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Infectious diseases like Hepatitis A and E pose substantial 
challenges to public health globally, necessitating innovative 
strategies that combine mathematical modelling with strategic 
intervention analysis. This study introduces a comprehensive 
mathematical model designed to encapsulate the complex 
dynamics of Hepatitis A and E infections, including susceptibility, 
vaccination, latent and acute phases, treatment, and recovery.  

A thorough quantitative analysis was performed, 
encompassing the non-negativity and boundedness of solutions, the 
disease-free equilibrium, and the basic reproductive ratio. Stability 
analyses provided critical insights into the local and global 
dynamics of the model, essential for understanding the conditions 
under which the diseases persist or are controlled. 

Sensitivity analysis highlighted key parameters driving 
disease transmission, aiding in the development of targeted 
intervention strategies. Utilizing optimal control theory, innovative 
intervention frameworks were formulated to optimize vaccination 
campaigns, allocate treatment resources efficiently, implement 
health education programs, and enhance sanitation measures. 
Numerical simulations further demonstrated the effectiveness of 
these interventions, showcasing their influence on population 
dynamics, disease prevalence, and environmental contamination. 
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1 INTRODUCTION 

The historical trajectory of hepatitis, spanning from ancient civilizations to 

modern scientific discoveries, reflects a complex interplay between human behavior, 

societal conditions, and viral pathogens. Millennia ago, descriptions of clinical 

syndromes resembling hepatitis can be traced back to Sumerian medical texts, 

highlighting the enduring presence of this disease throughout human history. 

Hippocrates' observations of "epidemic jaundice" further underscored the recognition 

of hepatitis-like illnesses in antiquity. During subsequent centuries, particularly in 

the Middle Ages, rudimentary understanding of jaundice transmission emerged, 

exemplified by Pope Zacharias' quarantine measures [1-4]. However, it wasn't until 

the 20th century, amid the upheavals of global conflicts, that significant strides were 

made in elucidating the viral etiology of hepatitis. Pioneering experiments during 

World War II revealed distinct subtypes of viral hepatitis, paving the way for the 

identification of hepatitis A and hepatitis B. By the late 1970s, the emergence of 

hepatitis C as a distinct pathogen underscored the complexity of viral hepatitis. The 

discovery of hepatitis E virus (HEV) further expanded our understanding, particularly 

in regions where hepatitis A was traditionally assumed to be the primary cause of 

waterborne outbreaks [5-8]. The pivotal moment came when Russian virologist 

Mikhail Balayan's self-experimentation led to the identification of HEV, shedding light 

on a previously unrecognized form of viral hepatitis. From a virological perspective, 

hepatitis A virus (HAV) and HEV belong to different families and exhibit distinct 

genetic characteristics [9-18]. Despite their differences, both viruses share a 

remarkable ability to survive in the environment due to their non-enveloped 

structure, facilitating transmission through contaminated food and water sources. 

This underscores the importance of sanitation measures in preventing hepatitis 

outbreaks. Epidemiologically, HAV and HEV display contrasting patterns of 

transmission and geographic distribution. While HAV primarily spreads through fecal-

oral routes, HEV transmission encompasses zoonotic and waterborne routes, with 

variations in prevalence across different regions. Understanding these transmission 

dynamics is crucial for implementing targeted prevention strategies. Clinically, both 

HAV and HEV can cause acute hepatitis with varying degrees of severity, although 

chronic infection is rare with HAV. The clinical presentation of hepatitis A and E can 
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overlap, but distinct features may aid in differential diagnosis [17-21]. Moreover, the 

emergence of extra hepatic manifestations further complicates the clinical picture, 

highlighting the multisystem nature of these infections. Diagnosing hepatitis, 

particularly HEV infection, presents challenges due to limited awareness among 

clinicians and variability in testing availability and accuracy. Treatment options for 

acute hepatitis A and E are primarily supportive, with ribavirin showing efficacy in 

selected cases of severe acute hepatitis E. In chronic HEV infection, reduction of 

immunosuppression and antiviral therapy with ribavirin are considered, emphasizing 

the importance of tailored management approaches. Prevention remains the 

cornerstone of hepatitis control efforts, encompassing measures such as vaccination, 

sanitation improvements, and public health interventions. Vaccination against HAV 

and the availability of an HEV vaccine in certain regions offer promising avenues for 

disease prevention [22-32]. 

The seminal mathematical framework for analyzing the propagation of 

infectious diseases was spearheaded by Bernoulli in 1760. Its primary objective was 

to evaluate the impact of variolation, an early technique akin to smallpox 

vaccination, on life-tables utilized in actuarial calculations. Mathematical models 

play an indispensable role in scientific and medical spheres, enabling the 

interpretation of outcomes, formulation of hypotheses, design of experiments, 

derivation of diagnoses from clinical presentations and test results, and provision of 

guidance for decision-making processes [1], [16], [33-40]. Mathematical 

representation of models allows for meticulous analysis, enabling quantitative 

forecasts regarding disease trends and intervention impacts. Increasingly, the 

utilization of mathematical frameworks in elucidating the dynamics of infectious 

disease propagation holds significant prominence in the formulation of public health 

protocols. Notable applications encompass the management of the foot-and-mouth 

disease outbreak in the UK during 2001, addressing episodes of severe acute 

respiratory syndrome (SARS) and Middle East respiratory syndrome coronavirus 

(MERS-CoV), devising strategic approaches for controlling tuberculosis (TB), human 

immunodeficiency virus (HIV), and sexually transmitted infections (STIs), as well as 

crafting vaccination policies, enhancing preparedness for pandemic influenza, 

planning responses to bioterrorism threats, strategizing intervention trials, assessing 

the efficacy of interventions, enriching comprehension of disease progression, and 
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investigating fundamental principles governing disease control [31-34], [39-42]. 

Infectious disease epidemiology is inherently interdisciplinary as infection 

transmission within a populace is influenced not only by the biological attributes of 

the infectious agent and its host, but also by host (and vector, where applicable) 

contact patterns, environmental factors, and human utilization of healthcare 

services and response to public health measures, among other factors. Mathematical 

modeling serves to delineate the intricate interplay among these factors and enables 

integration of data from diverse disciplines, including social sciences. Crucially, 

models ought not to be enigmatic constructs but should be lucidly expounded to 

enable assessment of model validity and data utilization by non-modelers. Modeling 

embodies the process of formalizing conceptualizations of a system, aimed at 

enhancing clarity; nevertheless, infectious disease transmission dynamics typically 

exhibit inherent complexity [3], [5], [7], [38-46]. 

To gain deeper insights into the epidemiological characteristics of Hepatitis A 

and E, researchers employ sophisticated mathematical modeling techniques akin to 

those utilized in studying diseases like diphtheria, pertussis, and influenza. This 

analytical approach, widely employed in infectious disease epidemiology, enables a 

systematic exploration of the intricate patterns of transmission within populations. 

Just as mathematical models have been instrumental in elucidating transmission 

dynamics of various infectious diseases, from COVID-19 to Lassa fever, we introduce 

a comprehensive model tailored specifically to understand the transmission dynamics 

of Hepatitis A and E viruses [2], [3], [7], [46-50].  

Infectious diseases, such as Hepatitis A and E, present significant challenges 

to public health worldwide. Addressing these challenges requires innovative 

approaches integrating mathematical modeling and strategic intervention analysis, 

hence this research study holds significant implications for public health 

epidemiology by providing a comprehensive framework for understanding and 

controlling Hepatitis A and E infections. Through mathematical modeling and 

quantitative analysis, the proposed model elucidates the dynamics of transmission, 

the impact of interventions such as vaccination and treatment, and the effectiveness 

of sanitation measures. By identifying key parameters and evaluating their 

sensitivity, the study offers valuable insights into optimal control strategies for 

taming disease burden. Findings will further contribute to evidence-based decision-
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making in disease prevention and control, aiding policymakers and healthcare 

professionals in implementing targeted interventions to reduce Hepatitis A and E 

transmission and improve population health outcomes. 

The proposed mathematical model and use of optimal control theory offer a 

unique and comprehensive framework for analyzing the dynamics of Hepatitis A and 

E infections. Unlike traditional SIRS models, this study integrates critical real-world 

factors such as pathogen shedding into water and food supplies, the impact of 

sanitation measures, and the interplay between vaccination, treatment, and 

environmental contamination. By leveraging Pontryagin's Maximum Principle, the 

research innovatively optimizes intervention strategies, providing a targeted 

approach to controlling disease transmission. Furthermore, this model advances 

existing literature by focusing specifically on the dual dynamics of Hepatitis A and E, 

offering insights that were previously underexplored in public health modeling. 

Through sensitivity analysis and numerical simulations, the study identifies and 

prioritizes key parameters influencing disease spread, paving the way for more 

effective, evidence-based intervention strategies. 

2 MATERIALS AND METHOD 

2.1 Model Description 

We have adapted and modified a model that bears resemblance to the SIRS 

(Susceptible-Infectious-Recovered-Susceptible) model (Figure 1). This model 

comprises the following classes: 

1. Susceptible (S): This class represents individuals who are susceptible to the 

infection and have not yet been exposed to it. 

2. Vaccinated Class (V): Individuals in this class have received a vaccine before 

being exposed to the infection, providing them with a level of immunity. 

3. Latent Individuals (L): This class includes individuals who have been exposed 

to the infection but have not yet developed clinical symptoms. They are 

asymptomatic carriers capable of transmitting the virus. 
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4. Acute Individuals (A): Individuals in this class have been exposed to the 

infection and are showing clinical symptoms. They are actively infected and capable 

of transmitting the virus to others. 

5. Treated Acute (T): Acutely infected individuals undergoing treatment 

aimed at reducing their infectiousness and promoting their recovery. 

6. Recovered Individuals (R): This class represents individuals who have 

recovered from the infection and have developed immunity against it. 

This model provides a comprehensive framework for examining the dynamics 

of Hepatitis A and E infection, including vaccination and treatment effects across 

different stages of the infection cycle. 

The force infection is given as  

PA 21 ρρω +=  (1) 

The model incorporates various parameters to describe the dynamics of the 

infection. These parameters are detailed in Table 1. Additionally, the flow map 

illustrating the progression of the infection is depicted in Figure 2. 

Table 1. Explanation of the parameters utilized in the model. 

Parameters Description 

Γ  Rate of entry into the susceptible population 
φ  Fraction of the population vaccinated 
σ  Rate of vaccination among susceptible individuals 
ω  Force of infection for Hepatitis A and E 
a  Proportion of acute cases recovering without treatment 
γ  Rate of treatment among acute cases 

1θ  Rate of recovery among treated individuals 
η  Rate of pathogen mortality due to sanitation measures 

1δ  
Rate of pathogen excretion into water or food supply by infectious 

individuals in the acute stage 

2δ  
Rate of pathogen excretion into water or food supply by treated 

individuals 
µ  Rate of natural mortality 

pµ  Rate of Hepatitis A and E disease induction 

ξ  Maximum per capita growth rate of Hepatitis A and E pathogens 
τ  Rate of progression from latent stage to infected stage 

2θ  Recovery rate of treated individuals 
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Figure 1. Schematic diagram interaction of each compartment. 

2.2 The Equations of the Model 

From the aforementioned description, the system of equations takes the 

following form: 
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2
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1

1
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 (2) 

2.3 A Comprehensive Investigation into the Model's Quantitative 

Attributes 

2.3.1  Non-negativity and boundedness of solution 

The system (2) can be divided into two separate components: one delineating 

the human population HN  and the other describing the viral concentration in the 

surrounding environment, particularly in food and water reservoirs PN . 
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The differential equation for the human population RTALVSNH +++++=

is as follows: 

dt

dR

dt

dT

dt

dA

dt

dL

dt

dV

dt

dS

dt

dNH +++++=  (3) 

Through the substitution of the model system represented by equation (2) into 

equation (3) and subsequent elimination, we achieve the following result: 

( ) ( )TAN
dt

dN
++−Γ−= δµφ1  (4) 

Theorem 1: Let ( )RTALVS ,,,,, be the solution of equation (1) with the initial 

conditions in a biologically feasible region Φwith: ( )
µ

Γ
≤∈=Φ + HNRRTALVS :,,,,, 6

 Then Φ is non-negative invariant. 

So, Where 0=δ at DFE, equation (4) becomes  

N
dt

dNH µ−Γ=  (5) 

By employing the integrating factor method to solve equation (5), we acquire: 

µ

Γ
≤∴

∞→
)(tNiml H

t
 (6) 

We conducted a verification process to ensure the non-negativity and 

boundedness of the solution, thereby affirming the physical and epidemiological 

plausibility of the model's predictions. This verification safeguards against scenarios 

where the number of individuals within a compartment becomes negative, 

maintaining the integrity of the model's outcomes. Additionally, we confirmed that 

the Hepatitis A and E model does not exhibit unbounded growth, as its values are 

constrained within defined limits. This boundedness feature prevents unrealistic 

scenarios wherein the disease proliferates uncontrollably, ensuring that the 

predictions remain within attainable levels throughout the transmission process. 
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2.3.2  Disease- free steady-state 

In this context, we examine the dynamics of the mathematical model under 

conditions where the disease is absent, and the population remains unaffected by 

new disease cases. It is important to emphasize that despite the absence of the 

disease, every individual within the population is considered susceptible, indicating 

their vulnerability to potential infections. 

So, then, 00 ≠S ,  

For 0,0,0,0,0,0,0 0000000 ======≠ PRTALVS , 

Consequently, the set of equations delineated in the model (2) 00 =−Γ Sµ . 

And this gives; 

µ

Γ
=oS  (7) 

This produces the asymptotic state devoid of disease among the individuals, 

characterized by: 

( )












 Γ
== 0,0,0,0,0,0,,,,,,, 00000000

µ
PTRALVSE  (8) 

2.3.3 Basic reproductive ratio 

In this analysis, we delineate the pivotal epidemiological parameter utilized 

for quantifying the potential dissemination of the ailment across the populace. It is 

imperative to acknowledge that this metric denotes the mean count of subsequent 

infections induced by a solitary infective entity within an entirely susceptible 

population. This parameter assumes critical importance in comprehending the 

intricacies inherent in the transmission dynamics of Hepatitis A and E, as well as in 

appraising the efficacy of containment methodologies. 

The fundamental parameter representing the propagation potential within the 

model's system equation (2) is determined through the application of the next 

generation matrix method as elucidated by Diekmann and Heesterbeek. 
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Using 

)( 1−= ABRn ρ   

Consider the infected compartments in the model (2) are AL, andP . 

The terminology denoting new infections and transitions in system (1) are 

expressed as follows; 

In the model (2), the compartments representing infected individuals are 

denoted as AL, and P .  

The terms describing new infections and transitions in system (1) are 

expressed as follows: 
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Upon solving equation (11), we obtain: 
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 (12) 
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Likewise, 
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( )

( )
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Let ( )µτ +=a ; τ−=b ; ( )1)1( δµγγ ++−+= aac ; 1δ−=d ; and ( )ξηµ −+= pe  
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Therefore, substitute (17) and (12) in )( 1−= ABRn ρ , so we have 
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ace

Sbd

ac

Sb
Rn

21 ρρ
+

−
=  

21 RRRn +=  

Where 
ac

Sb
R 1
1

ρ−
= and 

ace

Sbd
R 2
2

ρ
=  

Substituting these values into the equation above: 

 ( )µτ +=a ; τ−=b ; ( )1)1( δµγγ ++−+= aac ; 1δ−=d ; and ( )ξηµ −+= pe , we 

get 
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( )
( )( ) ( )














−+
+
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Γ−
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ξηµ

ρδ
ρ

δµγγµτµ

φτ

p

n
aa

R 21
1

1)1(

1
 (16) 

Moreover, let 1R and 2R  denote the respective contributions stemming from 

direct and indirect transmissions, respectively. 

2.4 Stability Property 

2.4.1 Local stability of the disease-free steady-state 

In this examination, we investigate the regional robustness of the equilibrium 

devoid of disease. This characteristic delves into the temporal evolution of the 

model's parameters when the virus is absent, indicating the equilibrium devoid of 

disease. It facilitates comprehension of the model's dynamics in the absence of the 

virus and its sensitivity to minor alterations or disturbances. 

Theorem 1:  

Within the domain of model system (2), the disease-free equilibrium is 

regarded as locally asymptotically stable (LAS) provided that all eigenvalues of the 

associated Jacobian matrix exhibit negative real components. 

Proof:  

To clarify the aforementioned theorem, we proceed with the calculation of 

the Jacobian matrix concerning the dynamics of the system at the state of disease-

free equilibrium (DFE). The Jacobian matrix, represented by ),,,,,,( PRTALVSJ , 

facilitates the determination and estimation of the eigenvalues of the system. The 

Jacobian matrix is expressed as follows: 

( )
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(17) 

Now, we calculate the eigenvalue, 0=− IJ λ , where λ  represents our 

eigenvalue. 
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(18) 

The eigenvalues of matrix ),,,,,,( PRTALVSJ , as depicted in the provided 

matrix, serve as crucial indicators of system dynamics. It is evident that these 

eigenvalues solely consist of real values, without any presence of imaginary 

components. The indication of these eigenvalues holds significant epidemiological 

ramifications, particularly when assessing the stability of the Disease-Free 

Equilibrium (DFE). Notably, in this context, all eigenvalues exhibit negative real 

components, affirming the local asymptotic stability of the model at the DFE. 

2.4.2 Analysis of global stability of disease-free equilibrium (DFE) 

Theorem 4: 

The globally asymptotically stable non-negative equilibrium point of model (2) 

is guaranteed to be attained under conditions where 10 >G . 

V,  

Proof: 

In order to assess the worldwide stability of this equilibrium 0E , we construct 

the ensuing Lyapunov function employing the specified approach. 
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(19) 

The derivative of G  along the solution path of (2) can be obtained through 

direct calculation as follows: 
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We proceed to extend the aforementioned equation and partition it into 

distinct positive and negative components. Let the positive term be symbolized as

tP , and the negative term as tN . Consequently, we derive: 
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Similarly, 
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Given the condition that tt NP < , it follows that 
dt

dG
will exhibit negativity 

definiteness along the trajectory of the solution space of the system. Consequently, 

this implies that exclusively at the Disease-Free Equilibrium (E0), 0≤
dt

dG
 will hold. 

This observation suggests the global stability of the system at the Disease-Free 

Equilibrium 

2.4.3 The presence of the endemic equilibrium points 

In this investigation, we delve into the analysis of endemic equilibrium 

configurations, denoting stable solutions inherent to the model, wherein Hepatitis A 

and E endure within the populace perpetually. These equilibrium points denote the 
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steady disease states where the number of infected individuals and other 

compartments stabilizes. 

The endemic equilibrium points are defined as ( )0,0,0,0,0,0),(* tS  that satisfy

0''''''' ======= PRTALVS . By setting equation (2) to 0, we have 
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(24) 

Employing conventional methodologies, the model demonstrates disease-free 

dynamics at equilibrium point 0E . 

PA 21 ρρω +=
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2.5 Sensitivity Analysis of the Model 

This section focuses on performing a sensitivity analysis of the model, wherein 

the impact of parameter fluctuations on model prognostications is investigated. The 

aim is to identify significant parameters, elucidate their impact, and enhance the 

model's robustness. 

In sensitivity analysis, a comprehensive exploration is conducted wherein 

parameters are systematically varied within their respective feasible ranges, while 

meticulously observing the consequent dynamics of the model. Such variation can be 

executed either in isolation (commonly denoted as one-at-a-time sensitivity analysis) 

or collectively (referred to as global sensitivity analysis) for multiple parameters 

concurrently. 

We conducted an assessment of the model's reproductive ratio nR  to evaluate 

variations and the impact of parameter alterations (Table 2) and the results 

graphically displaced in figure 2. 

2.5.1 Definition 

The elucidation of the Normalized Forward-Sensitivity Index concerning 

variable V, dependent on parameter U, is expounded upon as follows: 

V

U

U

V
X VU .

∂

∂
=  (25) 

In reference to the model parameters, we shall undertake the computation of 

sensitivity indices pertaining to the basic reproductive ratio, designated as nR . 

2.5.2 Sensitivity index for Γ  

The calculated metric denoted as the Normalized Forward-Sensitivity Index 

for λ  is expressed as:  

n

nR

R

R
X n

Γ

Γ∂

∂
=Γ .  (26) 
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Evaluating the derivatives in equation (43), we obtain:  

 
n

n R
R

Γ
=

Γ∂

∂ 1
 (27) 

Then, 

n

n

n

nR

R
R

R

R
X n

Γ

Γ
=

Γ

Γ∂

∂
=Γ .

1
.    

1+=∴ Γ
nRX  (28) 

 This gives us the sensitivity indexΓ . 

The sensitivity analyses for the remaining parameters contributing to the basic 

reproductive ratio are conducted using a standardized methodology, ensuring 

uniformity in the computational process. Consequently, the sensitivity measures for 

these parameters are delineated as follows: 

 

Table 2. Indices of sensitivity regarding additional parameters within the 
framework of the basic reproductive rate are assessed. 

Variables Values Index indicator 
φ  -0.6666667 - 

Γ  1 + 

1ρ  0.5238095238 + 

2ρ  0.4761904762 + 
µ  -1.081097152 - 
τ  0.07918968688 + 
a  0.00000 + 
γ  -0-1108991705 - 

1δ  -0.4110028875 - 

pµ  -0.2245670995 - 

η  -0.4491341991 - 
ξ  0.1975108225 + 
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Figure 2. Sensitivity analysis. 

2.5.3 Interpretation of sensitivity analysis 

A sensitivity index with a negative value signifies an inverse correlation 

between the parameter nR  (Table 2). Conversely, a sensitivity index with a positive 

value indicates that an increment in the parameter value results in a corresponding 

elevation in nR . This analytical approach aids in discerning the parameters exerting 

significant influence on the outcomes of our analysis. 

2.6 Optimal Strategies for Controlling the Model 

The aim is to curtail disease transmission and its repercussions, considering 

resource constraints and optimizing the implementation of available interventions. 

These strategies typically entail a blend of preventive measures, surveillance, 

vaccination initiatives, and prompt case management. Several key components 

contribute to effective hepatitis control measures. These encompass adjusting 

transmission dynamics by lowering transmission rates through interventions such as 

health education ( )11 − campaigns, where 1 denotes health education and 

awareness. These public health endeavors raise awareness about hepatitis A and E 

transmission routes and preventive measures, thereby empowering individuals and 

communities to safeguard against infection. Vaccination campaigns target 

susceptible individuals ( 2 ), while treatment efforts focus on acute cases ( 3 ). 
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Sanitation initiatives ( 4 ) address the removal of pathogens, further contributing to 

disease control. Building upon these foundations, we formulate a set of novel 

equations: 

Building upon these premises, we formulate the following set of novel 

equations: 

( ) ( )( )( )

( )( ) ( )

( )

( ) ( )

( )
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(29) 

2.7 Examination of the Model Integrating Preventive Interventions 

In this segment, we have developed a structured model, placing significant 

focus on leveraging Pontryagin's Maximum Principle for potential manipulation. 

Emphasizing the optimal solution delineated in equation set (29), a significant 

concern related to control has been identified and subsequently expounded upon 

before embarking on its comprehensive global optimization. The intricate process of 

selecting the most effective strategies is encapsulated by the objective function 

represented as F. The primary objective is to minimize the population susceptible 

to, exposed to, and affected by the disease, covering both asymptomatic and 

symptomatic cases, over a specified time interval [0, T]. 

Let ( ) WW ∈= 4321 ,,,  define over a Lebesgue measurable set on  1,0  

For  ( )   4,3,2,1,1,010 =∈≤≤ iti   



BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY 15(1), 2025, 1–36 

20 

Subsequently, the establishment of the objective function, designated as G, 

is undertaken.  

 
( ) ( ) dtVVVVPQTQVQLQG

T
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 (31) 

The parameter denoting the final time point is represented byT , with 

coefficients 1Q through 4Q  signifying the weight coefficients assigned to the virus 

across various demographic categories, including latent classes, vaccinated 

individuals, treatment of acute individuals, and pathogens. 

The primary focus of this section is to reduce operational costs, as outlined in 

equation (30). Additionally, our investigation extends to encompass an analysis of 

the social and economic implications ,,,
2

33

2

22

2

11  VVV and 
2

44V linked to the 

outlined scenario. 

In pursuit of addressing the control challenge, our endeavors are aimed at 

understanding the functionalities. 

( ) ( ) ( ) ( )( )tttt
*

4

*

3

*

2

*

1 ,,,   such that 

( ) ( ) ( ) ( )( ) ( ) ( ) WGttttG ∈= 43214321

*

4

*

3

*

2

*

1 ,,,,,,,min,,,   (32) 
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2.7.1 The presence of an optimal control solution 

Theorem:  

Following equation (30), it is crucial to examine ( )4321 ,,, G   within the 

constraints specified in (31), with t=0 representing the initial condition. Thus, in 

determining the optimal control, ensuring the aforementioned condition to be 

( ) ( ) ( ) ( )tttt
*

4

*

3

*

2

*

1

* ,,,  =   is imperative. 

( ) ( ) ( ) ( )( ) ( ) ( ) WGttttG ∈= 43214321

*

4

*

3

*

2

*

1 ,,,,,,,min,,,   

Proof: 

 Due to the convexity exhibited by the integrandG regarding control measures

4321 ,,,  , the presence of an optimal control solution is guaranteed.  

Subsequently, it is crucial to elucidate the most effective remedy. The 

Lagrangian function is formulated as follows: 

( )244

2

33

2

22

2
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2

1
 VVVVPQTQVQLQL +++++++=  (33) 

The Hamiltonian function is given as; 
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(34) 

Given  PRTALVSkk ,,,,,,, ∈  are distinct and non-overlapping variables. 

Currently, we are poised to implement the requisite variables into the 

Hamiltonian  for thorough examination. 

In our pursuit of clarifying the adjoint equation and satisfying the 

transversality condition, we employ the Hamiltonian function as our analytical 
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instrument. Through differential calculus, we ascertain the derivatives of the 

variables PRTALVS ,,,,,,  relative to the Hamiltonian. This methodical process 

results in the derivation of the adjoint equation, as presented below: 

( )( )( )   
( )( ) 
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(35) 

Given the conditions of transversally to be ( )  PRTALVSkTk ,,,,,,,0 ∈= . 

In the quest for minimizing the Hamiltonian, symbolized as H, concerning the 

optimal control variables, we engage in the differentiation process with respect to

4321 ,,,  . This yields a set of equations, which we subsequently equate to zero to 

determine the optimal control configuration. This methodology culminates in the 

attainment of the desired optimal control solution. 

With **,*,*,*,*,*, PPRRTTAALLVVSS =======  

Then, we have 

( ) ( )

( )

( ) ( )

0

0)1(

0

0

*

44

4

2

33

3

*

22

2

21

*

11

1

=−=


=−−−−−=


=−−=


=−+−=


PV
d

d

aAAaV
d

d

SV
d

d

SPAV
d

d

P

RATA

VS

SL










ρρ


 (36) 

By simplifying the expressions, we arrive at a solution for the optimal control 

strategy. 
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Applying the boundary conditions, the solution is provided as follows. 

( ) ( )

( )

( ) ( )

.,0max,1min

,
)1(

,0max,1min

,,0max,1min

,,0max,1min

4

4

3

3

2

2

1

21
1















 

=















 −+−−

=















 −

=















 −+

=

V

P

V

aAAa

V

S

V

SPA

P

RATA

VS

SL







ρρ


 
(38) 

Proved. 

3 RESULTS 

3.1 Numerical Simulation 

In this computational model, we present a method to analyze the temporal 

propagation of the ailment, fluctuations across various parameters, and the 

evaluation of intervention effects. This facilitates researchers and public health 

officials in gaining insights into disease behavior across diverse scenarios and 

evaluating the efficacy of various control strategies. 
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Table 3. Parameters with their values. 

Parameters Values Source 
φ  0.4 S. E. Mwaijande et al. [2] 

Γ  1000 S. E. Mwaijande et al. [2] 

1  0.99 Assumed 

1ρ  0.1 S. E. Mwaijande et al. [2] 

2ρ  0.2 S. E. Mwaijande et al. [2] 

2  0.9 Assumed 
µ  0.00172 S. E. Mwaijande et al. [2] 
τ  0.02 Assumed 
a  0.02 Estimated 
γ  0.1 Estimated 

1δ  0.8 Sholicah et al. [1] 

2θ  0.02 Estimated 

2δ  0.8 Sholicah et al. [1] 

3  0.5 Assumed 

pµ  0.83 S. E. Mwaijande et al. [2] 

η  
pµ•2  S. E. Mwaijande et al. [2] 

ξ  0.73 S. E. Mwaijande et al. [2] 

 

The state variables' initial conditions are as follows; ,1500)0( =S ,1400)0( =E

,880)0( =AI  ,550)0( =SI  ,500)0( =Q  ,800)0( =I and 1100)0( =R .  The requisite 

parameter values essential for conducting the simulation are delineated within the 

confines of Table 3. 

 

Figure 3. Variation of susceptible population with different phi values. 
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Figure 4. Variation of vaccinated population with different phi values. 

 

Figure 5. Variation of latent population with different phi values. 

 

Figure 6. Variation of acute population with different phi values. 
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Figure 7. Variation of treated population with different phi values. 

 

Figure 8. Variation of recovered population with different phi values. 

 

Figure 9. Variation of pathogens population with different phi values. 

2. Figure 10 through Figure 12 shows the effect of the pathogens shed rate by 

the acute individuals in the water or food.  
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Figure 10. Variation of acute population with different shed rates. 

 

Figure 11. Variation of treated population with different shed rates. 

 

Figure 12. Variation of recovered population with different shed rates. 

3. Figure 13 through Figure 19 shows the effect of the control strategies on 

the population. 
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Figure 13. Variation of susceptible population with control measures. 

 

Figure 14. Variation of vaccinated population with control measures. 

 

Figure 1 Variation of latent population with control measures. 
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Figure 2 Variation of acute population with control measures. 

 

Figure 3Variation of treated population with control measures. 

 

Figure 4Variation of recovered population with control measures. 
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Figure 5Variation of pathogens population with control measures. 

3.2 Discussion 

Figure 3 depicts a decline in the susceptible population as the vaccination 

coverage increases. This trend aligns with expectations, as vaccination diminishes 

the pool of individuals vulnerable to infection. In Figure 4, the rise in the proportion 

of vaccinated susceptible corresponds with an uptick in the vaccinated population, 

indicating the efficacy of vaccination drives in augmenting the immunized cohort. 

Figure 5 illustrates a downturn in the latent population, suggesting the efficacy of 

vaccination in curbing the number of individuals exposed to infection but not yet 

symptomatic. This decline may signify either a direct impact of vaccination on 

transmission or an indirect effect stemming from the reduced pool of susceptible. 

Similarly, Figure 6 demonstrates that as the vaccination rate climbs, the count of 

individuals in the acute infection phase diminishes, hinting at vaccination's potential 

in mitigating the prevalence of actively infected individuals in the populace.  

In Figure 7, the reduced incidence of acute infections due to vaccination 

results in fewer individuals necessitating treatment, implying that vaccination not 

only averts infection but also alleviates the strain on healthcare systems by 

decreasing the number of cases necessitating medical attention. Figure 8 showcases 

a decline in the recovered population, plausibly attributed to the reduction in the 

number of individuals contracting and subsequently recuperating from infections. 

This decline may stem from an overall reduction in infections owing to vaccination 

efforts. Moreover, Figure 9 reveals that the collective population of Hepatitis A and 

E pathogens within the community diminishes as vaccination diminishes the pool of 
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susceptible individuals available for transmission, thus constraining the diseases' 

spread. 

Figure 10 illustrates a negative correlation between the rate of pathogen 

excretion and the population of actively infected individuals displaying clinical 

symptoms. This correlation suggests that an increase in pathogen excretion leads to 

a decrease in the number of individuals manifesting acute symptoms. 

Correspondingly, Figure 11 indicates a reduction in the count of acutely infected 

individuals undergoing treatment as pathogen excretion rises. Figure 12 implies a 

decline in the overall count of recovered individuals, despite some recovering from 

the infection, possibly due to a higher rate of new infections outpacing the rate of 

recovery. These observations indicate that elevated pathogen excretion by 

individuals in the acute stage contributes to diminishing counts of acute infections, 

treated cases, and ultimately, recoveries. This underscores the necessity of 

regulating pathogen transmission to mitigate the spread of infectious diseases such 

as Hepatitis A and E. In Figure 13, the susceptible population experiences a 

noticeable increase, likely attributed to heightened awareness campaigns leading to 

heightened case reporting or a more accurate estimation of the true susceptible 

population due to enhanced surveillance. Figure 14 illustrates the positive impact of 

targeted vaccination efforts in augmenting the vaccinated population, thereby 

reducing the pool of susceptible individuals over time. Simultaneously, Figure 15 

depicts a decline in the latent population, indicating the efficacy of control measures 

in restraining the transmission dynamics of Hepatitis A and E. Health education 

initiatives are presumed to play a crucial role in shortening the duration of 

individuals in the latent stage by advocating for early detection and diagnosis. 

Moreover, Figure 16 illustrates a consistent decrease in the acute population, 

indicative of successful intervention strategies. Vaccination campaigns and 

treatment efforts synergistically act to mitigate the burden of acute infections, 

thereby limiting the propagation of the disease within the population. However, 

Figures 17 and 18 show nuanced responses of the treated and recovered populations, 

respectively, to the different control strategies. While the implementation of health 

education, vaccination, and treatment leads to an increase in both populations, the 

emphasis on sanitation appears to yield a reduction. This observation underscores 

the importance of a multifaceted approach in disease control, wherein sanitation 
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efforts complement but do not replace other essential interventions aimed at 

treatment and prevention. Interestingly, Figure 19 reveals that the pathogen 

population experiences a significant reduction as control strategies intensify. This 

decline underscores the effectiveness of sanitation initiatives in mitigating 

environmental contamination and interrupting the transmission cycle of Hepatitis A 

and E. By targeting the removal of pathogens from water or food supplies, sanitation 

measures contribute substantially to disease control efforts. 

Overall, findings underscore the transformative potential of multifaceted 

intervention strategies in taming Hepatitis A and E infections. Vaccination emerges 

as a cornerstone of disease control, reducing susceptibility and transmission rates. 

Concurrently, targeted treatment and health education initiatives bolster disease 

management and prevention efforts. Importantly, sanitation measures play a pivotal 

role in interrupting transmission cycles, mitigating environmental contamination, 

and enhancing overall disease control. This study represents a paradigm shift in 

public health dynamics, offering a holistic approach to infectious disease modeling 

and intervention design. By integrating mathematical modeling with real-world 

applications, this study provides actionable insights for policymakers, healthcare 

professionals, and public health practitioners. Findings herein pave the way for more 

effective, evidence-based strategies to combat Hepatitis A and E infections, 

ultimately advancing global health and well-being. 

4 CONCLUSION 

The analysis of the epidemiological dynamics of Hepatitis A and E infections 

demonstrates the critical importance of integrating diverse control strategies to 

mitigate the burden of these diseases on public health. This study highlights 

vaccination campaigns as a cornerstone for reducing the susceptible population, 

curtailing transmission, and alleviating pressure on healthcare systems. In tandem, 

health education initiatives play an essential role in fostering early detection, 

accurate diagnosis, and effective prevention, thereby curbing latent infections and 

empowering communities to adopt healthier behaviors. 

The findings also underscore the efficacy of a multifaceted intervention 

framework, as reductions in acute infections and subsequent treatment needs 



BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY 15(1), 2025, 1–36 

33 

highlight the synergistic effects of combining vaccination, treatment, and health 

education. While vaccination directly reduces the number of actively infected 

individuals, it also indirectly decreases the healthcare burden by minimizing the 

demand for treatment and related resources. However, the nuanced responses of 

treated and recovered populations to different measures emphasize the necessity of 

a balanced approach. Specifically, sanitation efforts emerge as a pivotal component 

for reducing environmental contamination, interrupting pathogen transmission 

cycles, and complementing other strategies such as vaccination and treatment. 

Future research should build upon this comprehensive framework by exploring 

the long-term implications of these strategies under varying epidemiological and 

environmental conditions. Key areas for further study include: 

-Model refinement: Incorporating more complex variables such as regional 

disparities, climate change effects, and socioeconomic factors to enhance predictive 

accuracy. 

- Cost-effectiveness analysis: Evaluating the economic feasibility of different 

intervention strategies to guide policymakers in resource allocation. 

- Dynamic intervention design: Investigating adaptive strategies that respond 

to real-time epidemiological data for improved disease management. 

- Pathogen evolution: Studying the impact of mutations in Hepatitis A and E 

viruses on the effectiveness of current interventions. 

- Community resilience: Assessing the role of integrated interventions in 

improving population resilience against future outbreaks. 

In summary, this study provides a robust framework for understanding and 

controlling Hepatitis A and E infections. By emphasizing the importance of a 

coordinated and evidence-based approach, it lays a strong foundation for future 

research and public health initiatives aimed at reducing disease burden and 

safeguarding global health. 
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