$(\Delta_{\nu}^{m})_{\mu}$ -Statistical Boundedness and Convergence of Order α

Çiğdem A. BEKTAŞ ¹, ², Tuba DİNÇ² ¹ Department of Mathematics, Firat University, Elazig, Türkiye ²Graduate School of Natural and Applied Sciences, Firat University, Elazig, Türkiye

⊠: <u>karahan.tuba@gmail.com</u> ^[D] <u>https://orcid.org/0000-0003-0397-3193</u> ^[D] <u>https://orcid.org/0000-0002-7450-6456</u>

Received (Geliş): 25.09.2025 Revision (Düzeltme): 18.03.2025 Accepted (Kabul): 23.04.2025

ABSTRACT

In this paper, we defined the concepts of $(\Delta_v^m)_u$ -statistical convergence and $(\Delta_v^m)_u$ -statistical boundedness for sequences u and v with nonzero terms. Then, we extend these concepts to the concepts of $(\Delta_{\lambda,v}^m)_u$ -statistical convergence and $(\Delta_{\lambda,v}^m)_u$ -statistical boundedness using the sequences (λ_n) satisfying the conditions $\lambda_1 = 1$, $\lambda_{n+1} \leq \lambda_n + 1$ and $\lambda_n \to \infty$ $(n \to \infty)$. Then, using the concepts of $(\Delta_{\lambda,v}^m)_u$ -statistical convergence and $(\Delta_{\lambda,v}^m)_u$ -statistical boundedness, we defined the sequence spaces $(\Delta_{\lambda,v}^m)_u (S_c^\alpha)$ and $(\Delta_{\lambda,v}^m)_u (S_b^\alpha)$ with the help of numbers α satisfying the condition $0 < \alpha \leq 1$. We also investigated the inclusion relations between these sequence spaces and between the sequence spaces.

Keywords: Difference Sequences, Statistical Boundedness, Statistical Convergence

α . Mertebeden $(\Delta_v^m)_u$ -İstatistiksel Sınırlılık ve Yakınsaklık

ÖZ

Bu makalede, terimleri sıfırdan farklı u ve v sayı dizileri için $(\Delta_v^m)_u$ -istatistiksel yakınsaklık ve $(\Delta_v^m)_u$ -istatistiksel sınırlılık kavramlarını tanımladık. Daha sonra bu kavramları $\lambda_1 = 1$, $\lambda_{n+1} \leq \lambda_n + 1$ ve $\lambda_n \to \infty$ $(n \to \infty)$ şartını sağlayan (λ_n) dizilerini kullanarak $(\Delta_{\lambda,v}^m)_u$ -istatistiksel yakınsaklık ve $(\Delta_{\lambda,v}^m)_u$ -istatistiksel sınırlılık kavramlarına genişlettik. Daha sonra $(\Delta_{\lambda,v}^m)_u$ -istatistiksel yakınsaklık ve $(\Delta_{\lambda,v}^m)_u$ -istatistiksel sınırlılık kavramlarını kullanarak $0 < \alpha \leq 1$ şartını sağlayan α sayıları yardımıyla $(\Delta_{\lambda,v}^m)_u (S_c^\alpha)$ ve $(\Delta_{\lambda,v}^m)_u (S_b^\alpha)$ dizi uzaylarını tanımladık. Ayrıca bu dizi uzayları arasındaki ve bazı özel durumlarında elde edilen dizi uzayları arasındaki kapsama bağıntılarını inceledik.

Anahtar Kelimeler: Fark Dizileri, İstatistiksel Sınırlılık, İstatistiksel Yakınsaklık

INTRODUCTION

Statistical convergence was studied independently by Fast and Steinhaus in 1951 [1,2]. Then, in 1953, Buck introduced the concept of statistical convergence for real and complex number sequences and its relationship with the theory of summability [3]. The same subject was introduced by Schoenberg as a method of summability [4].

The natural density of a set K is defined by $\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \le n : k \in K\}|$, where $|\{k \le n : k \in K\}|$, denotes the number of elements of the set K not greater than n.

A sequence $x = (x_k)$ if satisfies that: $\lim_{n \to \infty} \frac{1}{n} |\{k \le n : |x_k - l| \ge \varepsilon\}| = 0$, for all $\varepsilon > 0$ and some *l*, we say *x* is statistically convergent to *l* and denote it by $S - limx_k = l$ or $x_k \to l(S)$. The space of all statistically convergent sequences is denoted by *Sc*. If l = 0 then *x* is called statistically null sequence and the space of all statistically null sequences is denoted by Sc_0 . The space of statistically convergent sequences is a sequence algebra so; if $x = (x_k)$, $y = (y_k) \in Sc$ then $xy = (x_ky_k) \in Sc$. If $S - limx_k = l_x$ and $S - limy_k = l_y$, then $S - limx_ky_k = l_xl_y$. It is known that classical convergence implies statistical convergence, namely $c \subset Sc$.

In 2000, Mursaleen introduced the concept of λ -statistical converge, which is a more general form of statistical convergence, using the concept of $\lambda = (\lambda_n)$ sequence [5]. Such that if $\lim_{n \to \infty} \frac{1}{\lambda_n} |\{k \in I_n: |x_k - l| \ge \varepsilon\}| = 0$ is satisfied for all $\varepsilon > 0$ and some *l*, then t he sequence *x* is said to be λ -statistically convergent or S_{λ} -convergent to *l*, and the space of all λ -statistically convergent sequences is

denoted by S_{λ} . It can easily be seen that the λ -statistical convergence is same as the statistical convergence for $\lambda_n = n$, where all sequence $\lambda = (\lambda_n) \in \Gamma$ satisfies $\lambda_1 = 1$ and $\lambda_{n+1} \leq \lambda_n + 1$ conditions and diverges to infinity, and $I_n = [n - \lambda_n + 1, n]$. In this study, we will take the same.

Then Gadjiev and Orhan [6] first introduced the idea of order α of statistical convergence. This concept has attracted more attention after Çolak's works [7, 8]. After these Çolak and Bektaş [9] combined the concepts λ -statistical convergence and statistical convergence of order α together and defined λ -statistical convergence of order α , a more general form of both ideas, as follows: $x = (x_k)$ is λ statistically convergent to l of order α if satisfies that: $\lim_{n \to \infty} \frac{1}{(\lambda_n)^{\alpha}} |\{k \in I_n : |x_k - l| \ge \varepsilon\}| = 0, \text{ for } \lambda =$ $(\lambda_n) \in \Gamma$ and all $\varepsilon > 0$, where $0 < \alpha \le 1$.

The difference sequence concept defined by K1zmaz [10], was generalized to difference of order m by Et and Çolak [11]. Upon this Et and Nuray [12] generalized the statistical convergence concept to Δ^m -statistical convergence. According to this. $(\Delta^m x_k) = (\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1})$ so $\Delta^0 x = x$ and $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$ for the sequence $x = (x_k)$ and $\Delta^m(X) = \{x = (x_k): \Delta^m x \in X\}$, for any sequence space X. Here, $m \in \mathbb{N}$ is a finite number and we will use m as a finite natural number in this paper.

Çolak [13] defined generalized sequence space $\Delta_v(X)$ for any sequence spaces *X* and $v = (v_k)$ sequences consisting of nonzero complex numbers as follows.

 $\Delta_{v}(X) = \{x = (x_k) \colon \Delta_{v}(x) \in X\}$

and examined the topological properties of these spaces, where $\Delta_{\nu}(x) = (\Delta_{\nu}(x_k)) = (\nu_k x_k - \nu_{k+1}x_{k+1})$. Then these sequence spaces was generalized to Δ_{ν}^m by Et and Esi [14]. According to this,

$$\Delta_{v}^{m}(X) = \{x = (x_{k}): \Delta_{v}^{m}(x) \in X\},\$$
for $X = l_{\infty}, c, c_{0}$, where $\Delta_{v}^{0}(x) = (v_{k}x_{k}), \Delta_{v}^{m}(x) = (\Delta_{v}^{m-1}x_{k} - \Delta_{v}^{m-1}x_{k+\frac{1}{m}})$ and such that

$$\Delta_{\nu}^{m}(x_{k}) = \sum_{i=0}^{m} (-1)^{i} {m \choose i} \nu_{k+i} x_{k+i}.$$

Statistical boundedness is a much newer and less studied compared to statistical convergence. A real or complex statistically bounded sequence $x = (x_k)$ defined by Fridy and Orhan [15] for some $B \ge 0$ satisfies that; $\delta(\{k: |x_k| > B\}) = 0$. Space of all statistically bounded sequences is denoted by S_b . Then Bhardwaj and Gupta [16] generalized the concept of statistical boundedness as follows. If a sequence $x = (x_k)$ is statistically bounded of order α , then there is some $B \ge 0$ such that

$$\lim_{n \to \infty} \frac{1}{n^{\alpha}} |\{k \le n : |x_k| > B\}| = 0.$$

The space of all statistically bounded of order α sequences is denoted by S_b^{α} . Note that $S_b^{\alpha} = S_b$ for

 $\alpha = 1$ and $S_b^{\alpha} = w$ for $\alpha > 1$. So, throughout this article we will take α less than or equal to 1.

Later Temizsu and Et [17] defined statistical convergence in terms of Δ^m -difference sequences and $\lambda = (\lambda_n) \in \Gamma$ sequences as follows and gave some inclusion theorems related to these concepts. If a sequence $x = (x_k)$ is Δ^m -statistically bounded of order α , then there is some $B \ge 0$ such that $\lim_{n \to \infty} \frac{1}{n^{\alpha}} |\{k \le n: |\Delta^m x_k| > B\}| = 0$. The space of all such sequences $x = (x_k)$ is denoted by $\Delta^m(S_b^{\alpha})$ and it is obvious that $x \in w$ for $\alpha > 1$. A sequence $x = (x_k)$ is Δ_{λ}^m -statistically bounded of order α if there is some $B \ge 0$ such that

 $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |\{k \in I_n: |\Delta^m x_k| > B\}| = 0 \text{ for } \lambda = (\lambda_n) \in \Gamma.$ The space of all Δ_{λ}^m -statistically bounded sequences of order α is denoted by $\Delta_{\lambda}^m(S_b^{\alpha})$. For $\alpha=1$, it turns into Δ_{λ}^m -statistically bounded and the space of such these sequences is $\Delta_{\lambda}^m(S_b)$ [17].

MAIN RESULTS

In this section we will define $(\Delta_v^m)_u$ -statistically bounded and $(\Delta_v^m)_u$ -statistically convergent of order α and examine some inclusion relations.

Definition 1. Let $X=l_{\infty}$, c,c_0 and $u = (u_k)$, $v = (v_k)$ any fixed nonzero complex numbers' sequences. We define:

 $(\Delta_v^m)_u(X) = \{x = (x_k): (\Delta_v^m)_u(x) \in X\},\$ where $(\Delta_v^m)_u(x) = (u_k \Delta_v^m x_k).$

Throughout this paper we consider the sequences $u = (u_k)$, $v = (v_k)$ as sequences of nonzero complex numbers.

Definition 2. If there exists some $B \ge 0$ such that $\lim_{n \to \infty} \frac{1}{n^{\alpha}} |\{k \le n: |u_k \Delta_v^m x_k| > B\}| = 0$,

then the sequence $x = (x_k)$ is $(\Delta_v^m)_u$ -statistically bounded of order α and we denote the space of such sequences with $(\Delta_v^m)_u (S_b^\alpha)$.

It can easily be seen that if we take $\alpha > 1$ then the $(\Delta_v^m)_u u(S_b^\alpha)$ turns into w. If we take $\alpha = 1$, then the $x = (x_k)$ become $(\Delta_v^m)_u$ -statistically bounded and we will denote this sequences' space by $(\Delta_v^m)_u(S_b)$.

Theorem 1. Let $\alpha, \beta \in (0,1]$ such that $\alpha < \beta$. Then $(\Delta_{\nu}^{m})_{u}(S_{b}^{\alpha}) \subset (\Delta_{\nu}^{m})_{u}(S_{b}^{\beta})$ and this inclusion is strict.

Proof: Let $x \in (\Delta_v^m)_u(S_b^\alpha)$. Therefore, we know $\lim_{n\to\infty} \frac{1}{n^{\alpha}} |\{k \le n: |u_k \Delta_v^m x_k| > B\}| = 0$. Since $\alpha < \beta$ implies $n^{\alpha} < n^{\beta}$ and thus $\frac{1}{n^{\alpha}} > \frac{1}{n^{\beta}}$,

$$\begin{aligned} \frac{1}{n^{\alpha}} |\{k \leq n : |u_k \Delta_v^m x_k| > B\}| \\ > \frac{1}{n^{\beta}} |\{k \leq n : |u_k \Delta_v^m x_k| > B\}|. \end{aligned}$$

$$u_k = \begin{cases} \frac{1}{2k}, & k \neq n^3 \\ \frac{1}{2}, & k = n^3 \end{cases} (n = 0, 1, 2, 3, \dots),$$

then we write

 $u_k \Delta_v x_k = \begin{cases} 1, & k \neq n^3 \\ k, & k = n^3 \end{cases} \quad (n = 0, 1, 2, 3, \dots).$ For B = 1, we can easily see

 $|\{k \le n: |u_k \Delta_v x_k| > 1\}| = [\sqrt[3]{n}] - 1 \le \sqrt[3]{n} - 1 < \sqrt[3]{n}$. Where [] denotes greatest integer function. Therefore, we have:

$$\frac{1}{n^{\beta}} |\{k \le n: |u_k \Delta_v x_k| > 1\}| < \frac{\sqrt[3]{n}}{n^{\beta}}.$$

Let $0 < \alpha < \frac{1}{3} < \beta \le 1$. By taking the limit as $n \to \infty$, we obtain $x \in (\Delta_v^m)_u(S_b^\beta)$. From the property greatest integer function, we know $\sqrt[3]{n-1} < [\sqrt[3]{n}] \le \sqrt[3]{n}$ which implies:

$$\frac{\sqrt[3]{n-2}}{n^{\alpha}} < \frac{1}{n^{\alpha}} |\{k \le n: |u_k \Delta_v^m x_k| > 1\}|.$$

By taking the limit, we obtain $x \notin (\Delta_v^m)_u(S_b^\alpha)$.

From Theorem 1 by setting $\beta = 1$, we obtain $(\Delta_v^m)_u(S_b^\alpha) \subset (\Delta_v^m)_u(S_b)$. Note that this inclusion is strict for $\alpha \in (0,1)$.

Proposition 1. $(\Delta_v^m)_u(l_\infty) \subset (\Delta_v^m)_u(S_b^\alpha)$, and this inclusion is strict.

Proof: If $x \in (\Delta_v^m)_u(l_\infty)$, then there exists some $B \ge 0$ such that $|(\Delta_v^m)_u x_k| = |u_k \Delta_v^m x_k| \le B$ for all $k \in \mathbb{N}$. Thus $\{k \le n: |u_k \Delta_v^m x_k| > B\} = \emptyset$ and hence

$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}|\{k\leq n\colon |u_k\Delta_v^m x_k|>B\}|=0.$$

This implies that $x \in (\Delta_v^m)_u(S_b^\alpha)$. To show that the converse inclusion does not always hold, we can take $u_k = v_k = 1$ for all $k \in \mathbb{N}$ and sequence x like this,

$$x = (x_k) = \begin{cases} k^3, & k \text{ is prime number,} \\ k, & otherwise. \end{cases}$$

For m = 2, we have:

$$\Delta_{\nu}^{2} x = \begin{cases} 6k+6, & k \text{ is prime number,} \\ 0, & otherwise. \end{cases}$$

Since the density of prime numbers is zero, we conclude that $(\Delta_v^2)_u x$ is statistically bounded. However, it is clear that this sequence is not bounded.

Corollary 1. $(\Delta_v^m)_u(l_\infty) \subset (\Delta_v^m)_u(S_b)$ and this inclusion is strict.

Araştırma Makalesi/ Research Article DOI : 10.18586/msufbd.1573487

Theorem 2.

(*i*) If $u = (u_k) \in S_b$, then $\Delta_v^m(S_b) \subset (\Delta_v^m)_u(S_b)$, (*ii*) If $v = (v_k) \in S_b$, then $(\Delta^m)_u(S_b) \subset (\Delta_v^m)_u(S_b)$ and these inclusions are strict.

Proof: (i) Let $u \in S_b$ and $x \in \Delta_v^m(S_b)$. Then there exists numbers $B_u, B_x \ge 0$ such that $\lim_{n \to \infty} \frac{1}{n} |\{k \le n: |u_k| > B_u\}| = 0$ and $\lim_{n \to \infty} \frac{1}{n} |\{k \le n: |\Delta_v^m x_k| > B_x\}| = 0$ Let $B_u \cdot B_x = B$. Thus, we have: $\{k \le n: |u_k \Delta_v^m x_k| > B\}$

$$\subseteq \{k \le n : |\Delta_v^m x_k| > B_x\} \\ \cup \{k \le n : |u_k| > B_u\}$$

and therefore, $\frac{1}{n} | \{k \le n:$

$$\begin{split} |\{k \le n: \ |u_k \Delta_v^m x_k| > B\}| \\ \le \ \frac{1}{n} |\{k \le n: \ |\Delta_v^m x_k| > B_x\}| \\ + \ \frac{1}{n} |\{k \le n: \ |u_k| > B_u\}| \end{split}$$

is obtained. Taking the limit as $n \to \infty$ on both sides of the above inequality, $x \in (\Delta_v^m)_u(S_b)$ is obtained.

(*ii*) The proof is similar to that of (*i*).

Corollary 2. If $u, v \in S_b$ then following inclusions are strict.

(*i*)
$$\Delta^m(S_b) \subset (\Delta^m_{\nu})_u(S_b),$$

(*ii*) $\Delta^m(l_{\infty}) \subset (\Delta^m_{\nu})_u(S_b).$

Theorem 3. (*i*) If $|u_k| \le |u'_k|$ for all $k \in \mathbb{N}$, then $(\Delta_v^m)_{u'}(S_b) \subseteq (\Delta_v^m)_u(S_b)$,

(*ii*) If $|v_k| \le |v'_k|$ for all $k \in \mathbb{N}$, then $\left(\Delta_{v'}^m\right)_u (S_b) \subseteq (\Delta_v^m)_u (S_b)$.

Proof: (*i*) Let $|u_k| \le |u'_k|$ for all $k \in \mathbb{N}$ and $x \in (\Delta_v^m)_{u'}(S_b)$. So there exists a number $B \ge 0$ such that:

$$\lim_{n \to \infty} \frac{1}{n} |\{k \le n: |u'_k \Delta_v^m x_k| > B\}| = 0.$$

Since $|u_k| \le |u'_k|$ for all $k \in \mathbb{N}$, we have the following inclusion

$$\{k \le n: |u_k \Delta_v^m x_k| > B\}$$

$$\subseteq \{k \le n: |u'_k \Delta_v^m x_k| > B\}$$

and thus

$$\begin{aligned} |\{k \le n: |u_k \Delta_v^m x_k| > B\}| \\ \le |\{k \le n: |u'_k \Delta_v^m x_k| > B\}| \end{aligned}$$

and

$$\frac{1}{n}|\{k \le n: |u_k \Delta_v^m x_k| > B\}|$$

 $\leq \frac{1}{n} |\{k \leq n : |u'_k \Delta_v^m x_k| > B\}|.$ Taking the limit as $n \to \infty$ on both sides of the

Taking the limit as $n \to \infty$ on both sides of the inequality, we find that $x \in (\Delta_v^m)_u(S_b)$.

(*ii*) The proof is similar to that of (*i*).

Corollary 3. It is obvious from Theorem 3 that:

(*i*) If $|u_k| \ge 1$ for all $k \in \mathbb{N}$, then $(\Delta_v^m)_u(S_b) \subseteq \Delta_v^m(S_b)$,

(*ii*) If $|v_k| \ge 1$ for all $k \in \mathbb{N}$, then $(\Delta_v^m)_u(S_b) \subseteq (\Delta^m)_u(S_b)$,

(*iii*) If $|v_k| \le |v'_k|$ and $|u_k| \le |u'_k|$ for all $k \in \mathbb{N}$, then $(\Delta^m_{v'})_{u'}(S_b) \subseteq (\Delta^m_{v})_u(S_b)$.

Theorem 4. The inclusion $(\Delta_v^m)_u(S_b) \subset (\Delta_v^{m+1})_u(S_b)$ is strict.

Proof: For the strictness we can use example which we gave in proof of the Proposition 1. Let u = v = (1) and define the sequence *x* as follows:

 $x = (x_k) = \begin{cases} k^3, & k \text{ is prime number,} \\ k, & otherwise. \end{cases}$ For m = 1, $(\Delta_v)_u x$ is statistically bounded, but for m = 0, is not statistically bounded.

Corollary 4. For $0 < \alpha \le \beta \le 1$, the strict inclusion $(\Delta_v^m)_u(S_b^\alpha) \subset (\Delta_v^{m+1})_u(S_b^\beta)$ follows from Theorem

4 and Theorem 1.

Definition 3. If a sequence $x = (x_k)$ satisfies $\lim_{n \to \infty} \frac{1}{n^{\alpha}} |\{k \le n : |u_k \Delta_v^m x_k - l| \ge \varepsilon\}| = 0, \text{ for all } \varepsilon > 0 \text{ and some } l, \text{ then } x \text{ is called } (\Delta_v^m)_u \text{-statistically convergent of order } \alpha$. The space of such sequences is denoted by $(\Delta_v^m)_u(Sc^{\alpha})$. If in above equation we take $\alpha = 1$, then $x = (x_k)$ is called $(\Delta_v^m)_u$ -statistically convergent and we will denote this sequences' space by $(\Delta_v^m)_u(Sc)$. It is obvious that $(\Delta_v^m)_u(Sc^{\alpha})$ turns into w for $\alpha > 1$.

Theorem 5. Let $\alpha, \beta \in (0,1]$ such that $\alpha < \beta$. Then $(\Delta_v^m)_u(Sc^\alpha) \subset (\Delta_v^m)_u(Sc^\beta)$ and this inclusion is strict for certain α and β .

The proof is trivial.

Corollary 5. From Theorem 5, we obtain $(\Delta_v^m)_u(Sc^\alpha) \subset (\Delta_v^m)_u(Sc)$ and this inclusion is strict when $0 < \alpha < 1$.

Proposition 2. $(\Delta_v^m)_u(Sc^{\alpha}) \subset (\Delta_v^m)_u(S_b^{\alpha})$ and this inclusion is strict.

Proof: Let $x \in (\Delta_v^m)_u(Sc^{\alpha})$. In this case, there exists a number l such that

 $\lim_{n \to \infty} \frac{1}{n^{\alpha}} |\{k \le n: |u_k \Delta_v^m x_k - l| \ge \varepsilon\}| = 0 \qquad (1)$

for a fixed $\varepsilon > 0$. Using the properties of the absolute value,

 $\begin{aligned} \{k \leq n: \ |u_k \Delta_v^m x_k| \geq \varepsilon + |l| \} \\ & \subseteq \{k \leq n: \ |u_k \Delta_v^m x_k - l| \geq \varepsilon \} \end{aligned}$

and thus

$$\begin{split} |\{k \leq n: \ |u_k \Delta_v^m x_k| \geq \varepsilon + |l|\}| \\ \leq \ |k \leq n: \ |u_k \Delta_v^m x_k - l| \geq \varepsilon| \end{split}$$

holds. If we multiply both side of the above inequality by $\frac{1}{n^{\alpha}}$ and taking the limit for $n \to \infty$, we obtain from (1), $x \in (\Delta_v^m)_u(S_b^{\alpha})$. To show that the converse inclusion does not always hold, let m = 1, $u = (u_k) = \left(\frac{1}{k+1}\right), v = (v_k) = (k+1)$ and define the sequence $x = (x_k)$ as:

 $x_k = \begin{cases} k, & k \text{ is odd number,} \\ -k, & k \text{ is even number.} \end{cases}$ It is easy to see that for m = 1;

(-2) k is odd mu

$$(\Delta_v)_u x = \begin{cases} -2, & k \text{ is odd number,} \\ 2, & k \text{ is even number.} \end{cases}$$

This sequence is statistically bounded but not statistically convergent.

Proposition 3. $(\Delta_v^m)_u(c) \subset (\Delta_v^m)_u(Sc)$ and this inclusion is strict.

Theorem 6. If $u = (u_k) \in Sc$, then $\Delta_v^m(Sc) \subset (\Delta_v^m)_u(Sc)$ and this inclusion is strict.

Proof: Since (Sc) is a sequence algebra, the proof is obvious. To show the strictness of the inclusion, let m = 2, and define $x = (x_k) = (k^2)$, $v = (v_k) = (k)$, and the statistically convergent sequence $u = (u_k)$ as

$$u_k = \begin{cases} (-1)^k, & k \text{ is square,} \\ \frac{1}{k}, & otherwise. \end{cases}$$

Then, we have $\Delta_{\nu}^2 x = (6k + 6)$, and thus

$$(\Delta_{\nu}^{2})_{u}x_{k} = \begin{cases} (-1)^{k}(6k+6) , & k \text{ is sequare,} \\ 6+\frac{6}{k}, & otherwise. \end{cases}$$

This sequence is statistically convergent, but $\Delta_v^2 x$ is not statistically convergent.

As a common consequence of Proposition 3 and Theorem 6, we can obtain the following result:

Corollary 6. If $u \in Sc$, then $\Delta_v^m(c) \subseteq (\Delta_v^m)_u(Sc)$.

Definition 4. Let $\alpha \in (0,1]$ and $\lambda \in \Gamma$. We say that a sequence $x = (x_k)$ is $(\Delta_{\lambda,v}^m)_u$ -statistically bounded of order α if there exists a number $B \ge 0$ such that:

$$\lim_{n\to\infty}\frac{1}{\lambda_n^{\alpha}}|\{k\in I_n: |u_k\Delta_v^m x_k| > B\}| = 0.$$

The set of all such sequence is denoted by $(\Delta_{\lambda,\nu}^m)_{\mu}(S_b^{\alpha})$.

Note that this concept reduces to $(\Delta_v^m)_u$ -statistical boundedness of order α for $\lambda_n = n$ for all $n \in \mathbb{N}$.

Definition 5. Let $\alpha \in (0,1]$ and $\lambda \in \Gamma$. A sequence $x = (x_k)$ is $(\Delta_{\lambda,\nu}^m)_u$ -statistically convergent of order α if there exists a number *l* such that:

 $\lim_{n\to\infty}\frac{1}{\lambda_n^{\alpha}}|\{k\in I_n\colon |u_k\Delta_v^m x_k-l|>\varepsilon\}|=0.$

By $(\Delta_{\lambda,\nu}^m)_u(Sc^{\alpha})$, we will denote the space of $(\Delta_{\lambda,\nu}^m)_u$ -statistically convergent sequences.

If we get $\lambda_n = n$ for all $n \in \mathbb{N}$, this concept turns into $(\Delta_v^m)_u$ -statistical convergence of order α .

Proposition 4. The inclusion $(\Delta_{\lambda,\nu}^m)_u(Sc^\alpha) \subset (\Delta_{\lambda,\nu}^m)_u(S_b^\alpha)$ is strict.

Proof: Let $x \in (\Delta_{\lambda\nu}^m)_u(Sc^{\alpha})$. In this case, there exists a number *l* such that

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |\{k \in I_n : |u_k \Delta_v^m x_k - l| > \varepsilon\}| = 0$$

for fixed $\varepsilon > 0$.

Using the properties of the absolute value, we can write:

 $\{k \in I_n: |u_k \Delta_v^m x_k| > |l| + \varepsilon\}$ $\subseteq \{k \in I_n: |u_k \Delta_v^m x_k - l| > \varepsilon\}$ and thus

and thus

$$\begin{aligned} \frac{1}{\lambda_n^{\alpha}} |\{k \in I_n \colon |u_k \Delta_v^m x_k| > |l| + \varepsilon\}| \\ &\leq \frac{1}{\lambda_n^{\alpha}} |\{k \in I_n \colon |u_k \Delta_v^m x_k - l| > \varepsilon\}|. \end{aligned}$$

Taking the limit as $n \to \infty$ and setting $|l| + \varepsilon = B$, we obtain $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |\{k \in I_n: |u_k \Delta_v^m x_k| > B\}| = 0$. Thus, $x \in (\Delta_{\lambda,v}^m)_u (S_b^{\alpha})$. To prove the strictness, by taking $(\lambda_n) = (n)$, we can reconsider the example in Proposition 2.

Theorem 7. Let $\lambda, \mu \in \Gamma, \lambda_n \leq \mu_n$ for all $n \in \mathbb{N}$ and $0 < \alpha \leq \beta \leq 1$.

(i) If
$$\liminf_{n\to\infty} \frac{\lambda_n^n}{\mu_n^\beta} > 0$$
, then $(\Delta_{\mu,\nu}^m)_u (S_b^\beta) \subset (S_b^m)$

 $\left(\Delta^m_{\lambda,\nu}\right)_{\mu}(S^{\alpha}_b),$

(*ii*) If $\lim_{n \to \infty} \frac{\lambda_n^{\alpha}}{\mu_n^{\beta}} = 1$ and $\lim_{n \to \infty} \frac{\mu_n}{\mu_n^{\beta}} = 1$, then $(\Delta_{\mu,\nu}^m)_{\mu} (S_b^{\beta}) = (\Delta_{\lambda,\nu}^m)_{\mu} (S_b^{\alpha}).$

Proof: The proof can be referred to Temizsu and Et, Theorem 4 [17].

From Theorem 7 we obtain the following results:

Corollary 7. Let $\lambda, \mu \in \Gamma, \lambda_n \leq \mu_n$ for all $n \in \mathbb{N}$ and $\alpha \in (0,1]$.

(*i*) If
$$\liminf_{n \to \infty} \frac{\lambda_n}{\mu_n} > 0$$
, then $\left(\Delta^m_{\mu,\nu}\right)_u(S_b) \subset \left(\Delta^m_{\lambda,\nu}\right)_u(S_b)$
(*ii*) If $\lim_{n \to \infty} \frac{\lambda_n}{\mu_n} = 1$, then $\left(\Delta^m_{\mu,\nu}\right)_u(S_b) = \left(\Delta^m_{\lambda,\nu}\right)_u(S_b)$.

Corollary 8. Let $\lambda \in \Gamma$, $\lambda_n \leq n$ for all $n \in \mathbb{N}$ and $\alpha \in (0,1]$.

(*i*) If
$$\liminf_{n \to \infty} \frac{\lambda_a^n}{n} > 0$$
, then $(\Delta_v^m)_u(S_b) \subset (\Delta_{\lambda,v}^m)_u(S_b^\alpha)$,

(*ii*) If
$$\lim_{n \to \infty} \frac{\lambda_n^{\alpha}}{n} = 1$$
, then $(\Delta_v^m)_u(S_b) = (\Delta_{\lambda,v}^m)_u(S_b^{\alpha})$.

Theorem 8. Let $\lambda, \mu \in \Gamma$, $\lambda_n \leq \mu_n$ for all $n \in \mathbb{N}$ and $0 < \alpha \leq \beta \leq 1$.

(i) If
$$\liminf_{n\to\infty} \frac{\lambda_n^{\alpha}}{\mu_n^{\beta}} > 0$$
, then $(\Delta_{\mu,\nu}^m)_u (Sc^{\beta}) \subseteq (\Delta_{\lambda,\nu}^m)_u (Sc^{\alpha})$,
(ii) If $\lim_{n\to\infty} \frac{\lambda_n^{\alpha}}{\mu_n^{\beta}} = 1$ and $\lim_{n\to\infty} \frac{\mu_n}{\mu_n^{\beta}} = 1$, then $(\Delta_{\mu,\nu}^m)_u (Sc^{\beta}) = (\Delta_{\lambda,\nu}^m)_u (Sc^{\alpha})$.
The proof is trivial.

From Theorem 8 we can get the following result:

Corollary 9. Let $\lambda \in \Gamma$, $\lambda_n \leq n$ for all $n \in \mathbb{N}$ and $\alpha \in (0,1]$.

(i) If $\liminf_{n \to \infty} \frac{\lambda_n^{\alpha}}{n} > 0$, then $(\Delta_{\nu}^m)_u(Sc) \subseteq (\Delta_{\lambda,\nu}^m)_u(Sc^{\alpha})$, (ii) If $\lim_{n \to \infty} \frac{\lambda_n^{\alpha}}{n} = 1$, then $(\Delta_{\nu}^m)_u(Sc) = (\Delta_{\lambda,\nu}^m)_u(Sc^{\alpha})$.

Proposition 5. $(\Delta_{\nu}^{m})_{u}(l_{\infty}) \subset (\Delta_{\lambda,\nu}^{m})_{u}(S_{b}^{\alpha}).$

Proof: Let $x \in (\Delta_v^m)_u(l_\infty)$. Thus there exists $B \ge 0$ such that $\{k: |u_k \Delta_v^m x_k| > B\} = \emptyset$. Thus, we have

 $\{k: |u_k \Delta_v^m x_k| > B\} \supseteq \{k \in I_n: |u_k \Delta_v^m x_k| > B\}.$

Therefore, we obtain

 $\lim_{n\to\infty}\frac{1}{\lambda_n^{\alpha}}|\{k\in I_n:\;|u_k\Delta_v^mx_k|>B\}|=0.$

ACKNOWLEDGEMENT

The second author was supported by scholorship-2211/A of TUBITAK (The Scientific and Technological Research Council of Turkey). This article was produced from the Phd's thesis prepared under the supervision of Çiğdem BEKTAŞ.

REFERENCES

- [1] Fast H. Sur la convergence statistique, in Colloquium Mathematicae, 1951.
- [2] Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique, in Colloq. math, 1951
- [3] Buck R. C. Generalized Asymptotic Density. American Journal of Mathematics, 75 335-346, 1953.
- [4] Schoenberg I.J. The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66 361-775, 1959.
- [5] Mursaleen M. λ-statistical convergence, Mathematica Slovaca, 50 111-115, 2000.
- [6] Gadjiev A., Orhan C. Some approximation theorems via statistical convergence, The Rocky Mountain Journal of Mathematics, 129-138, 2002.
- [7] Çolak R. Statistical convergence of order α, Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India, 121–129, 2010.
- [8] Çolak R. On λ-statistical convergence, in Conference on Summability and Applications, Turkey, 2011.
- [9] Çolak R., Bektaş Ç. A. λ-Statistical convergence of order α, Acta Mathematica Scientia, 31 953-959, 2011.

- [10] Kizmaz H. On certain sequence spaces, Canadian Mathematical Bulletin, 24 169-176, 1981.
- [11] Et M., Çolak R. On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21 377-386, 1995.
- [12] Et M., Nuray F. Delta (m)-Statistical convergence, Indian Journal of Pure & Applied Mathematics, 32, 2001.
- [13] Çolak R. On some generalized sequence spaces, Communications Faculty Of Science University of Ankara Series A1 Mathematics and Statistics, 035-046, 1989.
- [14] Et M., Esi A. On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc., 23 25-32, 2000.
- [15] Fridy J., Orhan C. Statistical limit superior and limit inferior, Proceedings of the American Mathematical Society, 125 3625-3631, 1997.
- [16] Bhardwaj V. K., Gupta S. On some generalizations of statistical boundedness, Journal of Inequalities and Applications, 12, 2014.
- [17] Temizsu F., Et M. Some results on generalizations of statistical boundedness, Mathematical Methods in the Applied Sciences, 44 7471-7478, 2021.