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Abstract

The spider wasp optimization (SWO) algorithm is a new nature-inspired meta-heuristic optimization
algorithm based on the hunting, nesting, and mating behaviors of female spider wasps. This paper
aims to apply chaos theory to the steps of the SWO algorithm in order to increase its convergence
speed. Four versions of chaotic algorithms are constructed using the traditional spider wasp optimizer.
The proposed chaotic spider wasp optimization (CSWO) algorithms select various chaotic maps and
adjust the main parameters of the SWO optimizer to ensure the balance between exploration and
exploitation stages. Furthermore, the constructed CSWO algorithms are benchmarked on eight well-
known test functions divided into unimodal and multimodal problems. The experimental results and
statistical analysis are carried out to demonstrate that CSWO algorithms are very suitable for searching
optimal solutions for the benchmark functions. Specifically, the implementation of chaotic maps can
significantly enhance the performance of the SWO algorithm. As a result, the new algorithm has high
flexibility and outstanding robustness, which we can apply to engineering design problems.
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1 Introduction

Optimization is a structured method used to determine decision variables while adhering to vari-
ous constraints to either maximize or minimize the cost function. The constraints, cost function,
and design variables are the fundamental components of every optimization problem. Optimiza-
tion approaches have significant applications in engineering, image processing, wireless sensor
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networks, and bioinformatics [1]. A number of real-world problems exhibit high non-convexity
and non-linearity, typically due to the presence of several design variables and fundamental
constraints. Furthermore, there is no guarantee of achieving the optimal global solution. These
practical problems present challenges that motivate scientists to develop new and effective meth-
ods for better results. Optimization methods may be classified into two fundamental categories:
gradient-based deterministic methods and stochastic non-traditional methods [2]. Deterministic
methods have constraints when solving problems that include search spaces that are discontinu-
ous, nonconvex, high-dimensional, and have non-differentiable objective functions. In contrast,
stochastic-based algorithms do not depend on gradient-based information. Instead, they rely on
stochastic methods inside the search space to reduce these constraints. Meta-heuristic algorithms
(MAs) are extensively used in stochastic-based methods due to their wide use over different
techniques. Meta-heuristic algorithms provide a significant capacity for fully examining the
solution space and effectively adopting what is the optimal solution. As a result, in recent years,
many researchers have worked to introduce novel meta-heuristic algorithms and enhance the
performance of current methods [3].
Recently, several nature-inspired meta-heuristic algorithms have been developed. These artificial
algorithms imitate the behaviors of existing species or natural phenomena. Thus, these algorithms
have been proposed and used as effective approaches for solving several optimization problems [4].
However, these MAs often demonstrate higher levels of sensitivity when they involve adjusting
user-defined parameters. MAs may not precisely attain the global optimal solution, which is
another disadvantage [5]. There are two categories of MAs: single solution-based and population-
based [6]. The single-solution approach to optimization includes evaluating one solution. In
contrast, with the population-based method, solutions are generated during each optimization
step. Population-based meta-heuristic algorithms start the optimization process by generating a
set of random individuals. Each of them signifies a possible optimal solution. The population will
be gradually replaced by substituting the current population with a new generation using certain
stochastic operators.
Considering the wide range of these algorithms, they always share a key characteristic: search
processes may be categorized into exactly two stages, namely exploration and exploitation [7].
As a result, in the first stages of the search process, a carefully designed optimizer must show
exploration behaviors that are sufficiently mixed with randomness in order to provide a greater
number of random solutions. Furthermore, it enhanced multiple elements of the search space.
After the exploration stage is completed, the exploitation stage is performed. The optimizer
accelerates the search process by emphasizing a particular area instead of the whole search
space, emphasizing near-optimal solutions. A successful optimizer must achieve an adequate
and accurate balance between the exploration and exploitation stages. On the other hand, the
probability of being trapped in local optima and overcoming partial convergence challenges
increases. According to the No Free Lunch theorem [8], all the proposed metaheuristic algorithms
exhibit similar average performance when solving a possible optimization problem. Meanwhile,
no algorithm can be regarded as absolutely efficient. As a result, this theorem encourages the
research and enhancement of more effective optimization algorithms.
Chaos theory focuses on the study of unpredictable and irregular system motions that are highly
sensitive to initial conditions. A deterministic nonlinear dynamical system is called chaotic if it
has at least one positive Lyapunov exponent. Several practical applications of chaos were shown
in the literature, including in biology [9–11], ecology [12], infectious diseases [13], control [14],
cryptosystems [15], and secure communication [16, 17]. Traditional optimization techniques,
such as gradient, Newton, and Hessians methods, may successfully determine global optimum
solutions for continuously differentiable functions, demonstrating fast convergence and high
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accuracy. However, these classical optimization techniques can become trapped in local optima
when solving optimization problems that require various multimodal functions [18].

Motivation

The chaotic spider wasp optimization algorithm is developed to address the limitations of tradi-
tional optimization methods, such as getting trapped in local minima and being time-consuming.
Inspired by the hunting, nesting, and mating behaviors of female spider wasps, this algorithm
offers a novel approach to solving complex optimization problems with improved exploration
and exploitation capabilities. By using chaotic maps, the algorithm is better able to avoid local
optima and reach faster convergence. This makes it more useful and efficient for many situations.

Contributions

The main contributions of the current paper are summarized as follows:

• An improved optimization algorithm inspired by hunting, nesting, and mating behaviors of
female spider wasps is developed based on chaos theory.

• A detailed comparison between the traditional SWO algorithm and the CSWO algorithm is
presented.

• The performance analysis and speed convergence of four different counterparts of the CSWO
algorithm are analyzed through several unimodal and multimodal benchmark functions.

• The experimental results show that the CSWO algorithm has better performance compared to
the SWO counterpart and is more efficient for solving real-world optimization problems.

The remainder of this paper is organized as follows: In Section 2, the literature review is provided.
Section 3 reports a short introduction to the chaos theory and some properties of chaotic systems.
In addition, a general concept of using chaos in optimization algorithms is presented. Section 4
introduces five well-known 1-D chaotic maps, their chaotic behaviors, and Lyapunov exponents.
In Section 5, the traditional SWO algorithm is presented. Section 6 introduces new counterparts of
the SWO algorithm that are based on chaos theory. Section 7 deals with experimental analysis
and statistical testing, in which the CSWO algorithms are benchmarked on eight test functions.
A qualitative analysis is presented in order to compare the traditional SWO and the proposed
chaotic methods. Section 8 gives the discussion and conclusion.

2 Literature review

Recently, there has been increasing interest in the study and application of meta-heuristic algo-
rithms for solving optimization problems. In the scientific literature, population-based meta-
heuristic algorithms can be divided into four main categories based on their basic concepts:
evolutionary algorithms [19], physics-based algorithms [20], human-based algorithms [21], and
swarm-based algorithms [22]. Evolutionary algorithms mimic the mechanisms of biological evo-
lution, such as recombination and mutation. The Genetic Algorithm [23], Biogeography-Based
Optimizer [24], and Mind Evolutionary Optimizer [25] are all considered the most important
evolutionary algorithms. Algorithms inspired by physical phenomena use hypotheses based on
scientific concepts, such as gravitation and magnetic attraction. Some examples are the Grav-
itational Search Algorithm [26] and the Energy Valley Optimizer [27]. Human-based machine
agents frequently mimic certain human behaviors. Socio Evolution and Learning Optimization
[28], Human Felicity Algorithm [29], and Social Network Search [30] are a few examples of this
classification. Swarm-based multi-agent systems imitate the social behaviors shown by animals
that live in swarms or groups. Particle Swarm Optimization [31] and Salp Swarm Algorithm [32]
are considered the most significant meta-heuristic algorithms in this specific field.
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Nowadays, swarm-based multi-agent systems have attracted increased interest due to their
various sources of inspiration and efficiency in solving an extensive variety of optimization
problems. A new optimization algorithms in this field have been developed, including the
Mountain Gazelle Optimizer [33], Spotted Hyena Optimizer [34], Honey Bee Mating Optimization
[35], Butterfly Optimization Algorithm [36], Ant Lion Optimizer [37], Harris Hawks Optimizer
[38], Bat-Inspired Algorithm [39], Fruit Fly Optimization Algorithm [40], Whale Optimization
Algorithm [41], Grasshopper Optimization Algorithm [42], Artificial Gorilla Troops Optimizer [43],
Grey Wolf Optimizer [44], Marine Predators Algorithm [45], Hunger Games Search [46], Aquila
Optimizer [47], and many others. Because of their stochastic nature, meta-heuristic algorithms
have enhanced flexibility for escaping constraint in local optima. These algorithms may be used
across numerous fields according to their efficiency, adaptability, and highly effective performance.
The main challenge in designing any meta-heuristic algorithm arises from the stochastic nature
of the optimization process, requiring sufficient balance between exploration and exploitation
stages [48]. The exploration stage allows the optimizer to fully investigate the search space on
a global scale. Additionally, the population faces sudden and significant changes during this
period. On the other hand, the exploitation stage focuses on improving possible solutions that
were discovered in the exploration stage. In this context, the population undergoes small and
sudden fluctuations.
The SWO algorithm is a novel meta-heuristic optimizer developed to solve continuous optimiza-
tion problems. In particular, it can solve complex nonlinear engineering optimization problems
by mimicking biological or physical phenomena [49]. The SWO algorithm was created from a
mathematical model of the three different behaviors shown by female spider wasps, including
nesting, hunting, and mating behaviors.
The literature has extensively studied the application of chaos theory in the development of
optimization algorithms. In [50], the authors have enhanced the Chaotic Whale Optimization
Algorithm by incorporating various chaotic maps to improve its performance and achieve the
global optimum for several test functions. Arora et al. [51] have developed a novel meta-heuristic
optimization algorithm called the Grasshopper Optimization Algorithm inspired by grasshoppers’
swarming behavior. To enhance global convergence, chaos theory was included in the optimization
process, using chaotic maps to balance exploration and exploitation over the optimization process.
In [52], the authors have developed an improved meta-heuristic optimization algorithm called the
Chaotic Bird Swarm Algorithm. In order to improve this algorithm’s exploitation performance,
they used different chaotic maps. Kiani et al. [53] have proposed the Chaotic Sand Cat Swarm
Optimization, and they introduced chaotic maps to enhance the performance of this algorithm.
In addition, they applied the chaotic algorithm to a total of 39 functions and multidisciplinary
problems. Arora et al. [54] have introduced chaos into the Butterfly Optimization Algorithm
in order to increase its performance and convergence speed. They concluded that using chaos
can enhance the optimization process to exploit the algorithm for solving engineering design
problems. Shinde et al. [55] have presented a developed counterpart of the meta-heuristic Sine-
Cosine Algorithm, which is based on chaos theory. The suggested algorithm is inspired by the
sine and cosine classical functions. Using different chaotic maps, they replaced the random
parameters in the traditional algorithm with chaotic variables to enhance the performance of
the proposed algorithm. Hamaizia and Lozi [56] have developed a novel strategy for global
search and multidimensional chaotic attractors using a locally averaged method. In addition, they
examined the robustness of the suggested approach using several benchmark functions.
Based on the best knowledge gained from the literature review, there are only a few papers that
integrate chaos theory in meta-heuristic optimization algorithms, so it is necessary to develop a
new meta-heuristic algorithm based on chaotic systems. However, crucial properties of discrete
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chaotic dynamic systems, such as sensitivity to initial conditions, ergodicity, and unpredictability,
are prone to designing an optimizer. In the next section, based on the mathematical modeling
of female spider wasp behaviors, an improved chaotic meta-heuristic algorithm is developed to
handle optimization applications to address this research gap.

3 Chaotic optimization algorithm

In this section, we will describe some properties of chaos phenomena, followed by an optimization
algorithm using chaotic maps.

Chaos

Nonlinear systems often exhibit chaotic behavior. It describes an example of irregular motions
exhibited by deterministic systems inside a bounded phase space. Chaos theory is explained as
the phenomenon known as the "butterfly effect", which was first described by Lorenz in 1963.
Lorenz observed that slight variations in initial conditions could result in significantly different
outcomes in future scenarios. Chaos is a result of the unpredictability produced by deterministic
dynamical systems. Three fundamental properties characterize the chaotic systems: [57]

• ergodicity. Chaos has the ability to go through all possible states within a given range without
repetition.

• sensibility. A very common characteristic of chaotic systems is their sensitive dependence on
initial conditions. The system’s behaviour may rapidly diverge with slightly different conditions,
making it unpredictable.

• regularity. Chaos is exhibited by deterministic dynamical systems.

Chaos is a complex and unpredictable phenomenon that exhibits non-linear behavior. The
ergodicity of chaos implies that using chaotic variables for optimization may provide an advantage
compared to random searches with stochastic variables. It has been able to prevent algorithms
from getting trapped in local optima. As a result, it is frequently used for optimization problems.

A general idea of a chaotic optimization algorithm

A random-based optimization algorithm that uses random number sequences obtained from
chaotic maps instead of random number generators is called a chaotic optimization algorithm
(COA). Its properties include simple integration, quick execution, and effective methods for
avoiding local optimization. Consequently, it has enormous potential as a tool for engineering
applications [58]. The COA is a highly efficient method for solving the optimization problems of a
nonlinear multimodal function with boundary constraints. Chaos, unlike stochastic searches that
rely on probabilities, may do comprehensive searches at faster rates due to its lack of repetition.

The COA generally has two main stages: the global stage and the local stage, which are often
characterized by chaotic methods. Firstly, in the global stage, chaotic points are selected from the
search domain [L, U] based on a specific chaotic model. Next, the objective function is determined
at various positions, and the point with the minimum objective function is chosen as the current
optimum. Furthermore, it is assumed that during the local stage, the current optimum will be
nearly the global optimum after a certain number of iterations. The current optimum is regarded as
a center with minimal chaotic disturbances, whereas the global optimum is determined through an
extensive search. The chaos phenomenon is characterized by randomness. Usually, a deterministic
function can display chaotic behavior for some initial conditions and parameter values. These
functions are so-called chaotic maps.
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4 Chaotic maps

This section presents five one-dimensional non-invertible chaotic maps that are used to generate
chaotic sequences. We use the logistic, Gauss/mouse, sinusoidal, piecewise, and tent chaotic maps
in our study [59]. The details of these chaotic maps are shown in Table 1. The chaotic behavior of

Table 1. Chaotic maps

Chaotic map Equation Range Parameter Initial condition
Logistic xn+1 = µxn (1 − xn) [0, 1] µ = 3.9 x0 = 0.6

Gauss/mouse xn+1 =

{
0 xn = 0,
1

xn
− ⌊ 1

xn
⌋ otherwise

[0, 1] x0 = 0.7

Sinusoidal xn+1 = ax2
n sin(πxn) [0, 1] a = 2.3 x0 = 0.9

Piecewise xn+1 =



xn
p 0 ≤ xn < p,
xn−p
0.5−p p ≤ xn < 1

2 ,
1−p−xn

0.5−p
1
2 ≤ xn < 1 − p,

1−xn
p 1 − p ≤ xn < 1

[0, 1] p = 0.4 x0 = 0.8

Tent xn+1 =

{ xn
0.7 xn < 0.7,

10
3 (1 − xn) xn ≥ 0.7

[0, 1] x0 = 0.4

the proposed maps is depicted in Figure 1.
The rationale behind selecting chaotic maps, such as logistic, Gauss/mouse, sinusoidal, piecewise,
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Figure 1. Visualization of chaotic maps

and tent maps, to replace random parameters in the SWO algorithm lies in the following reasons:

1. Chaotic maps provide better exploration and exploitation.

• Exploration. Chaotic maps generate sequences that are deterministic yet appear random.
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These sequences can help the SWO algorithm explore the search space more effectively than
purely random numbers, as they avoid premature convergence to local optima.
• Exploitation. Chaotic maps can also provide fine-grained control over the search process,
allowing the SWO algorithm to exploit promising regions more efficiently.

2. Avoidance of randomness pitfalls. Traditional random number generators may lead to
uneven exploration of the search space, causing the algorithm to get stuck in suboptimal
regions. On the other hand, chaotic maps provide a more structured and diverse exploration,
reducing the likelihood of stagnation.
3. Diversity in search patterns. Each chaotic map has unique dynamics and properties. By
incorporating multiple chaotic maps, the SWO algorithm can leverage different patterns of
exploration, ensuring a more robust search process.
4. Improved convergence and stability. Chaotic maps can help the SWO algorithm converge
faster to the global optimum by maintaining a balance between exploration and exploitation.
They also reduce the risk of premature convergence, which is common in traditional random-
based algorithms.

Note that we can use other chaotic maps not listed here to enhance the performance of the
traditional SWO algorithm if they generate chaotic numbers in the range [0, 1] with absolute value.
In this paper, we select five chaotic maps that generate chaotic numbers in the range [0, 1], which
is consistent with the range of random parameters in the SWO algorithm.

Quantitative measure of chaos

In chaos theory, the rate of divergence or convergence of nearby trajectories of a deterministic
dynamical system is evaluated by using Lyapunov exponents. In particular, when the maximum
Lyapunov exponent (MLE) is positive, the system is chaotic. For a one-dimensional dynamic
system, the Lyapunov exponent is defined as [60]

λ = lim
n→∞ 1

n

n−1∑
j=0

ln | f ′(xj)|, (1)

where n is the maximum iteration number, f ′(xj) is the derivative of f (xj).
Based on the above formula, we compute the maximum Lyapunov exponent for the five chaotic
maps for 1000 iterations. The average values of MLEs are given in Table 2.

Table 2. Maximum Lyapunov exponent of the ten chaotic maps

Map Logistic Gauss/mouse Sinusoidal Piecewise Tent
MLE 0.693 0.721 0.682 1.532 0.693

It can be shown from Table 2 that the maximum Lyapunov exponent is positive for the five maps,
meaning that these maps exhibit chaotic behavior. Therefore, they may be used with accuracy in
chaotic optimisation algorithms.

5 Spider wasp optimization algorithm

The spider wasp optimization algorithm is a nature-inspired meta-heuristic algorithm that imitates
the hunting, nesting, and mating behaviors of female spider wasps used in optimization problems.
This work will develop a novel variant of the optimization strategy inspired by the hunting and
nesting behaviors of some wasp species, as well as their practice of required brood parasitism,
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which involves dropping a single egg into each spider’s abdomen. Firstly, female spider wasps
investigate the surrounding habitats in search of appropriate spiders. They then immobilize and
transport the spiders to pre-prepared nests that are perfect for their needs. This behavior serves as
the primary motivation for the SWO algorithm. Once they have located adequate prey and nests,
they proceed to pull them into the nests. They then place an egg on the spider’s abdomen, closing
the nest. The SWO approach randomly distributes a specified number of female wasps over the
search space. Each individual will systematically explore the search region in continuous motion,
looking for a spider suitable for the gender of its offspring, as determined by the haplodiploid
sex-determination system intrinsic to all hymenopterans. The search depends on their predatory
and tracking behaviors. After finding suitable spiders, female spider wasps will remove them
from the center region of the spider’s web and systematically search the ground six times to
recover any spiders that have fallen from the web [61]. Next, the female wasps will attack the
victim and try to paralyze it for transmission to the selected nest. After putting an egg inside the
spider’s abdomen, the female wasp next closes the nest.

Figure 2. The female spider wasp in nature engages in hunting behavior

The following is a brief description of the wasp behaviors investigated in this study:

• Searching behavior. This behavior includes an aggressive search of prey during the first stages
of optimization to determine a spider appropriate to larval growth.

• Following and escaping behavior: once they locate their prey or spiders, they may make an
effort to quickly escape the central area of the spider web. As a result, the female wasp chases
them, immobilizing and pulling the most suitable one.

• Nesting behavior. This behavior mimics the way in which prey is dragged to nests that are
suitable in size for both the prey and the egg.

• Mating behavior. This behavior emulates the characteristics of the offspring produced by
hatching the egg via the uniform crossover operator between male and female wasps, controlled
by a certain probability called the crossover rate.

In the following, we will present the mathematical model for these four behaviors.

Hunting and nesting behavior

The female spider wasp initiates a first search, referred to as an "exploration operator", to discover
potential prey. Once the target is identified, the entity transmits a signal to its operator responsible
for exploiting the situation, initiating the process of approaching and launching an assault. The
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mathematical specifics of these two operators are shown here.

Search stage (Exploration operator)

As previously mentioned, the female spider wasp initiates this operation at the onset of its search
for its preferred food. This behaviour may be mathematically represented by the following
expression:

x⃗t+1
i = x⃗t

i + µ1 ∗
(

x⃗t
a − x⃗t

b
)

, (2)

where a and b are two indices being randomly chosen from the current population, which are
used to find the direction of investigation by the female wasps, and µ1 is used to ascertain the
consistent movement in this particular direction by means of the following equation:

µ1 = |rn| ∗ r1, (3)

where r1 is a random number in [0, 1] and rn is a random number that has been picked from a
normal distribution. If the female wasps are unable to grab it, prey that falls from the orb may be
lost. In order to locate the missing prey, they use an alternative exploration approach, which may
be precisely modeled using the following mathematical formula:

x⃗t+1
i = x⃗t

c + µ2 ∗
(−→

L +−→r2 ∗ (−→U −
−→
L )

)
, (4)

µ2 = B ∗ cos(2πl), (5)

B =
1

1 + exp(l)
, (6)

where c, an index that represents the position of the dropped prey, is randomly chosen from the
population.

−→
L and

−→
U represent the lower and upper bounds, respectively. l is a number randomly

chosen from the interval [−2,−1], whereas, r⃗2 is a random vector in [0, 1]. The value of µ2, which
is between the range of −0.8 to 0.8, defines the direction of the search. This helps to prevent any
incorrect direction that may be determined by Eq. (2). In order to enhance investigation and
identify the most favorable areas, we assume that the following tradeoff between Eq. (2) and Eq.
(4) is satisfied.

x⃗t+1
i =

{
Eq. (2) r3 < r4,
Eq. (4) otherwise,

(7)

where r3 and r4 are two random numbers chosen from the range [0, 1].

Following and escaping stage (exploration and exploitation operator)

Upon locating its prey, the wasp initiates pursuit of the spider. This behavior may be mathemati-
cally modeled in the following manner:

x⃗t+1
i = x⃗t

i + C ∗ |2 ∗−→r5 ∗ x⃗t
a − x⃗t

i |, (8)

C =

(
2 − 2 ∗

(
t

tmax

))
∗ r6, (9)



152 | Mathematical Modelling and Numerical Simulation with Applications, 2025, Vol. 5, No. 1, 143–171

where a is an index randomly selected from the population. t and tmax represent the current and
maximum evaluations, respectively. −→r5 is a random vector in [0, 1], and r6 is a random number
in [0, 1]. C is a parameter that modulates the wasp’s speed according to distance, starting at a
speed of two and progressively decreasing to zero. As the female wasp chases the spider, the
distance between them gradually increases. This time period is mostly defined by exploitation. As
the distance expands, exploitation evolves into exploration. This behavior is mimicked using the
following formula:

x⃗t+1
i = x⃗t

i ∗
−→vc , (10)

where −→vc is a vector of numerical values in the range [−k, k] according to the normal distribution.
k is given by the following formula:

k = 1 −
t

tmax
. (11)

The next equation will be used for achieving the tradeoff between Eq. (8) and Eq. (10).

x⃗t+1
i =

{
Eq. (8) r3 < r4,
Eq. (10) otherwise.

(12)

Further, the tradeoff between searching in Eq. (7) and Eq. (12) is described by the following
equation:

x⃗t+1
i =

{
Eq. (7) p < k,
Eq. (12) otherwise,

(13)

where p represents a random number in the range [0, 1].

Nesting behavior (exploitation operator)

Female wasps retrieve the damaged spider and bring it back to their nest. Spider wasps have the
ability to excavate and construct chambers in the ground, build nests using mud on leaves or rocks,
and make use of pre-existing nests or holes. Spider wasps exhibit diverse nesting behaviours, and
as a result, the SWO algorithm employs two equations to represent these behaviors accurately.
The first equation evaluates the spider’s attraction to an area that provides the best conditions for
nesting with its egg on its abdomen. This equation is given by:

x⃗t+1
i = x⃗t

i + cos(2πl) ∗
(
x⃗∗ − x⃗t

i
)

, (14)

where x⃗∗ represents the optimum solution gained so far. The second equation establishes the nest
at the position of a female spider, selected randomly from the population. This equation has a
supplementary step size to guarantee that no two nests are constructed at the same location. Thus,
we have the following equation:

x⃗t+1
i = x⃗t

a + r3 ∗ |δ| ∗
(
x⃗t

a − x⃗t
i
)
+ (1 − r3) ∗

−→
H ∗

(
x⃗t

b − x⃗t
c
)

, (15)

where a, b, and c represent the indices of three solutions randomly selected from the population. δ

is a number determined by the Levy flight, and r3 is a random number in the range [0, 1].
−→
H is a
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binary vector that represents when a step size must be performed to avoid the construction of two
nests at the same location.

−→
H is given as:

−→
H =

{
1 −→r4 > −→r5 ,
0 otherwise,

(16)

where −→r4 and −→r5 are two random vectors in [0, 1]. In order to update each solution during the
optimisation process, a random swap is performed between Eq. (14) and Eq. (20) using the
following formula:

x⃗t+1
i =

{
Eq. (14) r3 < r4,
Eq. (20) otherwise.

(17)

The tradeoff between hunting and nesting behaviors may be expressed using the following
equation:

x⃗t+1
i =

{
Eq. (13) i < N ∗ k,
Eq. (17) otherwise,

(18)

where N represents the population size.

Mating behavior

At this stage, spider wasps have an important capacity to determine gender. This depends on
the size of the egg. Smaller spider wasps imply males, and bigger wasps imply females. In our
approach, each spider wasp represents a possible solution in the current generation, while the
spider wasp egg signifies the newly generated possible solution in that same generation. The new
solutions, also known as spider wasp eggs, are described by the following equation:

x⃗t+1
i = Crossover

(
x⃗t

i , x⃗t
m, CR

)
, (19)

where Crossover represents the uniform crossover operator applied to the vectors x⃗t
i and x⃗t

m for
the female and male spider wasps, respectively, with a probability CR. The male spider wasp
is generated using the SWO algorithm to exhibit distinct characteristics from the female wasps,
according to the following formula:

x⃗t+1
i = x⃗t

i + exp(l) ∗ |β| ∗ v⃗1 + (1 − exp(l)) ∗ |β1| ∗ v⃗2, (20)

where β and β1 are two numbers picked randomly from the normal distribution. v⃗1 and v⃗2 are
two vectors constructed using the following formula:

v⃗1 =

{
x⃗a − x⃗i f (x⃗a) < f (x⃗i) ,
x⃗i − x⃗a otherwise,

v⃗2 =

{
x⃗b − x⃗c f (x⃗b) < f (x⃗c) ,
x⃗c − x⃗b otherwise,

(21)

where a, b, and c are distinct indices representing three solutions randomly chosen from the
population. f (x⃗i) is the objective function that represents an individual in the population. Finally,
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we denote by (TR) the tradeoff rate that determines the compromise between hunting, nesting,
and mating behaviors.

Population reduction and conserving memory

After the female spider lays an egg on the host’s abdomen, she closes the nest and discreetly
vacates the location. This hypothesis suggests that the female’s role in the optimization process is
almost complete, and transferring the function evaluation to other wasps for the remainder of
the process may provide enhanced results. Over the iteration, some wasps in the population will
be killed to provide more function evaluations to the surviving wasps. This mechanism reduces
population variety, hence accelerating convergence towards the near-optimal solution. In each
iteration of the function evaluations, the size of the new population will be adjusted according to
the following equation:

N = Nmin + (N − Nmin)× k, (22)

where Nmin denotes the minimal population size required to prevent the optimization process from
being trapped in local minima. To enhance efficiency, the SWO applies a memory preservation
method that transmits the highest rank of each wasp to the next generation. The proposed new
location of each wasp is evaluated against its current position, and if it is worse, the next solution
is substituted. The pseudo-code of the SWO algorithm is shown in Algorithm 1.

Algorithm 1: Pseudo-code of SWO algorithm
Input: N, Nmin, CR, TR, tmax
Output: x⃗∗i

1 Initialize N female wasps, x⃗t
i (i = 1, 2, . . . , N), using Eq. (2)

2 Compute f (x⃗t
i ) while storing x⃗∗

3 t = 1;
4 while (t < tmax) do
5 r6: generating a random number in the interval [0, 1]
6 if (r6 < TR) then
7 for i = 1 : N do
8 Update the position of x⃗t

i using Eq.(18) to x⃗t+1
i

9 Compute f (x⃗t+1
i )

10 t = t + 1;
11 end for
12 else
13 for i = 1 : N do
14 Applying Eq. (19)
15 t = t + 1;
16 end for
17 end if
18 Applying Conserving Memory
19 Updating N using Eq. (22)
20 end while
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6 The improved chaotic spider wasp optimization algorithm

According to Eq. (3) and Eq. (9), the parameters r1 and r6 are the main variables of female spider
wasps’ convergence toward their objective throughout the SWO algorithm iterations. Chaotic
maps have the capacity to enhance the performance of optimization methods. In the standard
SWO algorithm, there is no need to preserve linearly decreasing values. In fact, using a chaotic
variable that changes r1 and r2 may be better for the search. According to the SWO, the values
obtained through the chaotic map must fall within the range of [0, 1]. In the current work, the
values of r1 and r6 highlighted in Algorithm 1 are substituted with the values generated by chaotic
maps to give chaotic behavior to the r1 and r6 parameters. This may also lead to the approach
converging to the optimal value quickly, as explained in the next section. As a result, this study
focuses on the task of adjusting the values of r1 and r6 using several chaotic maps. Ten different
kinds of SWO employ distinct chaotic maps. In the rest, we will construct four variants of the
SWO by adopting the following manner:

• Eq. (23) is obtained by substituting the random parameter r1 in the search stage that initiates
the spider wasp optimization algorithm with the sequence obtained from ten different chaotic
maps, where r1(t) represents the value that results from the chaotic map over the t-th iteration.

• Eq. (24) is obtained by substituting the random parameter r6 in the following and escaping
stage found in the spider wasp optimization algorithm with the sequence obtained from ten
different chaotic maps, where r6(t) represents the value that results from the chaotic map over
the t-th iteration.

CSWOA1 : µ1(t) = |rn| ∗ r1(t), (23)

CSWOA2 : C(t) =
(

2 − 2 ∗
(

t
tmax

))
∗ r6(t), (24)

CSWOA3 : µ1(t) = |rn| ∗ r1(t) and C(t) =
(

2 − 2 ∗
(

t
tmax

))
∗ r6(t). (25)

CSWOA3 has been constructed by combining the CSWOA1 and CSWOA2 algorithms. In order to
enrich the content of this study, the CSWOA4 is created by substituting the random number p in
Eq. (13) in the SWO with chaotic maps. Thus, the parameter p will behave chaotically.

CSWOA4 : x⃗t+1
i =

{
Eq. (7) p(t) < k,
Eq. (12) otherwise,

(26)

where p(t) represents the value that results from the chaotic map over the t-th iteration.
The next section presents a comparative analysis using the distinct chaotic parameters mixed with
the traditional SWO algorithm. Furthermore, the combination of these parameters (SWO with
chaotic r1, SWO with chaotic r6, SWO with chaotic r1 and chaotic r6, and SWO with chaotic p) has
been implemented and tested using several benchmark functions.
The key distinctions between these algorithms lie in the incorporation of chaos theory into
their parameters, which enhances their exploration, exploitation, and convergence properties.
In CSWOA1, CSWOA2, and CSWOA4, the integration of chaotic maps is applied only in one
parameter (r1, r6, and p, respectively). However, in CSWOA3, we have incorporated both the
parameters r1 and r6 with chaotic maps. This makes CSWOA3 more robust and effective for
solving complex optimization problems compared to other algorithms. Integrating more than one
chaotic map in CSWOA3 can improve its ability to explore the search space thoroughly because
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each chaotic map generates more diverse and unpredictable sequences. The chaotic behaviors
help the algorithm’s convergence, enhancing both speed and precision, particularly in complex
and multimodal optimization problems, by avoiding premature convergence. Therefore, by
adopting two chaotic parameters in CSWOA3, we obtain a better balance between exploration and
exploitation. This results in improved convergence and higher-quality solutions. In conclusion,
incorporating chaos theory into CSWOA1, CSWOA2, CSWOA3, and CSWOA4 adds stochasticity
and unpredictability, which improves the algorithm’s ability to escape local optima and explore
the search space more effectively.

In practice, the chaotic spider wasp optimization algorithm avoids local optima by employing
several strategies:

• Using chaotic maps allows providing randomness and diversity, where the algorithm can
escape local optima by generating diverse solutions that might not be reachable through
deterministic methods.
• Balancing exploration and exploitation through a dual population strategy. The algorithm
mimics the behavior of spider wasps, which use two populations: spiders (prey) and wasps
(predators). The interactions between these two populations ensure a balance between ex-
ploration (wasps searching for spiders) and exploitation (spiders trying to escape). This dual
strategy helps avoid stagnation in local optima by maintaining diversity in the search process.
• Dynamically adjusting parameters to adapt to the search process. This allows the algorithm
to switch between exploration and exploitation stages, reducing the risk of getting trapped in
local optima.
• Introducing random perturbations to escape stagnation. These perturbations help the algo-
rithm explore new regions of the search space, even after it has found a promising solution.
• Maintaining population diversity through fitness-based selection in order to prioritize better
solutions to contribute to the search process. These mechanisms collectively enable the CSWO
algorithm to explore the search space more effectively and avoid getting stuck in suboptimal
solutions.

The following objectives may help demonstrate the theoretical efficiency of the suggested chaotic
algorithms:

• The chaotic r1 aids CSWO in dynamically updating the locations of female spider wasps in a
chaotic manner, which can improve the exploration process.
• As we mentioned, C in Eq. (9) is a distance-controlling factor that determines the speed of
the wasp when it starts chasing the prey (spider). Thus, the chaotic r6 provides greater speed to
CSWO in the exploitation stage than the SWO because the r6 may have various values.
• Various chaotic maps for r1, r6 and p provide better exploration and exploitation behaviors
for the CSWO algorithm.
• Chaotic maps aid the CSWO in escaping local optima when confronted with this problem.

The pseudo-code of the CSWO algorithm is shown in Algorithm 2.

For completeness, we provide a comparison of computational complexity between SWO and
CSWO algorithms in Table 3.

From Table 3, it is shown that the computational complexity of CSWO is slightly higher than SWO
due to the additional chaotic behavior. The complexity for SWO can be considered as O(tmax · N),
while O(tmax · N · C) for CSWO, where N is the population size, tmax is the maximum number of
iterations, and C is the complexity introduced by the chaotic maps. On the other hand, the time
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Algorithm 2: Pseudo-code of CSWO algorithm
Input: N, Nmin, CR, TR, tmax
Output: x⃗∗i

1 Initialize N female wasps, x⃗t
i (i = 1, 2, . . . , N), using Eq. (2)

2 Evaluate each x⃗t
i and calculate the fitness of each search agent

3 x⃗∗ = the best search agent
4 Initialize the value of the chaotic map x0 randomly
5 t = 1;
6 while (t < tmax) do
7 Update the chaotic number using the chaotic map function
8 if (r6 < TR) then
9 for i = 1 : N do

10 Update the position of x⃗t
i using Eq. (18) to x⃗t+1

i
11 Compute f (x⃗t+1

i )

12 t = t + 1;
13 end for
14 else
15 for i = 1 : N do
16 Applying Eq. (19)
17 t = t + 1;
18 end for
19 end if
20 Applying Conserving Memory
21 Updating N using Eq. (22)
22 end while

Table 3. Comparison of computational complexity of SWO and CSWO algorithms

Feature SWO CSWO
Initialization Random population of agents Random population of agents
Evaluation Objective function Objective function
Position update Random and local search Chaotic maps enhance search
Mating behavior Information exchange Information exchange
Selection Best solution selected Best solution selected
Computational complexity O(tmax · N) O(tmax · N · C)
Time complexity O(tmax · D · N) + O(tmax · D · N) O(tmax · D · N · C) + O(tmax · D · N)
Exploration capability Standard Enhanced by chaotic behavior
Exploitation capability Standard Enhanced by chaotic behavior

complexity for the SWO algorithm is designed as:

T(SWO) = T(Hunting and Nesting behaviors) + T(Mating behavior)

= O(tmax · D · N) + O(tmax · D · N),
(27)

where D is the dimension of the search space. For the CSWO algorithm, the time complexity is
designed as:

T(CSWO) = O(tmax · D · N · C) + O(tmax · D · N). (28)
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Therefore, CSWO generally offers better performance in terms of exploration and exploitation
due to the integration of chaotic maps, but at the cost of increased both computational and time
complexities compared to the standard SWO algorithm.

7 Experimental setup and result discussions

The accuracy of the proposed meta-heuristic algorithms will be compared to traditional SWO using
a set of eight well-known unimodal or multimodal benchmark functions. Unimodal benchmark
functions provide only one optima and are very suitable for evaluating and comparing exploitation
strategies. In contrast, multimodal benchmark functions include several optima, which renders
them more complex than unimodal functions. The term "global optima" means that there exists a
single optima, whereas the rest are known as "local optima". The key property of any efficient
meta-heuristic algorithm is its capacity to avoid local optima and determine the global optimum.
The primary goal of multimodal benchmark functions is to evaluate the exploration’s performance
in order to avoid trapping in local optima. Table 4 presents a summary of the test functions,
including their range of optimization variables, their dimension Dim, and their minima fmin.
Furthermore, the topologies of benchmark functions are represented in Figure 3. As shown in
Table 4, the minima of all the proposed test functions is 0, except for the Schwefel function. Among
the proposed benchmark functions, the unimodal functions are F1, F2, F3, F7 and F8. In contrast,
F4, F5 and F6 are multimodal functions.

Table 4. List of eight benchmark functions

Function name Formula Dim Search space fmin
Sphere F1(x) =

∑n
i=1 x2

i 30 [−100, 100] 0
Quartic Noise F2(x) =

∑n
i=1 ix4

i + rand(0, 1) 30 [−1.28, 1.28] 0
Rosenbrock F3(x) =

∑n−1
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2] 30 [−30, 30] 0

Griewank F4(x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos( xi√
i
) + 1 30 [−600, 600] 0

Rastrigin F5(x) =
∑n

i=1
[
x2

i − 10 cos(2πxi + 10)
]

30 [−5.12, 5.12] 0
Schwefel F6(x) = −

∑n
i=1 xi sin(

√
|xi |) 30 [−500, 500] -418.9829×D

Schwefel 2.21 F7(x) = max {|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0
Schwefel 2.22 F8(x) =

∑n
i=1 |xi |+

∏n
i=1 |xi | 30 [−10, 10] 0

We can measure each algorithm’s performance using three distinct statistical tests: the best, the
mean of the fitness function, and the standard deviation (STD).

1. Statistical mean: represents the average value of the best fitness function F∗ obtained after
performing the algorithm Tmax iterations. It is computed as follows:

Mean =
1

Tmax

Tmax∑
i=1

Fi
∗. (29)

2. Statistical best: represents the minimum value of the best fitness function F∗ obtained after
performing the algorithm Tmax iterations, i.e;

Best =
Tmax
min
i=1

Fi
∗. (30)

3. Statistical standard deviation: is used as a performance test to verify the algorithm’s stability
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Figure 3. Topologies of the benchmark functions
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and robustness. A lower standard deviation in the obtained solutions means that the algorithm
accurately finds good solutions. It can be determined as:

STD =

√√√√ 1
Tmax − 1

Tmax∑
i=1

(
Fi∗ − Mean

)2. (31)

The performance of CSWO with chaos

All algorithms in the following numerical simulations were implemented using MATLAB software
with the Microsoft Windows 10 operating system. All simulations are performed on the same PC
with an Intel(R) Core(TM) i5-6300U 2.4 processor and 8GB of RAM. The proposed meta-heuristic
algorithms are evaluated on various well-known benchmark functions using different chaotic
maps. Their details can be found in Table 4. For all algorithms, the number of population is
30, the number of iterations is 500, and the number of independent runs is 10. The results of
five chaotic maps applied from CSWO1 to CSWO4 are displayed in Table 6, where the best, the
mean (average), and the STD of the best solutions obtained in the last iteration in simulation are
illustrated. Function values showing the most optimal results are emphasized in bold. It can be
shown from Table 6 that CSWO algorithms provide better results as compared to SWO algorithm.
In particular, Gauss/mouse, piecewise, and tent maps yields better results. In contrast, logistic and
sinusoidal maps perform less well when we implement CSWO compared to the SWO algorithm.
Therefore, Gauss/mouse, piecewise, and tent maps may effectively improve the performance of
SWO algorithm. Table 6 shows that the tent and piecewise-based SWO algorithms consistently
generates the best solutions over all test functions. In the following, considering the mean and
standard deviation statistical tests, a comparison is conducted between test functions that have
been optimized using the spider wasp optimization algorithm (SWO) and test functions that have
been optimized using chaotic maps.

- For function F1, Gauss/mouse map-based CSWO 1, CSWO 2, and CSWO 3 algorithms, along
with sinusoidal map-based CSWO 2, CSWO 3, and piecewise map-based CSWO 1, CSWO 2,
and CSWO 3 algorithms, yield better results than SWO algorithm.

- For function F2, all logistic map-based algorithms from CSWO 1 to CSWO 4, Gauss/mouse
map-based CSWO 2, CSWO 3, and CSWO 4 algorithms, sinusoidal map-based CSWO 1, and
CSWO 2 algorithms, piecewise map-based CSWO 2, CSWO 3, and CSWO 4 algorithms, and all
tent map-based algorithms from CSWO 1 to CSWO 4 give better solutions than SWO algorithm.

- For function F3, logistic map-based CSWO 4 algorithm, Gauss/mouse map-based CSWO 4
algorithm, piecewise map-based CSWO 2 and CSWO 3 algorithms, and tent map-based CSWO
3 and CSWO 4 algorithms yield better results compared to SWO algorithm.

- For functions F4 and F5, it has been demonstrated that most chaotic algorithms accurately
provide the minima of these functions, which is 0, with the exception of some algorithms such
as Gauss/mouse map-based CSWO 3 and CSWO 4 algorithms, and sinusoidal map-based
CSWO 1 and CSWO 4 algorithms. As a result, the logsitic, piecewise, and tent maps can
accurately improve the SWO algorithm’s performance.

- For function F6, most of the chaotic algorithms using logistic, Gauss/mouse, sinusoidal, piece-
wise, and tent maps give better results than SWO algorithm. Thus, using chaos can improve the
research performance for minima of function F6.

- For function F7, logistic map-based CSWO 1, CSWO 2, and CSWO 4 algorithms, Gauss/mouse
map-based CSWO 2 algorithm, sinusoidal map-based CSWO 3 algorithm, and tent map-based
CSWO 2 algorithm provide better solutions compared to SWO algorithm. Obviously, using
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chaotic maps for function F7 can greatly enhance the optimization process’s performance.
- For function F8, logistic map-based CSWO 1, CSWO 2, and CSWO 4 algorithms, Gauss/mouse

map-based CSWO 1 and CSWO 2 algorithms, sinusoidal map-based CSWO 1 and CSWO 3
algorithms, piecewise map-based CSWO 1, CSWO 3, and CSWO 4 algorithms, and all tent
map-based algorithms from CSWO 1 to CSWO 4 display better solutions as compared to SWO
algorithm.

According to the comparative study, the F4 and F5 functions demonstrated higher efficiency com-
pared to the other functions in algorithms based on logistic, Gauss/mouse, sinusoidal, piecewise,
and tent chaotic maps.
In the resolution of diverse optimization problems, both runtime and solution accuracy are of
crucial importance. Table 5 shows the average runtime of the algorithm using different chaotic
maps. From the table, it is shown that the runtime decreases when integrating chaotic maps into

Table 5. Runtime of SWO and CSWO algorithms (Unit: second)

Map Metrics SWO CSWOA1 CSWOA2 CSWOA3 CSWOA4
No map Time 45.2 N/A N/A N/A N/A

Rank N/A N/A N/A N/A N/A
Logistic Time N/A 29.1 29.3 28.67 28.89

Rank N/A 3 4 1 2
Gauss/mouse Time N/A 27.4 28.32 27.1 28.12

Rank N/A 2 4 1 3
Sinusoidal Time N/A 28.56 29.94 28.42 28.16

Rank N/A 3 4 2 1
Piecewise Time N/A 31.62 34.26 30.99 31.44

Rank N/A 3 4 1 2
Tent Time N/A 31.84 31.72 30.25 30.59

Rank N/A 4 3 1 2
Mean Rank N/A 3.00 3.80 1.20 2.00
Final Rank 5 3 4 1 2

the SWO algorithm. From the last row of the table, it can be seen that the average runtime of the
CSWOA3 is ranked 1.20, placing it first overall, which is better compared to the SWO, CSWOA1,
CSWOA2, CSWOA3, and CSWOA4. Therefore, incorporating chaos theory in the traditional SWO
algorithm enhances its convergence speed, which ensures the efficiency of the CSWO algorithm
for solving various optimization problems.

Qualitative analysis

A qualitative study has been conducted on several benchmark functions. Figure 4(a)-Figure 4(h)
illustrate the convergence of several benchmark functions using the CSWO algorithm. These
graphs provide an additional explanation of each algorithm’s convergence rate, showing the best
optimal solution obtained from 10 iterations of the algorithm using the tent chaotic map.
Figure 4(a) represents the convergence curves obtained using the tent map on the F1 Sphere
function, which has 0 as a global minimum. From Figure 4(a), CSWO 3 has the fastest convergence
rate to the global solution. Similarly, CSWO 1 is very close to CSWO 3, which provides a very
good convergence rate. On the other hand, SWO yields the slowest convergence rate when it
comes to determining the global minimum during the optimization process.
Figure 4(b) depicts the convergence curves obtained using the tent map on the F2 Quartic noise
function, which has 0 as a global minimum. From Figure 4(b), CSWO 3 has the fastest convergence
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rate to the global solution. Similarly, CSWO 4 is very close to CSWO 3, which gives a very good
convergence rate. On the other hand, SWO yields the slowest convergence rate when it comes to
determining the global minimum during the optimization process.

Figure 4(c) illustrates the convergence curves obtained using the tent map on the F3 Rosenbrock
function, which has 0 as a global minimum. As can be shown, CSWO 2 with CSWO 3 and CSWO
1 have the fastest convergence rate to the global solution. In contrast, SWO and CSWO 4 provide
the slowest convergence rate over the maximum number of iterations.

Figure 4(d) displays the convergence curves obtained using the tent map on the F4 Greiwank
function. F4 has the property of being slightly easier to solve for dimensions that are higher rather
than lower [62]. From Figure 4(d), it is shown that all of the algorithms failed to find the global
solution over the maximum number of iterations, and they crashed before the first 60 iterations.
Over the search process, CSWO 3 and CSWO 4 have the best convergence rate towards the global
optimum.

Figure 4(e) shows the convergence curves obtained using the tent map on the F5 Rastrigin function.
As can be observed, all of the algorithms failed to find the global solution over the maximum
number of iterations, and they crashed before the first 50 iterations. During the search process,
CSWO 2 and CSWO 4, followed by SCWO 3 and SWO, have the best convergence rate towards
the global optimum.

Figure 4(f) illustrates the convergence curves obtained using the tent map on the F6 Schwefel
function. As can be shown, CSWO 1 and CSWO 2, followed by CSWO 3 and CSWO 4, have the
fastest convergence rate to the global solution. In contrast, SWO displays the slowest convergence
rate over the maximum number of iterations.

Figure 4(g) represents the convergence curves obtained using the tent map on the unimodal F7
Schwefel 2.21 function, which has 0 as a global minimum. As we can see, CSWO 1 has the fastest
convergence rate to the global solution compared to the other algorithms. In particular, SWO
provides the slowest convergence rate over the maximum number of iterations. As a result, the
meta-heuristic algorithm’s performance is improved when using chaotic maps.

Figure 4(h) shows the convergence curves obtained using the tent map on the unimodal F8
Schwefel 2.22 function, which has 0 as a global minimum. Compared to the other algorithms,
CSWO 1 and CSWO 3 exhibit the fastest convergence rate to the global solution. In particular,
SWO and CSWO 4 display the slowest convergence rate over the maximum number of iterations.
Finally, we can conclude that using chaos in meta-heuristic optimization algorithms provides
better performance in the search process for the optimum solution.

8 Discussion and conclusions

This work has presented a novel variant of the SWO algorithm enhanced by chaos theory, de-
veloping the CSWO algorithm. Five chaotic maps were selected for improving the traditional
SWO algorithm’s efficiency by adjusting parameters. Inspired by the behaviors of female spider
wasps, the CSWO algorithm imitates searching for a spider, escaping a falling spider, nesting the
entrapped spider, and mating behavior during egg-laying. The robustness of the CSWO algorithm
was analyzed using eight benchmark functions to evaluate exploitation, exploration, capacity to
escape local optima, and convergence speed. The study showed that chaotic maps, particularly
the tent and piecewise maps, significantly improved SWO performance. The incorporating of
chaos increases the search speed for the best solution by replacing pseudo-random numbers with
chaotic variables, enhancing the convergence rate during the optimization process.
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Table 6. Statistical tests on benchmark functions using 5 chaotic maps on CSWO

Map Algorithms
Functions

F1 F2 F3 F4 F5 F6 F7 F8

No map SWO Best
2.26E−

154
1.44E−
05

8.44E−
06

0.00E+
00

0.00E+
00

−1.97E+
04

9.70E−
82

6.02E−
79

Mean
5.14E−
111

1.57E−
04

1.10E−
03

0.00E+
00

0.00E+
00

−1.85E+
04

2.80E−
68

5.16E−
56

STD
1.62E−
110

1.40E−
04

1.18E−
03

0.00E+
00

0.00E+
00

1.24E+
04

8.85E−
68

1.63E−
55

Logistic

CSWO 1 Best
8.93E−

155
6.27E−
06

3.13E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

4.59E−
77

3.34E−
78

Mean
2.50E−
105

1.51E−
04

2.09E−
03

0.00E+
00

0.00E+
00

−3.67E+
03

1.14E−
71

3.69E−
72

STD
7.91E−
105

1.76E−
04

2.77E−
03

0.00E+
00

0.00E+
00

8.32E+
02

3.61E−
71

7.63E−
72

CSWO 2 Best
3.90E−

156
2.23E−
05

4.78E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

4.51E−
81

1.39E−
78

Mean
7.88E−
104

1.16E−
04

1.43E−
03

0.00E+
00

0.00E+
00

−3.49E+
03

1.11E−
71

4.21E−
75

STD
2.69E−
103

8.84E−
05

1.68E−
03

0.00E+
00

0.00E+
00

8.94E+
02

3.46E−
71

1.11E−
74

CSWO 3 Best
1.51E−

158
8.70E−
06

5.17E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

4.42E−
77

9.84E−
81

Mean
5.94E−
106

1.03E−
04

1.39E−
03

0.00E+
00

0.00E+
00

−3.54E+
03

4.98E−
57

2.47E−
53

STD
1.87E−
105

1.18E−
04

1.26E−
03

0.00E+
00

0.00E+
00

8.32E+
02

1.57E−
56

7.81E−
53

CSWO 4 Best
1.90E−

150
1.17E−
05

5.85E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

8.86E−
76

3.97E−
77

Mean
5.98E−
72

1.52E−
04

2.00E−
04

0.00E+
00

0.00E+
00

−3.50E+
03

1.14E−
71

1.35E−
60

STD
1.88E−
71

1.33E−
04

1.87E−
04

0.00E+
00

0.00E+
00

8.86E+
02

3.43E−
71

4.29E−
60

Gauss/mouse

CSWO 1 Best
6.96E−

159
6.73E−
06

2.03E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

3.03E−
80

5.66E−
81

Mean
1.41E−
127

1.61E−
04

2.22E−
03

0.00E+
00

0.00E+
00

−3.28E+
03

1.62E−
52

4.23E−
58

STD
4.47E−
127

1.57E−
04

3.94E−
03

0.00E+
00

0.00E+
00

8.47E+
02

5.12E−
52

1.33E−
57

CSWO 2 Best
9.29E−

161
1.50E−
05

1.62E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

4.79E−
79

2.05E−
78

Mean
6.75E−
142

1.54E−
04

2.09E−
03

0.00E+
00

0.00E+
00

−3.34E+
03

2.55E−
66

1.99E−
57

STD
2.11E−
141

1.06E−
04

3.70E−
03

0.00E+
00

0.00E+
00

8.99E+
02

8.07E−
66

6.31E−
57

CSWO 3 Best
8.15E−

161
9.89E−
06

1.34E−
05

1.03E−
04

1.34E−
05

−4.13E+
03

1.42E−
78

2.60E−
78

Mean
1.11E−
107

1.00E−
04

2.09E−
03

2.10E−
02

1.72E−
02

−2.45E+
03

3.39E−
59

6.41E−
54

STD
3.53E−
107

8.44E−
05

2.17E−
03

2.89E−
02

3.70E−
02

7.33E+
02

1.07E−
58

2.02E−
53

CSWO 4 Best
7.41E−

166
9.05E−
06

1.63E−
05

1.11E−
16

1.42E−
14

−2.33E+
03

4.15E−
83

1.57E−
83

Mean
8.11E−
78

8.83E−
05

8.77E−
04

2.60E−
07

2.77E−
11

−2.09E+
03

5.93E−
40

1.27E−
37

STD
2.54E−
77

6.07E−
05

1.61E−
03

7.76E−
07

5.51E−
11

1.94E+
02

1.87E−
39

3.68E−
37
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Map Algorithms
Functions

F1 F2 F3 F4 F5 F6 F7 F8

Sinusoidal

CSWO 1 Best
5.92E−

160
1.20E−
05

2.87E−
05

1.04E−
11

5.68E−
14

−3.00E+
03

2.79E−
78

3.09E−
79

Mean
2.33E−
105

1.17E−
04

2.14E−
03

4.21E−
09

9.41E−
10

−2.31E+
03

2.12E−
58

9.32E−
63

STD
7.37E−
105

9.45E−
05

3.08E−
03

5.29E−
09

9.69E−
10

4.12E+
02

6.72E−
58

2.94E−
62

CSWO 2 Best
9.09E−

155
1.12E−
05

3.40E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

1.41E−
80

3.34E−
81

Mean
3.59E−
128

1.12E−
04

2.03E−
03

0.00E+
00

0.00E+
00

−3.53E+
03

1.72E−
62

3.07E−
55

STD
1.13E−
127

8.10E−
05

3.23E−
03

0.00E+
00

0.00E+
00

8.71E+
02

5.46E−
62

9.39E−
55

CSWO 3 Best
7.14E−

157
3.41E−
05

7.68E−
06

3.33E−
15

0.00E+
00

−4.18E+
03

2.39E−
77

4.48E−
82

Mean
4.63E−
111

1.79E−
04

1.52E−
03

4.67E−
08

1.74E−
10

−3.82E+
03

7.41E−
73

4.73E−
70

STD
1.46E−
110

1.24E−
04

3.35E−
03

1.47E−
07

3.31E−
10

7.67E+
02

1.73E−
72

1.49E−
69

CSWO 4 Best
5.78E−

22
2.25E−
05

2.01E−
03

0.00E+
00

0.00E+
00

−3.88E+
03

8.78E−
12

6.18E−
10

Mean
4.17E−
08

1.79E−
04

5.47E−
02

9.15E−
08

1.00E−
12

−2.75E+
03

1.35E−
05

8.43E−
05

STD
1.32E−
07

1.40E−
04

5.92E−
02

1.16E−
07

2.68E−
12

4.66E+
02

4.23E−
05

2.52E−
04

Piecewise

CSWO 1 Best
9.29E−

161
1.50E−
05

1.62E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

4.79E−
79

2.05E−
78

Mean
6.75E−
142

1.76E−
04

2.09E−
03

0.00E+
00

0.00E+
00

−3.40E+
03

2.55E−
66

1.99E−
57

STD
2.11E−
141

1.52E−
04

3.70E−
03

0.00E+
00

0.00E+
00

8.45E+
02

8.07E−
66

6.31E−
57

CSWO 2 Best
5.85E−

159
6.67E−
06

3.61E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

7.40E−
81

1.04E−
79

Mean
2.95E−
141

1.12E−
04

6.93E−
04

0.00E+
00

0.00E+
00

−3.66E+
03

5.68E−
54

4.72E−
53

STD
9.35E−
141

9.67E−
05

4.95E−
04

0.00E+
00

0.00E+
00

8.16E+
02

1.79E−
53

1.49E−
52

CSWO 3 Best
1.07E−

154
1.60E−
05

1.04E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

6.25E−
81

6.19E−
79

Mean
3.83E−
125

1.21E−
04

7.81E−
04

0.00E+
00

0.00E+
00

−3.89E+
03

5.39E−
66

6.43E−
61

STD
1.21E−
124

9.55E−
05

9.79E−
04

0.00E+
00

0.00E+
00

6.14E+
02

1.69E−
65

1.84E−
60

CSWO 4 Best
7.21E−

160
7.85E−
06

2.81E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

7.53E−
80

1.96E−
80

Mean
9.23E−
99

6.79E−
05

1.26E−
03

0.00E+
00

9.81E−
05

−4.03E+
03

1.55E−
39

4.22E−
75

STD
2.91E−
98

7.46E−
05

1.40E−
03

0.00E+
00

3.10E−
04

4.74E+
02

3.27E−
39

1.31E−
74
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Map Algorithms
Functions

F1 F2 F3 F4 F5 F6 F7 F8

Tent

CSWO 1 Best
1.46E−

165
1.33E−
05

2.54E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

2.58E−
78

2.90E−
80

Mean
8.80E−
104

1.13E−
04

2.11E−
03

0.00E+
00

0.00E+
00

−3.66E+
03

9.15E−
56

1.21E−
71

STD
2.78E−
103

1.18E−
04

4.10E−
03

0.00E+
00

0.00E+
00

6.89E+
02

2.89E−
55

3.81E−
71

CSWO 2 Best
1.18E−

155
1.22E−
06

1.94E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

2.35E−
76

1.13E−
79

Mean
6.30E−
101

1.56E−
04

1.70E−
03

0.00E+
00

0.00E+
00

−3.40E+
03

2.55E−
68

4.42E−
56

STD
1.80E−
100

1.36E−
04

3.46E−
03

0.00E+
00

0.00E+
00

1.00E+
03

4.57E−
68

1.39E−
55

CSWO 3 Best
4.67E−

160
9.74E−
07

1.55E−
05

0.00E+
00

0.00E+
00

−4.18E+
03

5.50E−
83

2.23E−
80

Mean
5.26E−
106

3.98E−
05

8.78E−
04

0.00E+
00

1.58E−
05

−3.79E+
03

1.72E−
54

7.21E−
73

STD
1.66E−
105

3.93E−
05

1.68E−
03

0.00E+
00

5.01E−
05

8.08E+
02

3.91E−
54

2.28E−
72

CSWO 4 Best
3.35E−

143
1.45E−
05

3.01E−
06

0.00E+
00

0.00E+
00

−4.18E+
03

6.17E−
72

4.01E−
73

Mean
7.16E−
65

9.70E−
05

3.94E−
04

0.00E+
00

0.00E+
00

−3.70E+
03

1.72E−
34

2.50E−
66

STD
2.07E−
64

6.70E−
05

4.95E−
04

0.00E+
00

0.00E+
00

8.02E+
02

5.44E−
34

4.91E−
66

Chaotic maps can improve the SWO algorithm by enhancing exploration and exploitation, but
they come with several challenges. Using chaotic maps increases computational overhead and
complexity, which can slow down the algorithm. Performance is sensitive to map selection and
parameters, leading to unpredictability. Chaotic behavior can cause excessive exploitation, reduc-
ing population diversity and causing premature convergence. Multiple chaotic maps introduce
implementation challenges and increase complexity. They can also exhibit noise, potentially
destabilizing the optimization process. Careful tuning and empirical validation are needed to
effectively integrate chaotic maps and benefit from their behavior.

The CSWO algorithm, inspired by spider wasps and enhanced with chaotic maps, is a powerful
metaheuristic optimization method applicable to many real-world scenarios. In engineering,
it optimizes structures like bridges, airplane wings, and mechanical systems for efficiency and
material use. In energy systems, it improves renewable energy configurations and power grid
operations. For transportation, it resolves vehicle routing issues and optimizes traffic signals to
reduce congestion. In healthcare, CSWO enhances medical imaging and drug design. Financial
firms use it for portfolio optimization and algorithmic trading. In machine learning, it aids feature
selection and hyperparameter tuning. Environmental applications include water resource man-
agement and crop planning. Telecommunications benefit from improved network design, while
robotics and aerospace use it for route planning and system optimization. Chemical engineering
leverages CSWO for process and reactor design. In education, it enhances curriculum design and
training programs. Overall, CSWO is a versatile tool for solving optimization challenges across
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Figure 4. Convergence graph of each algorithm in solving: (a) F1 Sphere; (b) F2 Quartic noise; (c) F3 Rosenbrock;
(d) F4 Griewank; (e) F5 Rastrigin; (f) F6 Schwefel; (g) F7 Schwefel 2.21 and (h) F8 Schwefel 2.22 benchmark
functions
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various domains, making it valuable for both researchers and practitioners.
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