
679 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Evaluating machine learning techniques for fluid mechanics: Comparative 

analysis of accuracy and computational efficiency 

Eyup Kocak* 
*Cankaya University, Mechanical Engineering Department, Ankara, 06790, Türkiye, ORCID: 0000-0002-1544-2579 
(*Corresponding Author:eyupkocak@cankaya.edu.tr: ) 

Highlights  
• The study evaluates the effectiveness of different machine learning methods, such as artificial neural network, random forest, and 

support vector machine, in solving fluid mechanics problems. 
• After parameter optimization, machine learning techniques achieved R² values above 0.9 in multiple cases, outperforming numerical 

methods in predictive accuracy. 
• The study found that Linear Regression does not effective for selected fluid mechanics problems, while other machine learning 

methods performed well after optimization. 
• In cases with limited data, artificial neural networks outperformed other machine learning models, suggesting its robustness in 

scenarios with constrained datasets. 
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ABSTRACT 

This study focuses on applying machine learning (ML) techniques to fluid mechanics problems. Various ML techniques 
were used to create a series of case studies, where their accuracy and computational costs were compared, and behavior 
patterns in different problem types were analyzed. The goal is to evaluate the effectiveness and efficiency of ML 
techniques in fluid mechanics and to contribute to the field by comparing them with traditional methods. Case studies 
were also conducted using Computational Fluid Dynamics (CFD), and the results were compared with those from ML 
techniques in terms of accuracy and computational cost. For Case 1, after optimizing relevant parameters, the Artificial 
Neural Network (ANN), Random Forest (RF), and Support Vector Machine (SVM) models all achieved an R² value 
above 0.9. However, in Case 2, only the ANN method surpassed this threshold, likely due to the limited data available. 
In Case 3, all models except for Linear Regression (LR) demonstrated predictive abilities above the 0.9 threshold after 
parameter optimization. The LR method was found to have low applicability to fluid mechanics problems, while SVM 
and ANN methods proved to be particularly effective tools after grid search optimization.  
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1. INTRODUCTION 

Fluid mechanics significantly impacts our daily lives, encompassing phenomena such as water and 

airflow, as well as conduction and convection problems. One notable application is in irrigation 

systems, where fluid mechanics principles optimize water resource utilization effectively and 

efficiently [1]. In agriculture, these principles help maintain soil moisture and facilitate plant 

watering. The design and analysis of such systems often rely on a combination of computational 

fluid dynamics (CFD) and experimental methods [2]. 

 

Problem-solving in fluid mechanics typically employs a combination of experimental, numerical, 

and analytical methods. While experimental studies are valuable, they often involve high costs and 

significant time requirements. Additionally, working with prototype dimensions can introduce 

errors, necessitating the reduction of problems to model scale. Technological advancements have 

increased the use of CFD simulations, offering a more efficient alternative to experimental studies. 

However, CFD simulations can also be time-consuming and require substantial computing power, 

potentially introducing numerical errors, especially for inexperienced designers. Analytical 

methods are only applicable to a limited range of problems. In recent decades, machine learning 

(ML) methods are made progress in fluid mechanics problems. The main advantages of using ML 

techniques in fluid mechanics are given as follows:  

• Machine learning techniques can use massive amounts of data in order to solve the problem. 

ML algorithms can analyze the data set more powerfully than traditional techniques.  

• Machine learning methods can introduce flexible algorithms for nonlinear CFD problems.  

•  Machine learning can leverage high-performance computers through parallel computing and 

distributed processing capabilities, allowing it to effectively utilize large datasets. This enables 

faster solving of fluid mechanics problems and provides the opportunity to obtain more 

comprehensive results. 

• ML techniques can also be used in optimization problems. Algorithms can evaluate the different 

combinations and serve the best scenario for the problem.  

 

ML techniques are gradually applied to reduced-order modeling, reconstruction and prediction, 

turbulence model closure, flow control techniques, and optimization problems. The usage of ML 

in fluid mechanics goes deep. In 1950s, Rosenblatt [3], designed expert systems that think like 

human brain. Minsky and Papert [4], dampened the initial excitement of ML, they claimed that a 

single-layer linear perceptron's inability to solve the Exclusive OR (XOR) problem. As a result, 
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the progress of neural network development experienced a significant setback. In 1986, Hinton et 

al. [5], proposed a new learning procedure called as the backpropagation algorithm and LeCun et 

al [6], used this method successfully in the recognition of handwritten zip code digits. In 1984, 

Mehta and Kutler [7], applied artificial intelligence to computational aerodynamics. They 

concluded that expert systems will be a valuable tool, especially for tackling aerodynamic tasks. 

Indeed, when examining the studies conducted from those days to the present, it is evident that 

this statement has been confirmed by numerous research endeavors. 

 

In today's world, machine learning techniques have established themselves as a prominent source 

of data with satisfactory accuracy and power in the field of renewable energy. In the study of Aziz 

[8] the prediction of renewable energy in India is predicted with using hybrid machine learning 

methods. The predictions are compared with the methods that are currently used and it is seen that 

ML model is a powerful tool in forecasting energy. Sakthi et al. [9] proposed ML technique for 

renewable energy analysis based on photovoltaic cell for wind energy hybridization. They used 

convolutional kernel support regression vector as a ML method and it is shown that the ML method 

can predict building energy demand and supply. Tirth et al. [10] used ML methods to predict the 

energy production for smart grid-based energy storage system. The prediction ability of the 

techniques used is 99% when compared with the experimental results. Li and Yi [11] used artificial 

neural networks (ANN) and genetic algorithms (GA) to optimize the geometrical parameters of 

the shell pavilion and maximize energy generation instead of using a time-consuming numerical 

approach. They found an optimal design by using this technique instead of the convolutional 

methods.  

 

Aerospace applications have also emerged as another application area of machine learning 

techniques. In recent years, machine learning has been extensively applied in aerodynamics, 

leading to successful outcomes. Li et al [12], reviewed several researches that uses machine 

learning method to optimize the aerodynamic shape of the airfoil. In sight of the review it is 

observed that ML can handle with the big training data sets achieving high prediction accuracy in 

the aerodynamic coefficients also, can contribute new optimization architectures to address the 

limitations of numerical techniques. Zan et al. [13], tried convolutional neural network (CNN) to 

aerodynamic shape optimization. They define 109 input parameters as angle of attack, Mach 

number, chord length, wing span...etc. They examined the effect of CNN parameters in the 

predictive performance. It is seen that CNN parameters directly affects the accuracy therefore 
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before starting to the optimization with ML techniques, the parameters of the selected ML model 

should be optimized for each of the problem. Peng et al. [14] utilized CNN for predict the airfoil 

lift coefficients. CNN achieves 0.97% error while regression models have error rate of 10%. Khan 

et al. [15] applied CNN for compressible flow jet with circular ribs. They investigate the effect of 

the diameter, location of the rib also the nozzle geometry. In their ANN algorithm they used Mach 

number, rib diameter, rib location as an input while the output parameters are pressure loss and 

power. They compared the prediction ability of ANN, CNN and Deep Neural Network (DNN) 

models. They claimed that CNN predicted the wall pressure data with the highest accuracy.  

 

Lastly, an exemplification of the successful application of ML techniques can be observed in the 

domain of ventilation, where endeavors are made to optimize flow patterns, predict air quality, and 

enhance the performance of ventilation systems. In a study by Esrafilian-Najafabadi and 

Haghighat [16], various prediction models were investigated to anticipate the performance of air-

conditioning systems. Decision trees, k-nearest neighbors (kNN), multi-layer perceptron, and 

gated recurrent units were implemented to tackle the aforementioned problem. Notably, the kNN 

method was utilized, whereby an exhaustive search was conducted, exploring numerous potential 

combinations within a defined range, often referred to as the grid search technique. This approach 

facilitated the exploration of a multitude of optimization possibilities within a relatively short span 

of time. 

 

As mentioned above, the applicability of ML techniques to fluid mechanics problems is 

progressively increasing day by day. Furthermore, the success of ML methods is noted to exhibit 

significantly higher levels of accuracy compared to traditional approaches. Ulucak et al. [17] 

showed that in the optimization process of the geometrical parameters of the solar chimney power 

plant to maximize the power output, the most important advantage of soft computing techniques, 

when compared with numerical methods, is the drastic reduction of computational costs. Also in 

several researches, it is showed that root mean square error (RMSE) values are drastically reduced 

with the machine learning techniques [18]–[20]. In Table 1, some of the studies are summarized 

that uses ML techniques for different fluid mechanics and heat transfer problems.  
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Table 1. Several literatures uses ML techniques in fluid mechanics & heat transfer problems 
Authors Specific Problem Results  
Ayli and Kocak 

[19] 

Heat transfer in  pipes with twisted tape 

is predicted with ANN 

R2 is 0.97043, higher accuracy, less time than 

CFD 

Sim et al [21] the piston bowl geometry and injector 

design with CFD and ML techniques 

ML design provided similar performance at 

mid-load but a 3.8–4.5 % reduction in fuel 

consumption compared to the base design 

Aly and Clarke 

[22] 

CFD and ML techniques are used for the 

wind design of solar panels 

ML can speed up 10.000 times faster than CFD 

& more efficient design is obtained with ML 

Ye and Hsu [23] structural fire response prediction with 

numerical and ML techniques  

Higher accuracy with Random Forest and 

Gradient Boosting models in real-time 

displacement prediction 

Jin et al. [24]  Finding the  influence of nasal vestibule 

structure on nasal obstruction with Ml 

method  

The ML results are verified by the cooperation 

of clinical means with a high accuracy level. 

Le at al.  [25] Efficiency enhancement of Cyclone 

separators with deep learning 

k-fold cross-validation is utilized. DL 

approach decreases the computational cost 

while increasing the accuracy level.  

Milicevic et al. 

[26] 

Random Forest, Gradient Boosting and 

Artificial Neural Networks are used to 

predict the biomass trajectories of 

particle mass burnout.  

ANN showed the best predictions for both 

particle mass burnout with higher R2 values.  

Upadhyay et al. 

[27] 

prediction of the CFB riser axial solid 

holdup profile with the ANN method  

ML model produces more output data than 

experiments with low computational cost and 

higher accuracy  

Nasution et al. 

[28] 

the pressure of convective water flow 

within a copper metal foam tube 

prediction with ANFIS 

Using the GAFIS and ANFIS algorithms, a lot 

of computational time could be saved 

compared to the CFD calculation time 

 
 

This study focuses on applying machine learning (ML) techniques to fluid mechanics problems 

and introduces a novel approach by integrating ML methods with computational fluid dynamics 

simulations for performance evaluation and optimization. The objective is to assess the 

effectiveness and efficiency of ML techniques in solving fluid mechanics problems while 

contributing to advancements in this field through systematic comparisons with traditional CFD 

methods. To achieve this, three distinct fluid mechanics problems—flow around a covering-

diverging nozzle, flow in a vortex mixer, and flow in a solar dryer—were selected as case studies. 

Initial numerical analyses, numerical verifications and geometric optimizations were conducted 
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using ANSYS Fluent to generate robust datasets. These datasets were then utilized to implement 

and optimize various ML methods, including artificial neural networks (ANN), support vector 

machines (SVM), and regression learners. 

 

The study focuses on two different aims. First, high-quality data for ML training is generated 

through validated CFD simulations; second, ML techniques are systematically compared in terms 

of accuracy and computational efficiency across different fluid mechanics problems. By 

examining the behavior of ML methods under varying problem conditions and with limited 

parameter datasets, the study aims to provide insights into the practical applicability and reliability 

of these techniques. The findings emphasize the potential of ML methods to reduce computational 

costs significantly while maintaining high prediction accuracy, offering a compelling alternative 

to traditional numerical approaches. 

 

2. NUMERICAL STUDIES 

2.1. Case I: Flow In A Vortex-Mixer 

2.1.1. Problem description 

Stirring is crucial for fluid mechanics problems like mixing, precipitation, dissolution, and 

chemical reactions. The failure of the efficient mixing can even cause the complete failure of the 

process. Mixing intensity relies on the impeller type, number of blades of the impeller, shaft 

location, and arrangement of internals. In the design process of the mixer, optimization of the blade 

geometry is one of the crucial steps. In this part of the study, the geometrical parameter effect on 

the stirrer efficiency is investigated. 

 

The geometry of the stirrer tank is depicted in Figure 1. The ratio of stirrer diameter to vortex 

mixer diameter (d/D) and fluid height to vortex mixer diameter (h/D) varies between 0.4 to 0.6 

and 0.5-0.8, respectively. The rotational speed range is 4.16<ω<16.6.  The effect of the stirrer 

diameter, initial liquid height and rotational speed on the shape of the vortex by examining the z/h, 

tangential and axial velocity is investigated. The shaft holds the impeller, which has two blades 

and is located concentric to the axis of the tank.  
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Figure 1. (a) Schematic view of the vortex mixer (b) Test cases of the vortex mixer 

 

2.1.2. Numerical methodology  

A systematic approach is utilized for the three-dimensional, incompressible, inviscid, and transient 

problem using the commercial software ANSYS Fluent. The equations governing the flow are 

given in Eq. (1) and (2) in the Cartesian coordinate system using the index notation. Reynolds- 

averaging approach is used to model the problem.  
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(2) 

 

 

where xi is the cartesian coordinates in the x-direction, ui is the instantaneous Cartesian velocity 

components, t is time, P is pressure and ν is kinematic viscosity. The subgrid-scale stress is defined 

by 𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑢𝑢𝚤𝚤𝑢𝑢𝚤𝚤����� − 𝜌𝜌𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥����� . As a turbulence model, k-ɛ is used, which is used in similar studies [29], 

[30]. The mathematical expression of turbulence kinetic energy, denoted with k, and dissipation 

rate, denoted with ɛ, is given as follows [29], [30]. 
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(4) 

 

In Equation (3) and (4) Gk is the generation of kinetic energy expressed as [29], [30].:  

 

𝐺𝐺𝑘𝑘 = 𝜇𝜇𝑡𝑡 �
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                                                                     (5) 

 

Turbulence kinetic energy generation due to buoyancy is denoted with GB. YM represents the 

contribution of the fluctuating dilatation in compressible turbulence to the overall dissipation rate. 

Pressure-velocity coupling is solved using the SIMPLE algorithm. All governing equations were 

discretized with a second-order upwind scheme finite volume. Turbulence equations were 

discretized with first-order upwind scheme finite volume. 

 

A no-slip wall boundary condition is applied to the walls of the tank and the stirrer as a boundary 

condition. The three-dimensional flow domain is discretized using a tetrahedral unstructured mesh. 

The mesh is refined in the regions around corners and near the blades to capture fine details. To 

ensure the result is independent from the mesh, a grid sensitivity analysis is conducted. The number 

of elements is systematically increased, and the impact of the element size on the power number 

is investigated. If the power number, as defined in Equation (6), remains unchanged with varying 

mesh densities, it indicates that the grid has reached a state of insensitivity, yielding consistent 

results [31]. 

 

𝑁𝑁𝑝𝑝 = 𝑃𝑃
𝜌𝜌𝑁𝑁3𝑑𝑑5

= 2𝜋𝜋𝜋𝜋𝜋𝜋
𝜌𝜌𝑁𝑁3𝑑𝑑5    

                                                                     (6) 

 

where τ is the torque. As given in Figure 2(a), when the number of mesh elements is 8.5x105 and 

106, power number variation is below 1.5%. Therefore, taking into account the computational cost, 

the number of mesh is chosen as 8.5 × 105. 
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Figure 2. (a) Mesh independency study (b) Validation of the numerical results  

 

To validate the numerical methodology, experimental data from Li et al. [31] is utilized. The 

specific parameters used in the validation include H/T = 1, D/T = 0.75, and a stirrer rotation rate 

of 4.167 rps. The shape of the vortex is determined by employing axial and radial coordinates and 

generating a polynomial curve, similar to the approach followed in the studies of Li et al.[31] and 

Sarkar et al. [32]. In Figure 2(b), the obtained vortex shape is compared to the results obtained by 

Li et al. [31]. The maximum root mean square error (RMSE) is calculated as 9.8%, which is 

considered satisfactory in terms of agreement between the numerical and experimental results. 

 

2.2. Case II: Solar Air Dryer 

2.2.1. Problem description 

Solar air dryers offer an environmentally friendly drying method while reducing energy costs by 

using renewable solar energy. It is widely used especially in the agricultural sector, food industry 

and industrial drying applications. Solar dryers are mainly used in space heating, agricultural 

processes, and seasoning, such as timber [33]. The working principle of solar dryers is depicted in 

Figure 3 (a). Solar air dryers use a collector or solar panels that collect light from the sun, which 

converts sunlight into thermal energy. The air to be used for the heating process is taken from the 

outside and transmitted to the dryer through air ducts or fans. The airflow is heated using the 

thermal energy from the solar panels. This thermal energy transfer occurs while fluid is flowing 

through the ducts. The heated air passes over the materials in a cyclical flow continuously. In this 

way, a continuous drying process is carried out. One of the most important factors that directly 

affect heat transfer is the design of the absorber plate. To enhance the system efficiency, the flow 

area geometrical modifications are embedded using V-corrugated fins, rectangular fins, or 
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perforated fins [34], [35]. Therefore, in this part of the study, the effect of the fin on solar air dryer 

performance is investigated, and data is generated for the machine learning study. The mass flow 

rate effect and fin spacing effect on performance are investigated. 

 

The investigation focuses on a particular geometry, as illustrated in Figure 3(b). Figure 3(c) 

provides a detailed representation of the specifications and thermophysical properties associated 

with the system. The Solar Air Heater (SAH) in question possesses dimensions of 1 m by 0.5 m. 

Fins are attached to both walls of the SAH, with variations in the number of fins observed across 

three configurations: 11 fins, 8 fins, and 5 fins. 

 

To comprehensively examine the system's behavior, the mass flow rate is adjusted within the range 

of 0.01 kg/s to 0.1 kg/s. Each fin configuration is evaluated for multiple mass flow rates, resulting 

in a total of 15 distinct cases. 
 

 
Figure 3. (a) Schematic view of the solar dryer (b) boundary conditions (c) thermophysical 

properties 
 

2.2.2. Numerical methodology  

The numerical simulation of the solar air dryer is utilized with using ANSYS Fluent software. 

Continuity, momentum, and energy equation (Eq(1,2)-Eq(7)) are solved for 3-dimensional, steady 

state, incompressible, and turbulent flow along with the boundary conditions by the finite volume 

method [36].  
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𝜌𝜌𝐶𝐶𝑝𝑝 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑣𝑣.∇)𝑇𝑇� = 𝑘𝑘∇2𝑇𝑇 + ∅                                                                     (7) 

 

The pressure-velocity coupling is utilized with the SIMPLE algorithm, and the Implicit scheme is 

used with the hexahedral mesh structure. Pressure, momentum and energy equations are 

discretized with a second-order upwind scheme. Convergence criteria are set to 10-6. The realizable 

k-ɛ model was selected to carry out turbulent computation as it produces accurate and satisfactory 

results according to the studies in the literature [36], [37]. In order to calculate the thermal 

efficiency of the dryer, the following equation is used [38]: 

 

𝜂𝜂 = 𝑄𝑄𝑢𝑢
𝐴𝐴𝑐𝑐𝐼𝐼𝑐𝑐

                                                                                                                                                   (8) 

 

where, Ac is the collector area, and Ic is the global radiation value, which is kept as 882 W/m2. To 

calculate the Qu, Eq (9) is used [39].  

 

𝑄𝑄𝑢𝑢 = 𝑚̇𝑚𝐶𝐶𝑝𝑝(𝑇𝑇𝑜𝑜 − 𝑇𝑇𝑖𝑖)                                                                                                                                                                                                                            (9) 

 

Prior to commencing numerical simulations, a grid sensitivity test was conducted within validation 

studies for the flat plate dryer. The validation study utilized the experimental work conducted by 

Karim and Hawlader [39]. Efficiency values were compared for three different flow rates, and the 

maximum deviation from Karim and Hawlader [39] was found to be at a magnitude of 7.69%. A 

mesh independence test was conducted based on the efficiency value for a flow rate of 0.01 kg/m2s. 

At the end of the mesh independence test, it was deemed appropriate to perform the study using 

750,000 mesh elements. The comparison of the validation study is presented in Table 2. 

 

Table 2. Validation study regarding to the Karim et al. [39] 

Mass Flow 

rate (kg/m2s) 

Experimental 

efficiency [39] 

Current 

Study 

efficiency 

Difference with 

experimental 

data [39] 

0.01 0.2743 0.2954 7.69 % 

0.04 0.6015 0.6154 2.3 % 

0.06 0.6579 0.6785 3.13% 

 

 



Int J Energy Studies                                                                                                2024; 9(4): 679-721  

690 
 

2.3. Case III: Converging-Diverging Nozzle  

2.3.1. Problem description 

The nozzle, functioning as a mechanical system, serves to regulate the flow direction and enhance 

the exit velocity of the fluid by effectively harnessing its pressure energy and enthalpy. 

Converging-diverging nozzles find widespread applications in the design of various systems, 

including supersonic ramjet or scramjet inlets, internal diffusers, supersonic ejectors, as well as 

supersonic air-breathing engine inlets, internal diffusers, compressor cascades, and supersonic 

ejectors. As a result, this system is frequently employed in aerodynamics applications, wherein the 

cross-sectional area, often rectangular in shape, gradually tapers, resulting in an increase in both 

pressure and velocity [40], [41]. 

 

Figure 4(a) presents a schematic view of the converging-diverging (CD) nozzle. Typically, a 

pressurized tank is positioned behind the converging section, and the Mach number within the tank 

is lower than 1. The pressure at the nozzle inlet is referred to as stagnation pressure. Within the 

tank, the velocity is negligible due to its substantial size. The fluid then flows from the chamber 

into the converging section of the nozzle, passing through the throat, traversing the diverging 

section, and ultimately exhausting into the surrounding atmosphere as a jet. Since the primary 

objective of the CD nozzle is to convert internal energy into kinetic energy and generate thrust, 

maintaining a high level of uniformity in fluid velocity is crucial and represents one of the most 

significant design parameters for the nozzle.  

 

The numerical modeling of a converging-diverging (CD) nozzle structure has been conducted as 

the third case study. The geometry consists of three parts: the converging section, the throat 

section, and the diverging section. As known from the literature, one of the most influential 

geometric parameters on nozzle efficiency is the throat angle. Therefore, the exit-to-throat area 

ratio (AR) has been varied by increments of 0.2 from 1 to 1.6. Another significant parameter is the 

pressure ratio (NPR), which has been varied in the range of 5 to 10. 

 

Initially, a validation study, including turbulence modeling and time step analysis, was performed 

based on the governing equations given before. Subsequently, after ensuring the accuracy of the 

numerical methodology, the effects of the mentioned parameters were investigated. 
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Figure 4. (a) Schematic view of CD Noozle (b) boundary conditions (c) generated mesh 

structure 

 

2.3.2. Numerical methodology  

To analyze compressible flow motion, it is necessary to add one more term, density change in 

time, to solve the equations of mass, momentum, and energy. These equations are expressed as 

follows [42]: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌𝜌𝑢𝑢𝑖𝑖) = 0 
(10) 

 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑢𝑢𝑖𝑖) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

(𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗) = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑡𝑡𝑗𝑗𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

 
(11) 

 

𝜌𝜌 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌(𝑒𝑒 + 1

2
𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖)� + 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�𝜌𝜌𝑢𝑢𝑗𝑗(� + 1

2
𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖)� = − 𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑢𝑢𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖) +

𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

  

(12) 

 

In these equations, the term "e" represents the internal energy, and "ℎ =  𝑒𝑒 +  𝑝𝑝/𝜌𝜌" represents the 

specific enthalpy value. For compressible flows, the term "τ" represents the viscous stress tensor, 
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which includes the second-order viscosity term and the molecular viscosity term. The boundary 

conditions that are used to solve governing equations are depicted in Figure 4(b). 

 

The validation phase involved the utilization of data of Mason et al [42] obtained from experiments 

conducted at the static test facility of Langley's 16-foot transonic tunnel, under identical geometric 

and flow conditions. Numerical analyses were carried out to compare the computational study with 

the referenced experimental investigation. The mesh structure was created using the structured 

approach in the ANSYS Mesh software. Initially, the influence of number of mesh element and 

size of the mesh on the results is explored. Three distinct mesh structures are considered: coarse, 

consisting of 750,000 elements; medium, consisting of 1,000,000 elements; and fine, consisting of 

2,000,000 elements. Static pressure distributions at the center are plotted for each mesh structure 

and compared against the experimental data and among themselves. Upon examination of Figure 

5, it can be observed that employing a fine mesh structure led to a mere 0.8% enhancement in 

proximity to the experimental results. Consequently, it is determined that utilizing a medium mesh 

structure would suffice, as further refinement in the mesh structure did not significantly impact the 

accuracy of the results, while imposing increased computational costs. Hence, the decision was 

made to proceed with the medium mesh structure for subsequent analyses. Furthermore, the 

compliance between the experimental data and numerical simulations, as displayed in the same 

figure (Figure 5), demonstrated a satisfactory agreement. Finally, the effect of turbulence models 

on the numerical results was investigated. As depicted in Figure 5 (b), among the three turbulence 

models examined, the k-epsilon model provided the best approximation. By completing the 

numerical validation, the study concluded its initial phase, subsequently focusing on investigating 

the influence of aspect ratio (AR) and nozzle pressure ratio (NPR). 
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Figure 5. (a) Grid sensitivity test & Validation Study (b) Turbulence model study  

 

3. NUMERICAL RESULTS 

3.1. Case I: Flow In A Vortex-Mixer 

In this case, the geometrical parameter effect on the stirrer efficiency is investigated. The ratio of 

stirrer diameter to vortex mixer diameter (d/D) and fluid height to vortex mixer diameter (h/D) 

varies between 0.4 to 0.6 and 0.5-0.8, respectively. The rotational speed range is 4.16<ω<16.6.  

The effect of the stirrer diameter, initial liquid height and rotational speed on the shape of the 

vortex by examining the z/h, tangential and axial velocity is investigated. The shaft holds the 

impeller, which has two blades and is located concentric to the axis of the tank. For each different 

scenario, vortex shapes were obtained using radial and axial coordinates and generating 

polynomial curves, as done in the study by Sarkar et al. [32]. Figure 5(a) illustrates the influence 

of velocity on the vortex shape. It can be observed that as the rotational speed increases, the shear 

effect intensifies and the vortex structure grows larger. When examining the effect of the d/D ratio, 

it is observed that the impact of the stirrer diameter increases as it approaches the wall edges, while 

its influence is less dominant in the central region, as seen in Fig 5(b). Increasing the stirrer 

diameter causes the central vortex to penetrate deeper and leads to an increase in turbulence 

instabilities. Regarding the initial water level effect, it is clearly seen in Fig 5(c) that it has no 

effect on the central region. Among the parameters studied, the initial water height is considered 

to have the least impact. 
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Figure 5. The effect of (a) rps for  d/D=0.6 and h/D=0.5, (b) d/D for 12.5 rps and h/D=0.5, (c) 

h/D for d/D=0.4 and 12.5 rps on the vortex shape. 
 

In Figure 6, radial velocity distributions at different positions are shown. Upon examining the 

results, it is observed that the velocity initially increases linearly in the radial direction. As it 

approaches the wall, the velocity gradually rises and then dramatically drops towards zero. 

 

 
Figure 6. Radial velocity component distribution for D/T=6, h/D=0.5 and 12.5 rps  

 

For different rotational velocities, streamline plots are presented in Figure 7. Symmetrical flow 

filed is occurred through the shaft of the stirrer. A circulation loop originates above the stirrer. The 

recirculation zones get larger, and the turbulence intensity increases with the increase in RPM. 
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Figure 7. 3-D streamlines for different rotational Phase-I velocities (for d/D=0.6 and h/D=0.5) 

(a) 4.16 rps (b) 8.3 rps (c) 12.5 rps (d) 16.6 rps  
 

To observe the effect of the stirrer diameter, velocity contours are plotted on the center plane, as 

illustrated in Figure 8. It is observed that as the stirrer diameter increases, especially near the tank 

edges, the velocity values increase. This indicates a stronger vortex structure and a more 

homogeneous mixing. The vortex energy has also increased with the stirrer diameter. 

 

To observe the effect of the stirrer diameter, velocity contours are plotted on the center plane, as 

illustrated in Figure 8. It is observed that as the stirrer diameter increases, especially near the tank 

edges, the velocity values increase. This indicates a stronger vortex structure and a more 

homogeneous mixing. The vortex energy has also increased with the stirrer diameter. 
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Figure 8. Velocity distribution for different stirrer diameters (a) d/D=0.4 (b) d/D= 0.6 (c) 

d/D=0.85  
 

3.2. Case II: Solar Air Dryer 

The investigation focuses on a particular geometry that provides a detailed representation of the 

specifications and thermophysical properties associated with the system. The Solar Air Heater has 

adimensions of 1 m by 0.5 m. Fins are attached to both walls of the SAH, with variations in the 

number of fins observed across three configurations: 11 fins, 8 fins, and 5 fins. To 

comprehensively examine the system's behavior, the mass flow rate is adjusted within the range 

of 0.01 kg/s to 0.1 kg/s. Each fin configuration is evaluated for multiple mass flow rates, resulting 

in a total of 15 distinct cases. 
 

As the mass flow rate increases, there is an associated increase in the Reynolds number and 

turbulence, leading to a reduction in the outlet temperature values (Figure 9(a). It is evident from 

the obtained results that the influence of the mass flow rate is more pronounced at lower flow rates, 

while its impact on temperature diminishes as the flow rate increases. With the rise in flow rate, 

thermal efficiency experiences an enhancement due to a decrease in thermal losses as shown in 

Figure 9(b). Furthermore, it is noteworthy that the effect of the flow rate on efficiency exhibits a 

more substantial increase of approximately 7% at lower flow rates, whereas at higher flow rates, 

this influence diminishes to around 3%. However, beyond a critical flow rate, the increased heat 

transfer to the surrounding environment results in a decline in efficiency. Hence, it can be 
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concluded that solar dryers possess a critical mass flow rate threshold, whereby exceeding this 

value leads to a detrimental effect on efficiency. 

 

 
Figure 9. (a)Variation of outlet temperature for different mass flow rates (b) Variation of 

efficiency for different mass flow rates (n=5) 

 

The impact of fin count on the performance of the solar dryer has been thoroughly investigated, as 

depicted in Figure 9. It should be noted that the thickness of the fins remained constant throughout 

the study, while variations in fin count resulted in corresponding changes in fin spacing. Notably, 

the fin count, particularly at low mass flow rate values (<0.05 kg/s), has exhibited a substantial 

influence on the efficiency of the system. 

 

A critical observation has been made regarding the relationship between fin spacing and efficiency. 

As the fin spacing decreases, or, conversely, the fin count increases, it enables improved mixing 

within the system, leading to increased turbulence and enhanced efficiency. This phenomenon is 

attributed to the fact that a decrease in fin spacing facilitates better heat transfer through increased 

surface area, thereby favoring the utilization of closely spaced fins. 

 

The investigation emphasizes the significant role played by fin count in determining the 

performance of the solar dryer. By optimizing the spacing between fins, the system can achieve 

improved thermal efficiency through enhanced heat transfer and increased turbulence. The 

findings underscore the advantage of employing a higher fin count configuration, which facilitates 

greater surface area for heat transfer and contributes to the overall effectiveness of the solar dryer. 
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Figure 10. Efficiency variation for different number of fin configurations  

 

Figure 11 presents velocity distributions on seven different planes for varying fin counts. The 

distribution illustrates the formation of vortex structures within the inter-fin regions. It is evident 

that as the fin count increases, there is an augmentation in the turbulent kinetic energy and the 

presence of flow phenomena. 

 

The increasing fin count promotes higher levels of turbulence, leading to intensified fluid motion 

and enhanced mixing. This phenomenon manifests in the form of vortex structures within the flow 

field, which contribute to increased turbulence and improved convective heat transfer. The 

findings highlight the positive influence of higher fin counts on turbulence generation and flow 

characteristics, indicating a favorable impact on the overall performance of the system. 

 

 
Figure 11. Velocity contour for configuration of (a) 11 fin (b) 8 fin (c) 6 fin  
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3.3. Case III: Converging-Diverging Nozzle 

The numerical modeling of a converging-diverging nozzle structure has been conducted as the 

third case study. As known from the literature, one of the most influential geometric parameters 

on nozzle efficiency is the throat angle. Therefore, the exit-to-throat area ratio has been varied by 

increments of 0.2 from 1 to 1.6. Another significant parameter is the pressure ratio, which has been 

varied in the range of 5 to 10. 

 

The impact of aspect ratio on temperature and velocity at the exit of the diverging chamber is 

illustrated in Figure 12. The results clearly demonstrate that the throat area exerts a dominant 

influence on both velocity and temperature. Specifically, an increase in the AR ratio, 

corresponding to a reduction in throat diameter, leads to an increase in velocity and thus, 

volumetric flow rate. Conversely, it has an opposite effect on the exit temperature, causing a 

decrease. It can be observed that a higher AR value has a positive impact on the generated thrust. 

 

 
Figure 12. (a) Radial distribution of the tangential velocity at the nozzle exit for different AR 

values  (b) radial distribution of the temperature at the nozzle exit for different AR values   

 

An abrupt increase in the aspect ratio, resulting from a smaller throat diameter, enhances the 

expansion velocity of the fluid. Consequently, this leads to a greater pressure drop and a 

subsequent decrease in temperature. As a result, an increase in AR results in an augmentation of 

flow rate and velocity while concurrently causing a reduction in temperature. Figure 13 presents 

the turbulence kinetic energy contours for different aspect ratios, highlighting the efficiency of the 

design. The impact of AR is clearly evident along the walls of the diverging section. As the AR 

increases, particularly at the nozzle exit, the disturbance in the flow intensifies. 
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Figure 13. Turbulence kinetic energy distribution through the nozzle (a) AR=1 (b) AR=1.2 (c) 

AR=1.4 (d) AR=1.6 

 

The effect of varying the inlet pressure on CD nozzle performance was investigated by changing 

the Nozzle Pressure Ratio (NPR) value in increments of 2 between 5 and 11. The velocity variation 

at the outlet  for different NPR values is shown in Figure 14(a). As observed, the flow reverts to 

rotational flow in the divergent region especially in the axis, resulting an increase in velocity 

values. It can be seen that as the NPR value increases, the Pbase value rises, but the influence of 

NPR on pressure is more pronounced at lower NPR values. 

 

 
Figure 14. (a) Velocity distribution in the outlet for different NPR values (b) Pb/Pa values at 

different NPR values 
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4. MACHINE LEARNING APPROACHES  

Machine learning is an artificial intelligence model that generates output based on input data 

provided by users. ML techniques are divided into four subgroups: supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning. In supervised 

learning models, datasets are used to train the algorithm and make predictions for new data inputs. 

By adjusting weights for each input as part of the cross-validation process, a system with high 

accuracy in prediction capabilities is developed. 

 

During implementation, important parameters include linearity of the data, training time, 

prediction time, memory requirements, and analysis durations. It is generally necessary to start 

with simple models in the initial attempt. For example, evaluating results using linear models and 

decision trees, and if satisfactory accuracy is not achieved, more complex models such as neural 

networks, ensemble models, extreme gradient boosting, and support vector machines are tried. 

Therefore, in this study, linear regression and regression tree will be attempted for all three cases, 

followed by SVM and ANN methods. ML models will be created using data obtained from CFD 

results. In each case, the ML model will be trained using 70% of the dataset. The ML models are 

implemented using the MATLAB software. 

 

4.1. Linear Regression (LR) 

Linear regression finds the linear relationship between the dependent variable and one or more 

independent variables using a best-fit straight line. In general, a linear model makes predictions 

by simply calculating a weighted sum of the input features plus a bias term (also known as the 

intercept term). This technique is used in linear regression, where the dependent variable is 

continuous, and the independent variable(s) can be continuous or categorical, and the nature of the 

regression line is linear. Mathematically, the prediction using linear regression can be expressed 

as follows: 

 

𝑦𝑦(𝑤𝑤, 𝑥𝑥) = 𝑤𝑤𝑜𝑜 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 (13) 

 

Where y is the predicted value, n is the total of input features and x is the input feature. The main 

objective in linear regression is finding the best linear equation which predicts the output value 

based on the independent input values. Linear regression model has certain assumptions for its 

applicability. Firstly, a linear relationship between the independent and dependent variables is 
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expected. All the inputs should be independent variables. Homoscedasticity is required, meaning 

that the errors in the model are constant across all levels of the independent variables. The errors 

in the model are assumed to be normally distributed. There should be little to no correlation among 

the independent variables, or at worst, a very low degree of correlation. These assumptions limit 

the applicability of linear regression to problems that are predominantly nonlinear, such as fluid 

mechanics [43]. 

 

4.2. Random Forest (RF) 

Random forest method which is an ensemble supervised algorithm uses random sampling of 

decision trees. The superior part of the RF is each of the tree in the RF model select features and 

samples, and in the final part final prediction is obtained by averaging of each of the tree. By that 

way, overfitting problem is avoided. Regression tree models increases the prediction accuracy by 

combining the regression trees. RF model has decision trees that investigates the subset of the 

input data. In Figure 15, the schematic of the RF model is illustrated.  

 

 
Figure 15. Process diagram of RF model 

 

In the RF algorithm, each tree created depends on the values of a randomly sampled vector, 

independently. All trees have the same distribution. Instead of splitting each node by using the 

best partition among all variables, RF splits each node by using the best among a randomly selected 

subset of predictor variables for that node. The Eq. (14) shows the definition of the RF model that 

is educated with the tree number of k. In the equation 𝐻𝐻(𝑋𝑋,𝜃𝜃𝑖𝑖) is the meta decision classifier. The 
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difference between meta decision tree classifiers and ordinary decision trees is that they do not 

directly predict the class value but rather indicate which base-level classifier to use for the 

prediction [44]. 

 

𝐻𝐻(𝑋𝑋,𝜃𝜃𝑖𝑖) = �ℎ𝑗𝑗

𝑘𝑘

𝑖𝑖=0

(𝑋𝑋,𝜃𝜃𝑖𝑖), (𝑖𝑖 = 1,2,3, … . ,𝑚𝑚)       
(14) 

 

4.3. Support Vector Machine (SVM) 

The Support Vector Machine (SVM) method, like Artificial Neural Networks, is used for 

approximating multivariate functions with high precision. SVM performs exceptionally well in 

high-dimensional spaces and is a reliable approach for modeling nonlinear problems. The 

technique works by identifying a hyperplane that best divides a dataset into two classes. This 

hyperplane is selected by maximizing the margin between the classes, leading to an optimal 

solution. SVM is particularly effective in dealing with high-dimensional, nonlinear, noisy, and 

unstructured data, making it suitable for a wide range of applications. Additionally, SVM is 

computationally efficient, delivering globally optimal solutions with excellent consistency and 

repeatability. Figure 16 provides an example of SVM [45], [46]. 

 

 
Figure 16. (a) Two classes (b) hyperplane that separated to two classes 

 

4.4. Artifıcial Neural Network (ANN) 

Neural Networks are comprised of a vast number of interconnected neurons organized 

sequentially. This array of neurons is known as layers, with the first layer being the input layer 

and the last layer being the output layer. ANNs are highly advantageous as they are able to learn 

the underlying patterns in a data set, enabling them to make accurate predictions and 

classifications. Furthermore, ANNs are highly adaptable and can be used to solve a wide range of 

problems. The input signals are transferred to the output layer from the input layer by passing the 
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hidden layer with using the activation functions and weights. The output of the ANN is expressed 

as follows:  

 

𝑦𝑦 = 𝑝𝑝[𝑓𝑓(𝑊𝑊1𝑥𝑥 + 𝐵𝐵1)𝑊𝑊2 + 𝐵𝐵2]                                                  (15) 

 

In the equation p and f are the activation functions, W and B are the weights. ANN provides the 

output by characterizing the nonlinear correlation between the input and output parameters by the 

multi-layer neurons, activation functions and weight and bias vectors between neurons. The weight 

and bias vectors are determined by iterative learning process for each of the problem with using 

the numerical data for the current study. The artificial neural network architecture is depicted in 

Figure 17. 

 

 
Figure 17. Structure diagram of artificial neural network model 

 

As depicted in the figure, the input signals are weighted and added to the bias and connected to 

the activation function. In the final stage, the output data is generated in the output layer. The 

mathematical expression of this process is expressed in Eq (16). 

 

𝑦𝑦 = 𝜑𝜑�𝑏𝑏 + �𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� 
(16) 

 

In Eq (16), xi is the input values, wi denotes the weight, n is the number of data and φ is the 

activation function. In the training phase of the ANN structure forward propagation method is used 

as calculated follows:  
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𝑀𝑀𝑗𝑗 = �𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑏𝑏𝑗𝑗                 
(17) 

 

𝑦𝑦𝑗𝑗 = 𝑓𝑓(𝑀𝑀𝑗𝑗)                                                  (18) 

 

4.5. Evaluation Of The ML Algorithms 

For each case, the four ML methods with their defined mathematical frameworks will be applied. 

In order to compare the applied methods with each other and provide a numerical representation 

of which method offers what type of approach in which type of problem, the RMSE (Root Mean 

Square Error) and R (R-squared) statistical methods have been employed. 

 

The R-value ranges from 0 to 1, with a higher value indicating increased accuracy. When R=1, it 

can be said that the used model provides perfect predictions. The mathematical representation of 

the Pearson correlation coefficient (R) is as follows: 

 

𝑅𝑅 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2 ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

               
(19) 

 

The RMSE value is utilized to demonstrate the percentage difference between the CFD data and 

the prediction data. A lower RMSE value indicates a better fit. The mathematical definition of 

RMSE is presented in the following equation: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
��

𝑅𝑅𝑒𝑒 − 𝑅𝑅𝑝𝑝

𝑅𝑅𝑒𝑒
�
2𝑁𝑁

𝑖𝑖=1

               

(20) 

 

By employing these statistical methods, the performance of each applied ML method can be 

compared, and the numerical representation of their respective approaches in different problem 

types can be presented. 

 

5. MACHINE LEARNING RESULTS 

 For each of the data sets, sensitivity analysis is performed and hyperparameters are obtained and 

for the best scenario, results are depicted. In this part, firstly for each of the case ML results will 
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be given and then, a comparison of the ML results for each of the cases will be compared with 

each other. By this comparison, the type of problem and the type of technique that is the most 

powerful will be determined. For each of the cases, the input and output parameters are depicted 

in Figure 18, which also depicts the framework of the study.  

 

 
Figure 18. Framework of the study and Input and Output for ML 

 

5.1. Linear Regression 

 In the linear regression model, the main objective is to find the best linear relationship between 

the dependent and independent variables. This is performed by obtaining the LR coefficients and 

measuring the difference between the numerical and predicted values. In the present study, the 

Stochastic Gradient Descent (SGD) algorithm is implemented to minimize the MSE. Independent 

variables and dependent variable(s) for each case are illustrated in Figure 19. For the SGD model, 

four types of regression model types are tried linear, interactions linear, robust linear, and stepwise 

linear model. In Figure 19, R values are given for each of the tried LR models for all of the cases. 

In the ML approach, the best approach was achieved for case 3 in all tested models. However, the 

R-squared values for all cases are below 0.8. The interactions linear model has provided the best 

approach among the three cases. This can be attributed to the ability of the model to capture 

complex relationships more effectively. 
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Figure 19. Pearson coefficient for four different LR models for each case  

 

5.2. Support Vector Machine  

In the analysis of SVM results for Case 1, it was found that the Cubic kernel delivered the poorest 

results, whereas the Gaussian kernel offered the most accurate predictions, as shown in Table 3. 

The number of box constraints had a relatively small effect, around 3.8%, when the kernel function 

was unchanged. However, the impact of the Box constraint became more noticeable when the 

kernel function changed, as seen in Fig 20. For example, with the Linear kernel, adjusting the C 

value from 5 to 25 only caused a 1.3% change in R and a 0.8% change in MSE. In contrast, when 

the C value was kept at five, but the kernel function shifted from Linear to Gaussian, R increased 

significantly by 19.7%, indicating a considerable performance improvement. The superior 

performance of the Gaussian kernel can be attributed to its ability to effectively capture nonlinear 

relationships, which is especially beneficial for modeling nonlinear problems. 
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Figure 20. Effect of box constraint and  different kernel functions 

 

The impact of different kernel functions and box constraint values on various cases is illustrated 

in Figure 21. When using the linear kernel function, changing the value of c has minimal effect 

across all cases. On the other hand, when the cubic function is used, the impact of the box 

constraint value on R2 reaches levels of up to 30%. In Case 1 and Case 3, the Gaussian kernel 

function maximizes the predictive performance, while in Case 2, the preferred function type is 

quadratic. According to the obtained results, it can be said that the choice of kernel function and 

C value should vary according to the nature of the problem, emphasizing the need for problem-

specific determination. 

 

Examining the impact of Kernel function variations on problem-solving time, the quadratic 

function performs approximately 2.2 times slower than the linear function in each problem. The 

longest solution time, regardless of the problem, is observed with the cubic function 

approximation, while the shortest solution times are achieved when using the linear function. 

Increasing or decreasing the box constraint value does not have a significant impact on 

computational cost. 
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Figure 21. The effect of Kernel functions and box constraints on each case 

 

5.3. Random Forest 

 For each of the cases, a trial-and-error test is utilized to optimize the number of leaf nodes and 

other parameters. In Table 3, the optimal values of hyperparameters for the RF model obtained by 

performing a grid search are given.  

 

For each case, the impact of each parameter has been individually examined, leading to important 

findings. For example, in each case, as the number of estimators increases, the computation time 

also increases. When the number of estimators is increased by a factor of 10, the average 

computation time tends to triple. Increasing the number of estimators up to a certain point has 

improved the predictive power, but beyond a critical value, it starts to decrease. Therefore, it can 

be concluded that the number of estimators used in the Random Forest model has a critical value, 

where the predictive performance improves up to that value and declines afterward. However, it 

is important to note that this critical value may vary depending on the problem, making it a 

parameter that needs to be optimized for each specific problem. 

 

Increasing the maximum depth helps the constructed trees to have a deeper understanding of more 

complex structures in the data. However, setting the maximum depth too high can lead to 

overfitting. Hence, it is another important parameter that needs to be optimized. 
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No linear relationship has been found between the depth and prediction ability. It has been 

determined that the optimal value for the maximum depth needs to be identified for each problem 

individually. Similarly, no linear relationship has been observed between the number of leaf nodes 

and prediction performance. In some problems, a higher number of leaf nodes resulted in higher 

R values, while in others, the opposite was observed. Table 3 provides the optimal values and 

corresponding R values for each case. 

 

Table 3. Grid search results for RF 

 Parameter Searching Range  Optimal Value  R-value for 

optimal case 

 

Case 1  

 

Number of 

estimators 

15,25,35,45,55,65,100,125,150 55  

 

0.9978 Maximum 

depth  

20,30,40,50,60,80,100 30 

Leaf nodes 10,15,20,25 15 

 

Case 2 

 

Number of 

estimators 

15,25,35,45,55,65,100,125,150 65  

 

0.7854 Maximum 

depth  

20,30,40,50,60,80,100 40 

Leaf nodes 10,15,20,25 15 

 

Case 3  

 

Number of 

estimators 

15,25,35,45,55,65,100,125,150 100  

 

0.7248 Maximum 

depth  

20,30,40,50,60,80,100 30 

Leaf nodes 10,15,20,25 25 

 

5.4. Artificial Neural Network  

Artificial neural network architectures are defined as feedforward or backforward networks based 

on the connections between neurons. Feedforward networks do not have feedback connections, 

and each neuron in each layer transmits its output to the next layer through weights. In this study, 

the most commonly used feedforward network is the multilayer perceptron (MLP). Single-layer 

perceptrons can only solve linear problems, while multilayer perceptrons are often preferred for 

solving nonlinear problems [47].  
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In Case 1, as shown in Figure 20, there are four inputs and one output. In Case 2, there are three 

inputs and one output, and in Case 3, there are three inputs and one output. The outputs for Case 

1-2-3 are z/H, temperature, and velocity, respectively. The number of neurons in the hidden layer 

will be determined through trial and error. Three different training algorithms, namely Bayesian 

Regularization, Scaled Conjugate Gradient, and Levenberg-Marquardt, were used. The hidden 

layer size was tested by varying it for each algorithm. Figure 22 illustrates the effect of the number 

of layers for different training algorithms. According to the results obtained, the training algorithm 

directly affects the model's performance. Additionally, the number of hidden layers in the model 

is another factor that affects its performance. 

 

When examining the R2 curves plotted for the test data, it can be observed that the highest R2 

values are achieved regardless of the training algorithm used in Case 3. This is believed to be due 

to the fact that Case 3 has the most data available. In Case 2, where the data is quite limited, the 

lowest R2 values are obtained regardless of the algorithm and the number of hidden neurons. 

Consequently, it can be concluded that as the data size increases, the ANN architecture is better 

trained and provides better predictions. The SCG training algorithm has the highest computational 

cost for all three cases. As the number of hidden neurons increases, the solution time also increases, 

independent of the problem. In Case 1, the SCG model with 20 hidden neurons, in Case 2, the 

BLM model with three hidden neurons, and in Case 3, the BR model with 20 hidden neurons 

achieved the best predictions. 

 

 
Figure 22. The effect of the training algorithm & number of hidden neurons in each case 
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5.5. Comparison of Machine Learning Results 

In order to demonstrate the predictive capabilities of the four models tested for each specific 

problem, Figure 23 has been prepared. According to Kouvaras and Dhanak [48], a model with an 

R2  value greater than 0.9 is considered to have high predictive ability. For Case 1, after optimizing 

the relevant parameters, the ANN, RF, and SVM models all have an R2 value above 0.9. However, 

for Case 2, only the ANN method has been able to surpass this threshold. This can be attributed to 

the limited amount of available data. In Case 3, all models, except for LR, exhibit predictive 

abilities above the 0.9 threshold after conducting parameter optimization. 

 

 
Figure 23. Comparison of R2 values of all models for (a) Case-1, (b) Case-2, and (c) Case-3 

 

In Figure 24, prediction values for each case are provided for the four models. The best architecture 

for each model has been selected, and the results obtained using that architecture are presented. 

For Case 1, the predicted parameter is the shape of the vortex. In stirrer flow, there are essentially 

two regions. The first region is referred to as the forced vortex zone, where the fluid behaves like 

a solid body, and the tangential velocity increases linearly with radius. The second region is the 

free vortex zone, where the tangential velocity undergoes a more complex change and drops to 

zero near the wall. When examining the predictive abilities of the ML models, it can be observed 

that all models accurately capture the shape of the vortex in the forced vortex zone. However, the 

predictive ability decreases in the free vortex zone. The ML-CFD model has the advantage of 

providing a single-phase solution, which saves time compared to CFD. With a sufficient amount 

of data, it is possible to say that ANN and RF models achieve high R2 values and low error rates 

in such problems. However, it should be noted that the predictive ability decreases as the flow 

structure changes. 
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For Case 2, the temperature value is selected as the output. Case 2 has the smallest data size among 

the three cases. When looking at the results, the impact of data size on the efficiency of ML 

methods is clearly observed. A lower number of data points in the training set reduces the 

efficiency of the model. Having more data allows the model to encompass a wider data distribution 

and handle different scenarios. Therefore, the maximum R2 value of 0.905 is found in the ANN 

method. 

 

For Case 3, the velocity value is selected as the output. SVM and ANN methods have achieved 

high accuracy in prediction. On the other hand, LR and RF methods have shown lower prediction 

efficiency. Among the three cases, the ANN method has performed the best in terms of prediction. 

This is attributed to its ability to model complex systems through adaptive weight adjustments and 

process large data sets efficiently. SVM performs classification by using support vectors and can 

effectively determine complex boundaries. Indeed, SVM has provided high-accuracy results for 

all three cases. The LR model, being a linear model and assuming linear relationships between 

features, has not captured the relationships accurately for all three problems. In conclusion, each 

ML model provides different levels of accuracy for each data set, depending on factors such as 

linearity of the data, data size, relationships between the data, data distribution, and number of 

features. However, considering the context of fluid mechanics studies, it can be said that ANN, 

SVM and RF methods provide high accuracy in fluid mechanics problems. 

 

 
Figure 24. Prediction of (a) z/H for Case-1, (b) temperature for Case-2, and (c) velocity for 

Case-3 with different ML methods  



Int J Energy Studies                                                                                                2024; 9(4): 679-721  

714 
 

6. DISCUSSION 

The applicability of ML methods on three different fluid mechanics problems was investigated 

within the scope of this study. Firstly, the vortex mixer, solar air dryer, and converging-diverging 

nozzle problems were modeled using CFD. In the second stage, input and output parameters were 

determined for each case, and data were collected through numerical analyses. These data were 

used to explore the applicability of different ML methods on various fluid mechanics problems. 

The ML methods used in this study were Linear Regression, Random Forest, Support Vector 

Machine, and Artificial Neural Network. Optimization studies were conducted for each ML 

method in order to determine the most suitable architecture for each problem, and each model was 

developed to have the highest predictive capability for each specific problem. Although the main 

objective of this study was to test the effectiveness of ML methods, the numerical solutions to the 

fundamental fluid mechanics problems and the results that were obtained were presented in the 

study. The main results of the study can be summarized in two parts. The first part includes the 

CFD analyses, parametric analysis results, and the demonstration of flow phenomena for each 

case. The second part involves the effectiveness of ML methods for each case, their comparison 

with each other, and the comparison of the performance of the same method in different cases. 

For the first part, each case study highlighted in detail the critical dependencies of performance 

and flow behavior on various parameters. In the case of the vortex mixer, variations in rotational 

speed and the d/D and h/D ratios had a significant impact on mixing efficiency. Specifically, the 

stirrer diameter notably influenced turbulence instabilities, particularly near the wall edges, while 

the initial water height exhibited limited effects on the central vortex dynamics. 

 

For the solar air dryer, both mass flow rate and fin configurations played a substantial role in 

determining efficiency. However, as the mass flow rate increased, the enhancements in efficiency 

experienced diminishing returns. Finer fin spacing facilitated improved turbulence and enhanced 

heat transfer, contributing positively to the overall efficiency of the system. 

 

Regarding the converging-diverging nozzle, modifications to the throat area ratio and nozzle 

pressure ratio demonstrated notable effects on flow characteristics such as velocity, volumetric 

flow rate, and temperature distribution. Specifically, higher AR values were associated with 

increased thrust generation, highlighting their influence on the overall performance of the nozzle. 
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In the second part of the study, different ML techniques were applied to each of the cases above, 

and the architecture of each ML method was optimized for each specific problem. The LR model 

was found to have the weakest predictive ability for each problem. The complex nature of fluid 

mechanics problems, often three-dimensional and turbulent, makes it challenging to establish 

linear relationships between flow parameters, and therefore, linear models such as LR do not 

appear to be well-suited for these types of problems. The accuracy of the SVM model is 

significantly influenced by the choice of the Kernel Function, which should be optimized for each 

problem to provide a better approach. For example, the Gaussian approach offers the best solution 

in Case 1, while in Case 2, this kernel function achieves average accuracy. Another parameter that 

has an impact on the SVM architecture is the Box Constraint value, and its variation affects the 

performance in each problem. However, compared to the influence of the kernel function, the 

effect of the Box Constraint is relatively low in all three problems. It was concluded that the Kernel 

Function is the most crucial parameter in the SVM architecture. Overall, the SVM method 

achieved high prediction accuracy after conducting the parametric analysis. When comparing with 

the RF method, different values for the number of estimators, maximum depth, and leaf nodes 

were tested through grid search over a wide range for each problem. The results showed that the 

RF model had an R2 value of 0.9978 and a low MSE value for Case 1, while for the other two 

cases, the R2 value remained below 0.7. Case 2 had only 30% of the data collected compared to 

the other two cases. Each ML method had the lowest predictive efficiency in Case 2, likely due to 

the limited data. The results indicate that ML methods require large datasets to improve prediction 

accuracy in fluid mechanics problems. Data quantity appears to be a parameter directly affecting 

the ML methods, and without sufficient data, no method can achieve the expected performance. 

When examining the impact of ANN methods, it was observed that the training algorithm had a 

dominant effect on performance and should be optimized for each problem. 

 

Similarly, the number of hidden neurons was an influential parameter that caused different 

behaviors in the system for each problem. ANN was found to be the ML method with the highest 

predictive ability for each problem. Even in Case 2, which had a small data quantity, an R2 value 

above 0.8 was achieved. The results indicate that each ML method exhibits different behaviors for 

each fluid mechanics problem, and some parameters need to be optimized for each ML method, 

which have varying effects on each problem. The LR method was found to have low applicability 

to fluid mechanics problems, while the SVM and ANN methods proved to be strong tools, 

especially after conducting the grid searches. 
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It should be noted that the limitation of this study is the reliance on CFD-generated data for training 

the ML models, which may not fully reflect the complexities of real-world conditions. Moreover, 

the need for large datasets to achieve high prediction accuracy remains a challenge in practical 

applications. Limited data, as observed in the solar air dryer case, prevents the predictive 

performance of ML methods. 

 

7. CONCLUSION 

The applicability of ML methods on three different fluid mechanics problems was investigated 

within the scope of this study. Firstly, the vortex mixer, solar air dryer, and converging-diverging 

nozzle problems were modeled using CFD. In the second stage, input and output parameters were 

determined for each case, and data were collected through numerical analyses. These data were 

used to explore the applicability of different ML methods on various fluid mechanics problems.  

 

The key conclusions of this study are 

• Linear regression methods showed limited applicability to fluid mechanics problems due 

to their inherent linear assumptions. 

• Support vector machine and artificial neural methods exhibited strong predictive 

capabilities when optimized appropriately. 

• Data quantity directly impacts the predictive accuracy of machine learning models, 

emphasizing the need for extensive datasets. 

• Numerical data provided reliable training sources, but real-world validation remains 

necessary for broader applicability. 

 

Recommendations for future studies are as follows: 

• Validation of machine learning model predictions through experimental data to ensure 

improved real-world applicability. 

• Enhancing data collection processes to increase dataset sizes, thereby improving the 

accuracy and generalizability of machine learning models. 

• Investigating alternative machine learning methods or architectures that may be better 

suited to the unique complexities of fluid mechanics problems. 
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