selecting the most appropriate algorithm

for optimal path planning. / Değerlendirmeler, optimum yol planlaması için en uygun

algoritmanın seçilmesine yardımcı olabileceklerini göstermektedir.

Aim (Amaç): The aim of this study is to analyze algorithms to find the shortest path between cells

with various terrain types and elevation levels on a hexagonal grid-based map. / Bu çalışmanın

amacı, altıgensel grid tabanlı bir harita üzerinde farklı arazi tipleri ve yükseklik seviyelerine sahip

hücreler arasındaki en kısa yolu bulmak için algoritmaları analiz etmektir.

Originality (Özgünlük): The originality of this study lies in the development of a unique simulation

program that evaluates various shortest path algorithms on complex hexagonal grid-based maps. /

Bu çalışmanın özgünlüğü, karmaşık altıgen ızgara tabanlı haritalar üzerinde çeşitli en kısa yol

algoritmalarını değerlendiren özgün bir simülasyon programının geliştirilmesidir.

Results (Bulgular): The results are summarized in three main points: (1) heuristic algorithms

demonstrated high performance in terms of computation time and the number of cells visited; (2)

the increase in the number of cells visited by the heuristic algorithms was smaller compared to non-

heuristic algorithms; (3) heuristic algorithms did not achieve optimum results in terms of traversal

cost. / Sonuçlar üç ana noktada özetlenmektedir: (1) Sezgisel algoritmalar, hesaplama süresi ve

ziyaret edilen hücre sayısı açısından yüksek performans sergilemiştir; (2) Sezgisel algoritmaların

ziyaret ettiği hücre sayısındaki artış, sezgisel olmayan algoritmalara kıyasla daha düşük olmuştur;

(3) Sezgisel algoritmalar, geçiş maliyeti açısından optimum sonuçlara ulaşamamıştır.

Conclusion (Sonuç): This study emphasizes the importance of optimal path planning, and its

results demonstrate that they can assist in selecting the most suitable algorithm for solving specific

pathfinding problems. / Bu çalışma, optimal yol planlamanın önemini vurgulamakta ve sonuçları,

belirli yol bulma problemlerinin çözümü için en uygun algoritmanın seçilmesine yardımcı

olabileceğini göstermektedir.

https://orcid.org/0000-0002-6324-231X
https://orcid.org/0009-0007-8748-0236

*Corresponding author, e-mail: ibrahim.sanlialp@ahievran.edu.tr DOI: 10.29109/gujsc.1570730

GU J Sci, Part C, 13(1): 187-199 (2025)

 Gazi Üniversitesi Gazi University

Fen Bilimleri Dergisi Journal of Science

PART C: TASARIM VE

TEKNOLOJİ

PART C: DESIGN AND

TECHNOLOGY

http://dergipark.gov.tr/gujsc

Design of Simulation Program for Analysis of Shortest Path Algorithms in

Grid-Based Path Planning

İbrahim ŞANLIALP1* , İbrahim YANDI1

1Kırşehir Ahi Evran University, Faculty of Engineering and Architecture, Department of Computer Engineering, Kırşehir, Turkey

Article Info

Research article

Received: 20/10/2024
Revision: 21/12/2024

Accepted: 25/01/2025

Keywords

Optimal Path Planning

Simulation Program

Shortest Path Algorithms
Grid-based Path Planning

Unity 3D

Abstract

This study focuses on the analysis of algorithms used to find the shortest path between cells with

different terrain types and elevation levels on a map comprising hexagonal cells ranging from 91

to 7651. A simulation program was designed for the analysis and developed using the Unity 3D

game engine and the C# programming language. Within the scope of the study, an intelligent

agent was incorporated into the simulation. The intelligent agent perceives its environment,

evaluates terrain type and elevation factors, and attempts to find the shortest path with the lowest

traversal cost between two points based on the selected algorithm. The performance of the

algorithms was compared in terms of computation time, the number of cells visited, and traversal

cost. The results revealed that the heuristic algorithms demonstrated high performance in

computation time and the number of cells visited. However, they did not achieve the same level

of success in terms of traversal cost. Furthermore, it was concluded that the increase in the number

of cells visited by heuristic algorithms was smaller compared to non-heuristic algorithms. The

findings of this study highlight the importance of optimal path planning in determining the most

effective algorithm under various conditions and provide valuable contributions to developers for

applications requiring efficient navigation in complex environments.

Izgara Tabanlı Yol Planlamasında En Kısa Yol Algoritmalarının Analizi İçin

Simülasyon Programı Tasarımı

Makale Bilgisi

Araştırma makalesi

Başvuru: 20/10/2024

Düzeltme: 21/12/2024

Kabul: 25/01/2025

Anahtar Kelimeler

Optimal Yol Planlama

Simülasyon Programı
En Kısa Yol Algoritmaları

Izgara Tabanlı Yol Planlama

Unity 3D

Öz

Bu çalışma, 91 ila 7651 arasında değişen altıgen hücrelerden oluşan bir haritada farklı arazi tipleri

ve yükseklik seviyelerine sahip hücreler arasındaki en kısa yolu bulmak için kullanılan

algoritmaların analizine odaklanmaktadır. Analiz için bir simülasyon programı tasarlanmış ve

Unity 3D oyun motoru ile C# programlama dili kullanılarak geliştirilmiştir. Çalışma kapsamında

simülasyona bir akıllı ajan entegre edilmiştir. Akıllı ajan, çevresini algılar, arazi türü ve yükseklik

faktörlerini değerlendirir ve seçilen algoritmaya göre iki nokta arasında en düşük geçiş maliyetine

sahip en kısa yolu bulmaya çalışır. Algoritmaların performansı, hesaplama süresi, ziyaret edilen

hücre sayısı ve geçiş maliyeti açısından karşılaştırılmıştır. Sonuçlar, sezgisel algoritmaların

hesaplama süresi ve ziyaret edilen hücre sayısı açısından yüksek performans gösterdiğini ortaya

koymuştur. Ancak, geçiş maliyetleri açısından aynı başarıyı sağlayamadıkları görülmüştür.

Ayrıca, sezgisel algoritmalar tarafından ziyaret edilen hücre sayısındaki artışın sezgisel olmayan

algoritmalara kıyasla daha küçük olduğu sonucuna varılmıştır. Bu çalışmanın bulguları, çeşitli

koşullar altında en etkili algoritmayı belirlemede optimum yol planlamanın önemini

vurgulamakta ve karmaşık ortamlarda verimli gezinme gerektiren uygulamalar için geliştiricilere

değerli katkılar sunmaktadır.

1. INTRODUCTION (GİRİŞ)

Optimization is a discipline that is commonly used

to address complex problems in a variety of

application areas [1]. Map-based pathfinding

problems have a wide range of applications and play

a crucial role in game development, optimization,

and artificial intelligence research [2, 3]. However,

pathfinding can be resource-intensive, especially

when dealing with complex maps [4]. Algorithms

such as A-Star and Dijkstra’s are commonly used;

however, on large, intricate maps, they can be

https://orcid.org/0000-0002-6324-231X
https://orcid.org/0009-0007-8748-0236

Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

188

computationally demanding. For example, while A-

Star is highly efficient in finding optimal paths, it

incurs higher processing costs. Dijkstra's algorithm,

though it consistently finds the shortest path by

exploring all nodes, requires significant

computational power, especially when using large

datasets [5]. As a result, researchers have developed

optimization techniques to reduce these costs in

game development, optimization, and artificial

intelligence research.

Unity [6] is a versatile and innovative game engine

that supports real-time 3D animations and provides

interactive content to users [7]. It enables seamless

integration of movements, environmental elements,

and user interfaces into game objects [8] through

drag-and-drop or as programmable variables in C#

[9]. Furthermore, hexagonal grid maps are more

information-rich than traditional square grids. This

framework adapts to a variety of scene requirements

and offers efficiency, flexibility, and homogeneity

[2, 10].

Several studies have focused on grid-based

pathfinding problems. In one such study, Barbour

emphasized the efficiency of hexagonal grids and

proposed a new pathfinding technique that

improves runtime and reduces algorithmic

complexity [11]. This method enhances the degree

of movement of a unit while reducing the costs

typically associated with other techniques. Bailey et

al. conducted a path-length analysis for grid-based

path planning and demonstrated that as node

connectivity increases, the percentage difference

between a grid path and the real shortest path

decreases [12]. In another study, Yang et al.

addressed the issue of origin-destination matrix

estimation by developing a hexagon-based dynamic

graph convolutional network that generates distinct

hexagon-based road graphs throughout different

time periods [13].

The purpose of this study is to analyze algorithms to

find the shortest path between cells with various

terrain types and elevation levels on a hexagonal

grid-based map. Unity 3D game engine and C# are

utilized during the development of the simulation

program. The proposed program finds

neighborhood connections of each hexagonal cell,

which, in turn, defines the movement costs between

them. In addition, it helps identify efficient

pathfinding strategies for hexagonal grid

environments. The study makes a significant

contribution by introducing a simulation tool that

evaluates various shortest path algorithms on

complex hexagonal grid-based maps.

The second part of the study is about the hexagonal

grid-based map structure, and general information

about shortest path algorithms is given in Section 3.

Section 4 explains the design of the simulation

program developed within this study. The analysis

and results are explained in Section 5, followed by

a discussion in Section 6. The last section presents

the conclusions.

2. HEXAGONAL GRID-BASED MAP

STRUCTURE (ALTIGEN AĞ TABANLI HARİTA

YAPISI)

Advances in computer graphics and game

development have enabled new spatial

representation and design possibilities. A prominent

example is the hexagonal grid-based map, which

uses six-sided polygons to achieve more efficient

area coverage and enhanced visual appeal [2]. This

technique offers a significant alternative to

conventional square grid layouts by providing more

accurate distance metrics and facilitating smooth

user interactions [14, 15].

Hexagonal geometry is suitable for analyzing map

usage in experimental research. Hexagons

efficiently cover large areas without gaps. Their

symmetrical structure enhances spatial tasks like

estimating object positions, measuring distances,

and determining directions [16]. Figure 1 shows a

map design based on a hexagonal grid and a single

row path.

The simulation program developed using the Unity

3D game engine features a map structure composed

of hexagonal cells arranged in a regular 3D grid.

Each cell is connected to six neighboring cells,

forming a hexagonal pattern. The neighboring cell

information is assigned to each cell, simplifying the

tracking and management of connections and

transitions. For example, when moving between

cells, identifying adjacent cells enables pathfinding

algorithms to operate more efficiently [13].

Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

189

Figure 1. Hexagonal grid-based map design (Altıgen ızgara tabanlı harita tasarımı) [13]

2.1. Cube Coordinates (Küp Koordinatları)

The hexagonal grid structure consists of three main

axes: x, y, and z. Unlike square grids, which have

two axes, hexagonal grids use a symmetrical

coordinate system. There is a symmetrical

relationship between these axes [17]:

𝑥 + 𝑦 + 𝑧 = 0 (1)

The equations describing the relationship between

the coordinates and column widths is given:

𝑥 = 𝑡 − 𝑟/2 (2)

𝑦 = −(𝑡 − 𝑟/2 + 𝑟) (3)

𝑧 = 𝑟 (4)

where 𝑡 represents the number of columns and

width of the hexagonal grid, 𝑟 represents the

number of rows, and height, x, y, and z are the

coordinates of the cube; the sum of these three

coordinates is 0 [2].

Cube coordinate system enables more effective

management of hexagonal grid structures, improves

algorithm performance, and enhances user

experience. In addition, the flexibility and

simplicity of cube coordinate calculations play key

roles in creating and managing hexagonal maps. As

a result, cube coordinates are applied to the cells

when designing the hexagonal grid-based map in

this study. Figure 2 illustrates the cube coordinate

system used in this study [18].

Figure 2. Cube coordinate system used in the study (Çalışmada kullanılan küp koordinat sistemi) [18]

3. SHORTEST PATH ALGORITHM (EN KISA

YOL ALGORİTMASI)

A computer application employs a shortest path

algorithm, along with a plotting component, to

determine the shortest route between two points,

from the source to the destination. Shortest path

algorithms are essential to identify the shortest and

most optimal paths. Many critical applications,

including video games, robotics, GPS, and

simulations, depend on these algorithms [19]. This

study discusses the shortest path algorithms in

simulation program design. The shortest path

problems are solved using A-Star, Greedy Best-

First Search, Breadth-First Search, Floyd-Warshall,

and Dijkstra’s algorithms. In the study, A-Star and

Greedy Best-First Search represent heuristic

Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

190

algorithms, while Breadth-First Search, Floyd-

Warshall and Dijkstra’s algorithms represent non-

heuristic algorithms. These algorithms are

explained in order.

3.1. A-Star Algorithm (A-Yıldız Algoritması)

The A-Star algorithm is a popular heuristic search

algorithm in pathfinding and graph traversal

because it efficiently determines the shortest route

between two nodes [20, 21]. This algorithm

evaluates positions within the search space to

identify the optimal path from the beginning point

to the target node [22]. A-Star employs an

evaluation function to guide its search. The function

is defined as [23]:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (5)

where 𝑔(𝑛) represents the cost from the starting

point to the current node n, and ℎ(𝑛) is the estimated

cost from the current node n to the goal node;

𝑓(𝑛) is the total estimated cost of the path through

node n [24]. The objective of the A-Star algorithm

is to find a path that minimizes 𝑓(𝑛). The A-Star

algorithm employs a heuristic function to calculate

the cost h of moving from the current node to the

goal node and ensures that the search is both

accurate and efficient using the heuristic function

ℎ(𝑛) [25].

3.2. Greedy Best-First Search Algorithm (En İyi

Öncelikli Arama Algoritması Algoritması)

Greedy Best-First Search (GBFS) algorithm is a

heuristic search algorithm used to explore paths in a

search space, which is often represented as a tree

[26]. It prioritizes nodes based on an evaluation

function, selecting the most favorable nodes first to

efficiently reach the goal [27]. When exhaustive

exploration is too costly, the GBFS algorithm

applies a greedy heuristic to narrow down the

number of paths, frequently discarding less

promising ones [26, 28].

Let ⟨S,sI,Sg,scor⟩ be a state space, where S is a finite

collection of states, scor is the successor function, sI

∈ S is the beginning state, and Sg ⊆ S is the set of

target states. The algorithm defines the state space

and applies the heuristic function h to the states in

S. The GBFS algorithm generates the initial state sI,

iteratively expands the generated but unexpanded

states, and stops when expanding a goal state from

Sg [29]. The preference is to expand goal states from

Sg if they are generated; otherwise, it expands the

state s with the minimum h(s) among all generated

but unexpanded states. In GBFS, state s is "opened"

when it is generated for the first time and "closed"

when it is expanded. The GBFS process involves

generating successors of the current state and

adding those that are not yet open or closed to the

open list. Once a state is expanded, it is transferred

from an open list to a closed list [28].

3.3. Breadth First Search Algorithm (Sığ Öncelikli

Arama Algoritması)

The Breadth First Search (BFS) algorithm gradually

broadens the solution space and investigates all

possible outcomes at each stage [30]. BFS is

commonly used to discover the shortest path from a

single source in an unweighted graph [31]. BFS

operates by visiting all nodes at level n before

progressing to the next nodes at level n+1. The

search begins at the root node and traverses nodes

from left to right at each level, advancing to

subsequent levels in a systematic manner until a

solution is discovered [32,33].

One notable advantage of BFS is its ability to avoid

deadlocks; it inevitably finds a solution if it exists.

In addition, when multiple solutions are present, the

BFS ensures that the minimal solution is identified.

However, a significant drawback of this method is

its substantial memory requirement, as it needs to

store all nodes within the search tree. In addition,

BFS can be time-intensive because it must evaluate

all nodes at level n before proceeding to find a

solution at level n+1[30,32,33].

3.4. Floyd-Warshall Algorithm (Floyd-Warshall

Algoritması

The Floyd-Warshall algorithm is a dynamic method

for finding the shortest paths between all pairs of

nodes in a directed graph [34,35]. This algorithm

solves the problem by using previous solutions that

are interconnected, which allows for multiple

possibilities. Moreover, Floyd-Warshall algorithm

allows for the presence of negative weights on

edges, provided there are no negative weight cycles

in the graph [35,36].

Given a graph G=(V,E), where V and E represent

the set of vertices and the set of edges with weights,

respectively, the algorithm calculates the minimum

weight path between each pair of vertices. The

weights are denoted by w(e). The sum of edge

weights along a path gives the total path weight

[36,37]. This algorithm creates a distance matrix M,

with each entry representing the shortest distance

from vertex i to vertex j. M[i][j] is initially set to the

weight of edge (i,j) if one exists or infinity

otherwise, with the exception of M[i][i], which is

set to zero. The algorithm then iteratively updates

this matrix by taking each vertex as an intermediate

https://edoc.unibas.ch/64994/

Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

191

point and testing whether a shorter path exists

through that intermediate vertex [37].

3.5. Dijkstra’s Algorithm (Dijkstra Algoritması)

Dijkstra's algorithm solves the problem of

determining the shortest path between two nodes in

a graph, and it was introduced by Holland in 1970

[19]. This algorithm is designed to find the optimal

path. As it searches for the minimum-cost path by

evaluating all possible routes starting from the

initial point, the search area expands outward in

concentric circles. Therefore, it suffers from low

search efficiency and extended search times,

particularly when the distance to the destination is

significant. Both Dijkstra's algorithm and the A-Star

algorithm are among the most commonly used

shortest-route optimization methods [39,40].

4. DESIGN OF SIMULATION PROGRAM
(SİMÜLASYON PROGRAMI TASARIMI)

The simulation program design consists of five

stages. In the first stage, the definition and algorithm

of the simulation program are created. In the second

stage, the terrain structure and starting and ending

points are modeled as hexagonal maps using Unity

3D. In the third stage, the shortest path algorithms

are programmed using the C# programming

language. In the final stage, the user interface is

designed, and the simulation program is tested.

Each stage is presented sequentially.

4.1. Simulation Program Definition (Simülasyon

Programı Tanımı)

In the developed simulation program, a

geographical area is represented by a map

comprising hexagonal cells. This map consists of

cells representing plains, forests, swamps, plateaus,

mountain terrains and elevation levels. Each cell on

the map is connected to other cells through

neighborhood ties, and these ties determine the cost

of movement between cells. An intelligent agent

integrated into this hexagonal map structure is

added to the proposed program. The intelligent

agent evaluates its environment by calculating it

according to terrain type and elevation parameters

and attempts to find the shortest path between two

points using the selected shortest pathfinding

algorithm. The proposed program solves the

problem of finding the shortest path between two

given points in this way. The developed simulation

program helps determine the most effective

pathfinding strategies for the complex structure of

hexagonal cells and evaluates the performance of

the shortest pathfinding algorithms. The workflow

diagram of the developed simulation program is

shown in Figure 3.

4.2. Map Modeling (Harita Modelleme)

A variety of map sizes are used at this stage, each

revealing different terrain types and slope costs. The

map sizes in the simulation program consist of 91,

331, 721, 1261, 1951, 2791, 3781, 4921, 6211, and

7651 cells. In addition, the maps include slope costs.

A hexagonal map is constructed by arranging

hexagonal cells in a regular grid in 3D space, where

each cell is connected to six neighboring cells. The

hexagonal map containing the terrain types of the

cells created for this study is shown in Figure 4.

Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

192

Figure 3. Flow chart of the simulation program (Simülasyon programının akış şeması)

Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

193

Figure 4. Experimental setup and workflow (Deney tasarımı ve iş akışı)

4.3. Intelligent Agent (Akıllı Ajan)

The intelligent agent is programmed using the C#

programming language in Unity and used to

perform simulations on a hexagonal map. This

intelligent agent perceives its environment,

evaluates terrain type and elevation factors, and

attempts to find the shortest path between two points

using the selected shortest path algorithm. The

representations of the starting and ending points are

shown in Figure 5. Here, the starting point

represents the intelligent agent model, depicted in

the red hexagonal cell. The other end point

represents the tent model and is in the blue

hexagonal cell.

Figure 5. Displaying representations of starting and ending points (Başlangıç ve bitiş noktalarının temsillerinin

görüntülenmesi)

To allow the created intelligent agent model to

work, an animator is added to the model in Unity,

and it is allowed to work on the paths obtained by

associating it with the shortest path algorithms.

4.4. User Interface (Kullanıcı Arayüzü)

The user interface is designed for the developed

simulation program. This interface is developed

using the C# programming language and Unity 3D

game engine. With the help of the developed user

interface, users can visualize the analysis of the

shortest path algorithms and perform simulations.

An image taken from the developed user interface

unit is shown in Figure 6.

The user interface of the simulation program is

composed of several control units, including the cell

labeling panel, the shortest path algorithms panel,

the information panel, the line panel, the algorithm

and navigated cells animation, the parameter editing

required to create a hexagonal map, and an option

for exiting the simulation program.

The cell labeling panel provides features for

displaying the index and movement cost of cells,

where the index uniquely identifies each cell, and

the movement cost represents the terrain-dependent

traversal cost. These values can be toggled using a

checkbox control; selecting the "Hide" option

ensures that the information remains concealed

when not needed. Furthermore, the shortest path

algorithm panel allows users to choose from a

variety of algorithms, including A-Star, GBFS,

BFS, Floyd-Warshall, and Dijkstra’s.

The starting point is defined by clicking the left

mouse button, whereas the ending point is selected

using the right mouse button, enabling the

computation of the shortest path based on the

chosen points and algorithm. In addition, the

information panel offers comprehensive details

about the simulation, such as the total cost of the

calculated path, the number of cells visited during

the algorithm’s execution, the total number of cells

on the map, and the execution times of the

algorithms measured in microseconds. Moreover,

 Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

194

the interface includes a button that visually

represents the cells visited by the algorithm. It also

has a button that animates the movement of the

intelligent agent character as it transitions from the

starting to the ending cell. To enhance usability, the

camera reset control repositions the camera to its

initial alignment with the intelligent agent character,

while the random map button generates a new

hexagonal map based on the specified radius,

thereby introducing dynamic map variations.

Figure 6. Design of the simulation interface (Simülasyon arayüzünün tasarımı)

By integrating these features into a cohesive design,

the user interface provides an interactive simulation

environment that seamlessly combines visualization

and analysis, facilitating an in-depth exploration of

various pathfinding algorithms.

5. ANALYSIS AND RESULTS (ANALİZ VE

BULGULAR)

The process of creating hexagonal cells in Unity 3D

begins by representing each cell with 6 triangles.

These triangles form each side of the hexagon,

ensuring the geometric integrity of the hexagonal

shape. The map creation process follows a spiral

pattern from the center outwards. This arrangement

is performed based on the radius value determined

by the user. In other words, the radius determined

by the user directly affects the size of the map and

the number of hexagons. In the simulation, the

radius values are limited to between 5 and 50, and

the analyses were carried out in this range. Tests

conducted with different radius values for the

performance of the algorithms are presented in

Figure 7.

a) b) c)

Figure 7. Testing the performance of algorithms with different radius: A-star a) radius 5 b) radius 26 c)

radius 50 (Farklı yarıçaplarla algoritmaların performansının test edilmesi: A-Star a) yarıçap 5 b) yarıçap 26 c) yarıçap 50)

The analyses were carried out in the form of

scenario-based performance comparisons for

different terrain types, elevation levels, and

difficulty levels. The performance of each algorithm

was measured 100 times. This study was developed

and analyzed in the Unity 2021.3.16f1 environment

on a computer: Windows 10, Intel i7, 2.2-GHz CPU,

and 32-GB RAM.

Tests were conducted to analyze the shortest path

algorithms on maps comprising hexagonal grid-

based cells. These tests are scenario-based. In this

https://dl.acm.org/doi/pdf/10.1145/98949.99120

 Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

195

scenario, the distance between the starting and

ending points on the cube grid maps is calculated as

the maximum distance. The distance was calculated

using the Manhattan metric [41]. The performance

results were comparatively analyzed for various

radii. All algorithms were compared on maps with

an equal number of cells, and each test was run for

100 iterations. Table 1 lists the number of cells

visited by the algorithms, the shortest path cost, and

the computation time results.

Table 1. Comparison of the algorithm results for 100 runs (100 çalıştırma için algoritma sonuçlarının

karşılaştırılması)

 A - Star

Greedy Best

First Search

Breadth First

Search Floyd-Warshall Dijkstra's

Cell

Count

Cells

Visited Cost Time

Cells

Visited Cost Time

Cells

Visited Cost Time

Cells

Visited Cost Time

Cells

Visited Cost Time

91 54 238 145 31 242 97 91 242 901 91 222 6.503 90 228 512

331 101 364 410 61 472 174 331 472 5.701 331 260

243.23

3 330 272 883

721 150 502 633 91 524 309 721 650 25.141 721 372

2.187.5

07 720 372 1.795

1.261 185 324 938 121 650 500 1.261 524 84.210 1.261 224

10.782.

611 1.260 228 2.734

1.951 293 428 2.303 151 792 783 1.951 792 216.216 1.951 314

37.462.

657 1.950 314 4.564

2.791 337 520 2.559 181 914 1.392 2.791 914 461.616 2.791 350

101.33

8.671 2.790 350 6.911

3.781 365 764 3.028 211 1.006 1.290 3.781 1.166 863.089 3.781 472

246.22

9.475 3.780 472 9.532

4.921 424 654 4.731 241 1.166 2.229 4.921 1.214 1.430.888 4.921 424

532.02

4.244 4.920 476 16.562

6.211 451 764 5.811 271 1.074 2.666 6.211 1.006 2.334.501 6.211 476

1.062.6

41.112 6.210 402 26.792

7.651 502 626 5.954 301 1.214 4.633 7.651 1.074 3.540.228 7.651 402

1.933.9

18.809 7.650 424 28.933

The comparison of the algorithms in terms of

transition cost is shown in Figure 8. A comparison

of the algorithms in terms of computation time is

shown in Figure 9. Figures 8 and 9 give the average

values obtained over 100 runs of the algorithms.

 Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

196

Figure 8. Algorithm comparison of traversal cost (Geçiş maliyetinin algoritma karşılaştırması)

Figure 9. Algorithm comparison of computation times (Hesaplama sürelerinin algoritma karşılaştırması)

In the analyzed algorithms, the number of cells

visited increases as the radius expands. However,

the increase in the number of cells visited by the

heuristic algorithms is smaller than that of the non-

heuristic algorithms. Table 1 and Figures 8 and 9

demonstrate that the Floyd-Warshall and Dijkstra

algorithms are the most efficient in terms of

traversal cost. However, Floyd-Warshall is the least

efficient with respect to computation time. The

GBFS algorithm is the fastest algorithm in terms of

computation time but incurs the highest traversal

cost. Similarly, BFS is another algorithm with high

traversal costs and visits a large number of cells. In

contrast, both A-Star and GBFS visit fewer cells in

the generated maps. Among these algorithms,

however, A-Star identifies a path with a nearly

optimal traversal cost.

6. DISCUSSION (TARTIŞMA)

The A-Star algorithm demonstrates balanced

performance by effectively finding the shortest

paths while maintaining reasonable computation

times. Although the number of cells visited

increases with larger radii, the resulting path cost

remains relatively low. Its computation time, while

moderate, increases proportionally with problem

size. In contrast, the Greedy Best-First Search

(GBFS) algorithm reaches the target quickly by

visiting fewer cells. However, it does not guarantee

optimal path costs, making it more suitable for

scenarios where fast but suboptimal solutions are

acceptable. On the other hand, the Breadth-First

Search (BFS) algorithm explores all possible paths,

leading to the visitation of a large number of cells.

Consequently, it consumes substantial

 Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

197

computational resources and exhibits long running

times, particularly for larger radii. Due to its

exhaustive search nature, the resulting path costs

tend to be higher, rendering BFS inefficient for

large-scale problems. The Floyd-Warshall

algorithm, while capable of determining the shortest

paths between all node pairs by visiting a fixed

number of cells, suffers from extremely long

computation times, especially as problem size or

radii increase. Despite its optimal or near-optimal

path costs, this characteristic makes it impractical

for solving large-scale problems. Lastly, Dijkstra's

algorithm systematically evaluates all possible

paths by incorporating movement costs and

effectively finds the shortest path with the least

overall cost. This property makes it a practical

solution for addressing large-scale problems.

7. CONCLUSION (SONUÇ)

This study examines algorithms used to find the

shortest path between cells with different terrain

types and elevation levels on a map consisting of

varying numbers of hexagonal cells. The developed

simulation program features a unique interface that

allows the comparison of shortest path algorithms in

a simulated environment. The performance of these

algorithms are compared at different radii and

problem sizes. As the radius expands, the number of

cells visited by each algorithm increases. The

analysis results of shortest path algorithms can be

summarized in three main points: (1) heuristic

algorithms demonstrated high performance in terms

of computation time and the number of cells visited;

(2) the increase in the number of cells visited by the

heuristic algorithms was smaller compared to non-

heuristic algorithms; (3) heuristic algorithms did not

achieve optimum results in terms of traversal cost.

In conclusion, these evaluations demonstrate that

they can assist in selecting the most appropriate

algorithm for solving specific pathfinding

problems. When considering performance criteria,

it becomes evident that a balance must be

established between traversal cost and computation

time. The algorithm should be chosen based on the

requirements of the target problem. Therefore, this

study contributes to identifying the most effective

algorithm under different conditions and

emphasizes the importance of optimal path planning

in determining the best algorithm for various

scenarios. Additionally, this study provides

valuable insights for developers working on

applications that require efficient navigation in

complex environments.

ACKNOWLEDGMENTS (TEŞEKKÜR)

This study was supported by Kırşehir Ahi Evran

University Scientific Research Projects

Coordination Unit (Project Number:

MMF.A4.24.004). / Bu çalışma Kırşehir Ahi Evran

Üniversitesi Bilimsel Araştırma Projeleri Birimi

tarafından desteklenmiştir (Proje Numarası:

MMF.A4.24.004).

DECLARATION OF ETHICAL STANDARDS
(ETİK STANDARTLARIN BEYANI)

The author of this article declares that the materials

and methods they use in their work do not require

ethical committee approval and/or legal-specific

permission.

Bu makalenin yazarı çalışmalarında kullandıkları materyal ve

yöntemlerin etik kurul izni ve/veya yasal-özel bir izin

gerektirmediğini beyan ederler.

AUTHORS’ CONTRIBUTIONS (YAZARLARIN

KATKILARI)

İbrahim ŞANLIALP: He directed the study,

designed the simulation program, carried out

experiments, analyzed the results, wrote and revised

the manuscript.

Çalışmayı yönlendirmiş, simülasyon programını tasarlamış,

deneyleri gerçekleştirmiş, sonuçları analiz etmiş, makaleyi

yazmış ve gözden geçirmiştir.

İbrahim YANDI: He developed the simulation

program and significantly contributed to performing

experiments and writing.

Simulasyon programını geliştirmiş ve deneylerin

gerçekleştirilmesi ile makale yazımına önemli ölçüde katkıda

bulunmuştur.

CONFLICT OF INTEREST (ÇIKAR ÇATIŞMASI)

There is no conflict of interest in this study.

Bu çalışmada herhangi bir çıkar çatışması yoktur.

REFERENCES (KAYNAKLAR)

[1] Ruszczynski, A. (2011). Nonlinear

optimization. Princeton university press.

[2] Xing, H., Chai, M., Song, Y. (2024). Artificial

intelligence pathfinding based on Unreal

Engine 5 hexagonal grid map. In 2024 IEEE 4th

International Conference on Neural Networks,

Information and Communication (NNICE),

1708-1711.

 Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

198

[3] Adaixo, M. C. G. (2014). Influence Map-Based

Pathfinding Algorithms in Video Games, M.S.

Thesis, Universidade da Beira Interior.

[4] Lawande, S. R., Jasmine, G., Anbarasi, J., Izhar,

L. I. (2022). A systematic review and analysis

of intelligence-based pathfinding algorithms in

the field of video games. Applied

Sciences, 12(11), 5499.

[5] Johner, R., Lanaia, A., Dornberger, R., Hanne,

T. (2022). Comparing the Pathfinding

Algorithms A*, Dijkstra’s, Bellman-Ford,

Floyd-Warshall, and Best First Search for the

Paparazzi Problem. In Congress on Intelligent

Systems: Proceedings of CIS, 561-576.

[6] Real-Time 3D Development Platform, Unity,

https://unity.com/products/unity-engine

[7] Jeong-Shick, Y. (2023). Unity: A Powerful

Tool for 3D Computer Animation

Production. Journal of the Korea Computer

Graphics Society, 29(3), 45-57.

[8] Boyraz G, Kırcı, P. (2019). 3D Game Design

with UNITY 3D Game Simulator. International

Journal of Multidisciplinary Studies and

Innovative Technologies, 3(2), 225-229.

[9] Gunes, M., Dilipak, H. (2020). Shortest Path

Approach in Pedestrian Transfers Application

in Unity. Gazi Mühendislik Bilimleri

Dergisi, 6(2), 111-119.

[10] Zhang, X., Zhang, X. (2022). Based on

Navmesh to implement AI intelligent

pathfinding in three-dimensional maps in UE4.

In Proceedings of the 2022 5th International

Conference on Algorithms, Computing and

Artificial Intelligence, 1-5.

[11] Barbour Jr, R. D. (2008). Reduction of

complexity in path finding using grid-based

methods. Faculty of Graduate Studies and

Research, University of Regina.

[12] Bailey, J. P., Nash, A., Tovey, C. A., Koenig,

S. (2021). Path-length analysis for grid-based

path planning. Artificial Intelligence, 301,

103560.

[13] Yang, Y., Zhang, S., Zhang, C., James, J. Q.

(2021). Origin-destination matrix prediction

via hexagon-based generated graph. In 2021

IEEE International Intelligent Transportation

Systems Conference (ITSC), 1399-1404.

[14] Wüthrich, C. A., Stucki, P. (1991). An

algorithmic comparison between square-and

hexagonal-based grids. CVGIP: Graphical

Models and Image Processing, 53(4), 324-339.

[15] Duszak, P. (2022). SLAM on the Hexagonal

Grid. Sensors, 22(16), 6221.

[16] Edler, D., Keil, J., Bestgen, A. K., Kuchinke,

L., Dickmann, F. (2019). Hexagonal map

grids–an experimental study on the

performance in memory of object

locations. Cartography and Geographic

Information Science, 46(5), 401-411.

[17] Her, I. (1995). Geometric transformations on

the hexagonal grid. IEEE Transactions on

Image Processing, 4(9), 1213-1222.

[18] Hex Map 1, Hexagonal Grid,

https://catlikecoding.com/unity/tutorials/hex-

map/part-1/

[19] Rafiq, A., Kadir, T. A. A., Ihsan, S. N. (2020).

Pathfinding algorithms in game development.

In IOP Conference Series: Materials Science

and Engineering, 769(1), 012021.

[20] Yan, Y. (2023). Research on the A Star

Algorithm for Finding Shortest

Path. Highlights in Science, Engineering and

Technology, 46, 154-161.

[21] Wayahdi, M. R., Ginting, S. H. N., Syahputra,

D. (2021). Greedy, A-Star, and Dijkstra’s

algorithms in finding shortest

path. International Journal of Advances in Data

and Information Systems, 2(1), 45-52.

[22] Deng, Z., Wang, D. (2023). Research on

Parking Path Planing Based on A-Star

Algorithm. Journal of New Media, 5(1).

[23] Candra, A., Budiman, M. A., Pohan, R. I.

(2021). Application of a-star algorithm on

pathfinding game. In Journal of Physics:

Conference Series (IOP Publishing), 1898(1),

012047.

[24] Saian, P. O. N. (2016). Optimized A-Star

algorithm in hexagon-based environment using

parallel bidirectional search. In 2016 IEEE 8th

International Conference on Information

Technology and Electrical Engineering

(ICITEE), 1-5.

[25] Zhang, H., Tao, Y., Zhu, W. (2023). Global

path planning of unmanned surface vehicle

https://unity.com/products/unity-engine

 Şanlıalp, Yandı / GU J Sci, Part C, 13(1): 187-199 (2025)

199

based on improved A-Star

algorithm. Sensors, 23(14), 6647.

[26] Frăsinaru, C., Răschip, M. (2019). Greedy

best-first search for the optimal-size sorting

network problem. Procedia Computer

Science, 159, 447-454.

[27] Heusner, M. (2019). Search behavior of greedy

best-first search (Doctoral dissertation,

University_of_Basel).

[28] Heusner, M., Keller, T., Helmert, M. (2017).

Understanding the search behaviour of greedy

best-first search. In Proceedings of the

International Symposium on Combinatorial

Search, 8(1), 47-55.

[29] Heusner, M., Keller, T., Helmert, M. (2018).

Best-case and worst-case behavior of greedy

best-first search. International Joint

Conferences on Artificial Intelligence, 1463-

1470.

[30] Lina, T. N., Rumetna, M. S. (2021).

Comparison analysis of breadth first search and

depth limited search algorithms in sudoku

game. Bulletin of Computer Science and

Electrical Engineering, 2(2), 74-83.

[31] Fayed, H. A., Atiya, A. F. (2013). A mixed

breadth-depth first strategy for the branch and

bound tree of Euclidean k-center

problems. Computational Optimization and

Applications, 54, 675-703.

[32] Sihotang, J. (2020). Analysis Of Shortest Path

Determination By Utilizing Breadth First

Search Algorithm. Jurnal Info Sains:

Informatika dan Sains, 10(2), 1-5.

[33] Cormen, T. H., Leiserson, C. E., Rivest, R. L.,

Stein, C. (2022). Introduction to algorithms.

MIT press.

[34] Pandika, I. K. L. D., Irawan, B., Setianingsih,

C. (2018). Apllication of optimization heavy

traffic path with floyd-warshall algorithm.

In 2018 IEEE International Conference on

Control, Electronics, Renewable Energy and

Communications (ICCEREC), 57-62.

[35] Mirino, A. E. (2017). Best routes selection

using Dijkstra and Floyd-Warshall algorithm.

In 2017 IEEE 11th International Conference

on Information & Communication Technology

and System (ICTS), 155-158.

[36] Hougardy, S. (2010). The Floyd–Warshall

algorithm on graphs with negative

cycles. Information Processing Letters, 110(8-

9), 279-281.

[37] Azis, H., Lantara, D., Salim, Y. (2018).

Comparison of Floyd-Warshall algorithm and

greedy algorithm in determining the shortest

route. In 2018 IEEE 2nd East Indonesia

conference on computer and information

technology (EIConCIT), 294-298).

[38] Noto, M., Sato, H. (2000). A method for the

shortest path search by extended Dijkstra

algorithm. In Smc 2000 conference

proceedings. 2000 IEEE international

conference on systems, man and cybernetics, 3,

2316-2320.

[39] Salem, I. E., Mijwil, M. M., Abdulqader, A.

W., Ismaeel, M. M. (2022). Flight-schedule

using Dijkstra's algorithm with comparison of

routes findings. International Journal of

Electrical and Computer Engineering, 12(2),

1675.

[40] Cui, X., Shi, H. (2011). A*-based pathfinding

in modern computer games. International

Journal of Computer Science and Network

Security, 11(1), 125-130.

[41] Du, D. Z., Kleitman, D. J. (1990). Diameter

and radius in the Manhattan metric. Discrete &

computational geometry, 5, 351-356.

