

Celal Bayar University Journal of Science

Anderson Type Polyoxometalates Containing Vitamin B₁

Hülya Avcı Özbek^{1*}

^{1*} Department of Chemistry, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa, Türkiye * <u>hulya.avci@cbu.edu.tr</u> * Orcid No: 0000-0003-1508-2558

> Received: 22 October, 2024 Accepted: 12 May, 2025 DOI: 10.18466/cbayarfbe.1570842

Abstract

The novel vitamin B₁-substituted polyoxomolybdates $(C_{12}H_{17}N_4OS)_3[Co(III)Mo_6O_{24}H_6]\cdot7H_2O$ (1) and $(C_{12}H_{17}N_4OS)_4[Ni(II)Mo_6O_{24}H_6]\cdot7H_2O$ (2) have been synthesized using $(NH_4)_3[Co(III)Mo_6O_{24}H_6]\cdot7H_2O$ and $(NH_4)_4[Ni(II)Mo_6O_{24}H_6]\cdot7H_2O$ respectively as a precursor for the in situ formation of the counter ion vitamin B₁ $(C_{12}H_{17}N_4OS)^+$. These compounds have been thoroughly characterized in the solid state FT-IR spectroscopy, powder X-ray diffraction (PXRD), TGA and elemental analysis.

Keywords: Cobalt, Molybdenum, Nickel, Polyoxometalate, Thiamine Hydrochloride, Vitamin B1

1. Introduction

Polyoxometalates (POMs) are a broad class of anionic clusters composed of high oxidation state metal ions linked by oxygen atoms in a variety of structures that can be divided into two main categories: isopolyanion and hetreopolyanion. An isopolyanion consists of a single element bridged by oxygen atoms. A heteropolyanion incorporates functional heteroatoms (e.g., rare earths, transition metals and noble metals) to make the design of advanced functional materials more accessible and rational. Depending on their size, charge and composition, POM frameworks exhibit numerous different properties, opening up potential applications in diverse research areas, including catalysis, materials science, biological chemistry, photophysic, energy and medicine [1-15].

Within the POM family, transition metal substituted polyoxometalates are the largest group and the activities of these compounds are also widely studied in biological studies. For example, Golubeva and Ostroushko emphasised those containing vitamin B_1 in their POM studies with their groups [16-17]. In addition the interesting biological properties of Anderson-type POMs and their use in medicine have attracted the attention of scientists. Mahvash et al., reported the synthesis and characterization of Anderson type POMs and investigated their effects against breast cancer [18]. In the study of Ramezani-Aliakbari and co-workers, the effects of newly synthesised Anderson type POMs against breast cancer were investigated [19-20]. Considering these data, it is important to investigate the interaction between POMs and drugs. Therefore in this study, vitamin B_1 (thiamine hydrochloride) was chosen as a model drug and two new Anderson **POMs** type $(C_{12}H_{17}N_4OS)_3[Co(III)Mo_6O_{24}H_6]\cdot 7H_2O$ (1) and $(C_{12}H_{17}N_4OS)_4[Ni(II)Mo_6O_{24}H_6] \cdot 7H_2O$ (2) were synthesized and characterized. The limited number of studies on species containing vitamin B₁ in Anderson type POMs enhances the significance of this study.

2. Materials and Methods

All chemicals used were obtained from Aldrich and used without purification. anv $(NH_4)_3[Co(III)Mo_6O_{24}H_6]$ ·7H₂O and (NH₄)₄[Ni(II)Mo₆O₂₄H₆]·7H₂O were synthesized as described in a previous report [21]. C, H, N and S elemental analyses were obtained on a LECO-932 CHNS elemental analyser. Ni, Mo and Co were determined by ICP-MS Agilent Technology 7700. The FT-IR spectra were measured by a Perkin Elmer LR 64912 C spectrometer in the range 400-4000 cm⁻¹ with KBr pellet. Thermal gravimetric analysis (TGA) was recorded on a Hitachi Exstar TG/DTA 7300 in flowing N2 with a heating rate of 50.0 mL min 10 °C/min at 25 and 1000 °C. PXRD spectra was recorded on a PANalytical X-Pert3 Powder.

2.1. Synthesis of Compounds 2.1.1. (C12H17N4OS)3[C0(III)M06O24H6]·7H2O (1)

The solutions required for the reaction were prepared separately. Solution 1: $(NH_4)_3[Co(III)Mo_6O_{24}H_6] \cdot 7H_2O$ was (200 mg, 0.16 mmol) was dissolved in 10 mL H₂O under stirring. Solution 2: Thiamine hydrochloride (excess) was dissolved in 5 mL H₂O. Afterwards the two solutions were mixed and stirred. The resulting mixture was kept at 80 °C for 24 hours and filtered. The brown product was washed with ethanol and water and dried at 60 °C. Yield: 485 mg, 25%. FT-IR data (cm⁻¹): 441 (s), 507 (m), 524 (s), 570 (m), 641 (m), 660 (m), 691 (m), 722 (m), 794 (m), 871 (m), 897 (m), 953 (m), 1046 (m), 1072 (m), 1108 (m), 1169 (m), 1186(s), 1224 (m), 1381 (m), 1421 (m), 1434(m), 1480 (m), 1530 (m), 1616 (m), 1656 (m), 1732 (m), 3044 (m), 3419 (m), 3490 (m). Anal. Calcd. (%) for C₃₆H₇₁N₁₂S₃CoMo₆O₃₄ (1946.77 g/mol): C, 22.21; H, 3.68; N, 8.63; S, 4.94; Mo, 29.57; Co, 3.03. Found (%): C, 20.84; H, 3.00; N, 7.54; S, 5.24; Mo, 30.75; Co, 3.22. TGA (loss of 7 H₂O): calcd. 6.48%. found 6.55%; (loss of 3 (C₁₂H₁₇N₄OS)⁺): calcd. 40.89%, found 40.95%.

2.1.2. (C12H17N4OS)4[Ni(II)M06O24H6]·7H2O (2)

The solutions required for the reaction were prepared separately. **Solution 1:** $(NH_4)_4[Ni(II)Mo_6O_{24}H_6]$ ·7H₂O was (200 mg, 0.15 mmol) was dissolved in 10 mL H₂O under stirring. **Solution 2:** Thiamine hydrochloride (excess) was dissolved in 5 mL H₂O. Afterwards the two

solutions were mixed and stirred. The resulting mixture was kept at 80 °C for 24 hours and filtered. The green product was washed with ethanol and water and dried at 60 °C. Yield: 485 mg, 25%. FT-IR data (cm⁻¹): 469 (s), 507 (m), 522 (s), 568 (m), 641 (m), 663 (m), 705 (m), 750 (m), 786 (m), 873 (m), 895 (m), 989 (m), 1024 (m), 1044 (m), 1075 (m), 1088 (m), 1112 (m), 1169 (m), 1184 (m), 1224 (m), 1281 (m), 1482 (m), 1526 (m), 1657 (m), 1732 (m), 2074 (m), 3035 (m), 3428 (m), 3503 (m). Anal. Calcd. (%) for $C_{48}H_{88}N_{16}S_4NiMo_6O_{35}$ (2211.89 g/mol): C, 26.06; H, 4.01; N, 10.13; S, 5.80; Mo, 26.02; Ni, 2.65. Found (%): C, 25.93; H, 3.75; N, 9.82; S, 5.02; Mo, 26.27; Co, 2.37. TGA (loss of 7 H₂O): calcd. 5.70%. found 5.59%; (loss of 4 ($C_{12}H_{17}N_4OS$)⁺): calcd. 47.98%, found 47.93%.

3. Results and Discussion

Compounds 1 and 2 were synthesized by reacting of $(NH_4)_3[Co(III)Mo_6O_{24}H_6]$ ·7H₂O and $(NH_4)_4[Ni(II)Mo_6O_{24}H_6] \cdot 7H_2O$ with thiamine hydrochloride in an aqueous medium (Figure 1). The experimentally obtained spectroscopic data (ICP-MS, TGA and FT-IR) and elemental analyses results (Table 1) support the formulations of **1 2** as and $(C_{12}H_{17}N_4OS)_3[Co(III)Mo_6O_{24}H_6]$ · 7H₂O (1)and $(C_{12}H_{17}N_4OS)_4[Ni(II)Mo_6O_{24}H_6]$ · 7H₂O (2).

Figure 1. Synthesis of 1-2

		Elemental and ICP-MS						
Compounds	M.W.	С	Η	Ν	S	Мо	Со	Ni
		C/E	C/E	C/E	C/E	C/E	C/E	C/E
1	1946.77	22.01/20.84	3.68/3.00	8.63/7.54	4.94/5.24	29.57/30.75	3.03/3.22	-
2	2211.89	26.06/25.93	4.01/3.75	10.13/9.82	5.80/5.02	26.02/26.27	-	2.65/2.37

Table 1. Elemental and ICP-MS values of 1 and 2

M.W.: Molecular Weight, C: Calculated, E: Experimental

In the FT-IR spectrum of POMs, the region between 1000 and 400 cm⁻¹ is characterised as the fingerprint region. The vibrations in this region can be attributed to the M=O and M-O-M (M = Co, Ni, Mo) stretching vibrations of the Anderson type POM cluster [22-24]. The characteristic bands of v(M=O) (M= Co, Ni, Mo) vibrations are observed at 952 and 989 cm⁻¹ for 1 and 2respectively (Figure 2 and 3). The peaks in the region from 469 to 953 cm⁻¹ correspond to the antisymmetric and symmetric deformation vibrations of the M-O-M (M= Co, Ni, Mo). The FT-IR spectrum also shows stretching vibrations related to vitamin B_1 [17]. The selected bands of vitamin B1 are at 3490 (OH); 3419 (N-H in NH₂); 3044 (C-H in CH₃); 1656 (NH in NH₂); 1616, 1530, 1480; 1434 (CH in CH₂–CH₂); 1046 (C–O) cm⁻¹ for 1, 3503 (OH); 3428 (N-H in NH₂); 3035 (C-H in CH₃); 1657 (NH in NH₂); 1526, 1482 (CH in CH₂-CH₂); 1044 (C–O) cm⁻¹ for **2**. The broad bands at 3400-3500 cm⁻¹ are due to v(O-H) stretching vibrations.

TGA results of **1** (Figure 4) exhibits that 6.55% weight loss between 65-233 °C can be assigned to approximately seven water molecules in the crystal lattice. The 40.95% weight loss between between 234-820 °C, is assigned to the removal of three thiamine cations. The TGA data for **2** (Figure 4) shows the two weight-loss steps between 25 °C and 1000 °C too. The 5.59% weight loss of **2** is due to the loss of lattice water in the temperature range of 49-169 °C. The 47.93% weight loss between 170-813 °C is assigned to the removal of four thiamine cations. The cluster is stable up to 1000 °C.

PXRD diagrams are given in Figure 5. The products were found to be amorphous because they precipitated in the form of powder rather than crystalline structure.

Figure 2. FT-IR spectrum of 1 and (NH₄)₃[Co(III)Mo₆O₂₄H₆]·7H₂O

5

0.

-5 -

H. A. Özbek

Figure 3. FT-IR spectrum of 2 and $(NH_4)_4[Ni(II)Mo_6O_{24}H_6] \cdot 7H_2O$

Figure 4. TGA spectrum of 1 and 2

Figure 5. PXRD spectrum of 1 and 2

4. Conclusion

In conclusion, the synthesis and characterisation of Anderson-type POMs $((C_{12}H_{17}N_4OS)_3[Co(III)Mo_6O_{24}H_6]\cdot7H_2O$ (1) and $(C_{12}H_{17}N_4OS)_4[Ni(II)Mo_6O_{24}H_6]\cdot7H_2O$ (2)) containing a biologically active moiety (vitamin B₁) were achieved in this study. Due to the limited number of studies in the literature with POM compounds containing vitamin B₁, this study may open new perspectives for the preparation of new Anderson-type POM archetypes.

Ethics

There are no ethical issues after the publication of this manuscript.

References

- Wang, SS, Yang, GY. 2015. Recent advances in polyoxometalatecatalyzed reactions. *Chemical Reviews*; 115: 4893-4962.
- [2]. Kastner, K, Kibler, AJ, Karjalainen, E, Fernandes, JA, Sans, V, Newton, GN. 2017. Redox-active organic–inorganic hybrid polyoxometalate micelles. *Journal of Materials Chemistry A*; 5:11577-11581.
- [3]. Bijelic, A, Aureliano, M, Rompel, A. 2018. The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. *Chemical Communications*; 54:1153-1169.
- [4]. Bijelic, A, Aureliano, M, Rompel, A. 2019. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angewandte Chemie International Edition; 58:2980-2999
- [5]. Avcı Özbek, H, Kopar, E, Demirhan, F. 2021. Synthesis, structure, and antimicrobial properties of mixed-metal organometallic polyoxometalates. [Cp*₂M₅VO₁₇]⁻ (M=Mo, W). *Journal of Coordination Chemistry*; 74:1794-1809.
- [6]. Avcı Özbek, H. 2023. V-subtituted lindqvist-type polyoxometalates: preparation, structural characterization and antibacterial activity. *Chemical Papers*; 77:5663-5669.
- [7]. Avcı Özbek, H. 2023. Synthesis and characterization of Anderson-Evans type polyoxometalates, antibacterial properties. *Turkish Journal of Chemşitry*; 47(4): 742-748.
- [8]. Avcı Özbek, H. 2024. Molybdenum–Vanadium Oxide Clusters: Syntheses, Structures and Antibacterial Properties. *Journal of the Institute of Science and Technology*; 14 (1):356-362.
- [9]. Wang, YJ, Chen, WL, Chen, L, Zheng, XT, Xu, SS, Wang, EB. 2017. Sandwich-type silicotungstate modified TiO₂ microspheres for enhancing light harvesting and reducing electron recombination in dye-sensitized solar cells. *Inorganic. Chemistry Frontiers*, 4:559–565.
- [10]. Yang, HK, Cheng, YX, Su, MM, Xiao, Y, Hu, MB, Wang, W, Wang, Q. 2013. Polyoxometalate–biomolecule conjugates: a new approach to create hybrid drugs for cancer therapeutics, *Bioorganic & Medicinal Chemistry Letters*; 23:1462–1466.
- [11]. Song, F, Wang, T. 2022. Application of Polyoxometalates in Chemiresistive Gas Sensors: A Review. ACS Sensors; 7(12) 3634–3643.
- [12]. Xing, C, Ma, M, Chang, J, Ji, Z, Wang, P, Sun, L, Li, S, Li, M. 2023. Polyoxometalate anchored zinc oxide nanocomposite as a

highly effective photocatalyst and bactericide for wastewater decontamination. *Chemical Engineering Journal*; 464:142632.

- [13]. Zhao, M., Fang, Y. Ma, L, Zhu, X, Jiang, L, Li, M., Han, Q. 2020. Synthesis, characterization and in vitro antibacterial mechanism study of two Keggin-type polyoxometalates. *Journal of Inorganic Biochemistry*; 210:111131.
- [14]. Çetindere, S. 2023. Polyoxometalate-based boron dipyrromethene (BODIPY) conjugates: syntheses, characterization and photophysical properties. *Journal of the Iranian Chemical Society*; 20:3069-3077.
- [15]. Çetindere, S, Ardıç Alidağı, H, Anjass, M. 2023. Two novel Anderson-type polyoxometalate based MnIII complexes constructed from pyrene derivatives: Synthesis, photophysical, and electrochemical properties. *Inorganica Chimica Acta*; 545: 121280.
- [16]. Golubeva, OY, Pavlova, SV. 2014. Adsorption of Thiamine Hydrochloride (Vitamin B₁) by Synthetic Layered Silicates with a Montmorillonite Structure. *Glass Physics and Chemistry*; 40(3):375–379.
- [17]. Ostroushko, A, Gagarin, I, Tonkushina, M, Grzhegorzhevskii, K, Russkikh, O. 2018. Association of Spherical Porous Nanocluster Keplerate-Type Polyoxometalate Mo₇₂Fe₃₀ with Biologically Active Substances. *Journal of Cluster Science*; 29:111–120.
- [18]. Mahvash, S, Zavareh, VA, Taymouri, S, Mirian, M, Ramezani-Aliakbari, M, Dousti, F, Rostami, M. 2023. Anderson-type manganese polyoxomolybdate hybrid nanocomposite for boosting drug delivery against breast cancer. *Journal of Drug Delivery Science and Technology*; 87:104778.
- [19]. Ramezani-Aliakbari, M, Varshosaz, J, Sadeghi-aliabadi, H, Hassanzadeh, F, Rostami, M. 2021. Biotin-Targeted Nanomicellar Formulation of an Anderson-Type Polyoxomolybdate: Synthesis and In Vitro Cytotoxicity Evaluations. *Langmuir*; 37:6475–6489.
- [20]. Ramezani-Aliakbari, M, Varshosaz, J, Mirian, M, Khodarahmi, G, Rostami, M. 2022. pH-responsive glucosamine anchored polydopamine coated mesoporous silica nanoparticles for delivery of Anderson-type polyoxomolybdate in breast cancer. *Journal of Microencapsulation*; 39(5): 433-451.
- [21]. Nomiya, K, Takahashi, T, Shirai, T, Miwa, M. 1987. Andersontype heteropolyanions of molybdenum(VI) and tungsten(VI). *Polyhedron*; 6(2):213-218.
- [22]. Tewari, S, Adnan, M, Balendra, Kumar, V, Jangra, G, Prakash GV, Ramanan, A. 2019. Photoluminescence properties of two closely related isostructural series based on Anderson-Evans cluster coordinated with lanthanides [Ln(H₂O)₇{X(OH)₆Mo₆O₁₈]·yH₂O, X = Al, Cr. Frontiers in Chemistry ;6 (631):1-19.
- [23]. Thabet, S, Ayed, D, Haddad, A. 2013. Novel organic-inorganic hybrid with Anderson type polyanions as building blocks: (C₆H₁₀N₃O₂)₂Na(H₂O)₂[Al(OH)₆Mo₆O₁₈]·6H₂O. Materials Research Bulletin. 47:3791–3796.
- [24]. Avcı Özbek, H. 2023. Synthesis and Characterization of New Anderson-Type Polyoxometalates: [M ((1,10-phen)(OH)_x]₃[Cr (OH)₆Mo₆O₁₈]·16H₂O (M= Cr, Mn, Co, Ni, Cu; x= 1, 2). Journal of the Turkish Chemical Society Section A: Chemistry; 1 (2): 315-324.