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ABSTRACT

In this paper, we defined the concepts of (A7), -statistical convergence and (AT"),,-statistical boundedness for
sequences u and v with nonzero terms. Then, we extend these concepts to the concepts of (A,’lfl,,)u-statistical
convergence and (Aﬁ,)u-statistical boundedness using the sequences (4,) satisfying the conditions 4, =1,
Aps1 <A+ 1 and 4, - o0 (n - o0). Then, using the concepts of (Aj{l,,)u-statistical convergence and (A,’{f,,)u-
statistical boundedness, we defined the sequence spaces (Afv)u(sg) and (Agz,)u(sg‘) with the help of numbers a

satisfying the condition 0 < @ < 1. We also investigated the inclusion relations between these sequence spaces
and between the sequence spaces obtained in some special cases.
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a. Mertebeden (A™),,-Istatistiksel Simrliik ve Yakinsakhk

]CB)uZ makalede, terimleri sifirdan farkli u ve v say dizileri igin (A7), -istatistiksel yakinsaklik ve (A7), -istatistiksel
smirlilik kavramlarini tanimladik. Daha sonra bu kavramlart 1, = 1, 4,41 < 1, + 1 ve 1,, » o (n — o) sartini
saglayan (4,,) dizilerini kullanarak (A,T{’lv)u-istatistiksel yakinsaklik ve (A;f‘,,)u-istatistiksel stnirhilik kavramlarina
genislettik. Daha sonra (Ajfv)u—istatistiksel yakinsaklik ve (A}{?,,)u-istatistiksel siurlilik kavramlarmi kullanarak
0 < a <1 sartin1 saglayan « sayilar1 yardimiyla (Afv)u(Sg‘) ve (A;'},,)u(s o) dizi uzaylarini tanimladik. Ayrica
bu dizi uzaylan arasindaki ve bazi 6zel durumlarinda elde edilen dizi uzaylar1 arasindaki kapsama bagmtilarin
inceledik.

Anahtar Kelimeler: Fark Dizileri, Istatistiksel Smuirlilik, Istatistiksel Yakinsaklik

INTRODUCTION

Statistical ~ convergence  was  studied
independently by Fast and Steinhaus in 1951 [1,2].
Then, in 1953, Buck introduced the concept of
statistical convergence for real and complex number
sequences and its relationship with the theory of
summability [3]. The same subject was introduced by
Schoenberg as a method of summability [4].

The natural density of a set K is defined by

§(K) = lim ~ |{k < n:k € K}|, where |{k < n:k €
n—-oo
K}, denotes the number of elements of the set K not

greater than n.
A sequence x = (x;) Iif satisfies that:

lim %l{k <nlx,—1l =€} =0, forall e >0 and
n—oo

some [, we say x is statistically convergent to [ and
denote it by S — limx;, = [ or x;, = [(S). The space

of all statistically convergent sequences is denoted by
Sc. If L = 0then x is called statistically null sequence
and the space of all statistically null sequences is
denoted by Sc,. The space of statistically convergent
sequences is a sequence algebra so; if x = (x),y =
(yi) € Sc then xy = (xpyy) € Sc. If § — limx,, =
L, and S — limy, = 1, then S — limx, y, = Ll,,. It
is known that classical convergence implies
statistical convergence, namely ¢ c Sc.

In 2000, Mursaleen introduced the concept of
A-statistical converge, which is a more general form
of statistical convergence, using the concept of 1 =

(A,) sequence [5]. Such that if lim — |{k €

n-oo An
I:|x, — 1] = &}| = 0 is satisfied for all £ >0 and
some [, then t he sequence x is said to be A-
statistically convergent or S;-convergent to [, and the
space of all A-statistically convergent sequences is
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denoted by S;. It can easily be seen that the A-
statistical convergence is same as the statistical
convergence for A, = n, where all sequence A =
(A,) €T satisfies 1, =1 and A, <A, +1
conditions and diverges to infinity, and I, = [n —
A, + 1,n]. In this study, we will take the same.
Then Gadjiev and Orhan [6] first introduced
the idea of order a of statistical convergence. This
concept has attracted more attention after Colak's
works [7, 8]. After these Colak and Bektas [9]
combined the concepts A-statistical convergence and
statistical convergence of order a together and
defined A-statistical convergence of order o, a more
general form of both ideas, as follows: x = (x;,) is A-
statistically convergent to [ of order « if satisfies that:

lim ——|{k € I: |x, — | > e} =0, for A=

n—-oo (An)%

(Ap) Erandall e > 0, where 0 < a < 1.

The difference sequence concept defined by
Kizmaz [10], was generalized to difference of order
m by Et and Colak [11]. Upon this Et and Nuray [12]
generalized the statistical convergence concept to
A™-statistical convergence. According to this.
(A™x,) = (A™ 1x, — A™ 1x,, 1) so A% = x and
Ax = (Axy,) = (x;, — x341) for the sequence x =
(xx) and A™(X) = {x = (x): A™x € X3}, for any
sequence space X. Here, m € N is a finite number
and we will use m as a finite natural number in this
paper.

Colak [13] defined generalized sequence
space A, (X) for any sequence spaces X and v = (vy,)
sequences consisting of nonzero complex numbers as
follows.

A, (X) = {x = (x): A, (x) € X}
and examined the topological properties of these
spaces,  where A, (x) = (4,(x)) = (Wexy —
Vk+1Xk+1). Then these sequence spaces was
generalized to A} by Et and Esi [14]. According to
this,

A (X) = {x = (x;): A7'(x) € X},
for X = 1, c,co, Where AS(x) = (vgxy), AT (x) =
(A™1x, — A™1x, ;) and such that

m

A7 () = Z(_l)i (Tln) Uk+iXg+i:
i=0

Statistical boundedness is a much newer and
less studied compared to statistical convergence. A
real or complex statistically bounded sequence
x = (x;) defined by Fridy and Orhan [15] for some
B = 0 satisfies that; 6 ({k: |x,| > B}) = 0. Space of
all statistically bounded sequences is denoted by S,,.
Then Bhardwaj and Gupta [16] generalized the
concept of statistical boundedness as follows. If a
sequence x = (x; ) is statistically bounded of order
a, then there is some B > 0 such that

o1
rlll_r)rc}on—al{k <n: |x| > B} =0.

The space of all statistically bounded of order «
sequences is denoted by S7. Note that Sf = S, for

a=1and S§ =w for a > 1. So, throughout this
article we will take « less than or equal to 1.

Later Temizsu and Et [17] defined statistical
convergence in terms of A™-difference sequences
and A = (4,,) € I' sequences as follows and gave
some inclusion theorems related to these concepts. If
a sequence x = (x) is A™-statistically bounded of
order a, then there is some B =0 such that
,lll_r,?onia [{k < n: |A™x,| > B}| = 0. The space of all

such sequences x = (x;) is denoted by A™(S;) and
it is obvious that x e w for @ > 1. A sequence
x = (xx) is AP*-statistically bounded of order a if
there is some B > 0 such that

Am%l{k €1, |A™x,| > B} =0 for 1= (1,) €

. The space of all A}*-statistically bounded
sequences of order a is denoted by A}*(S¢). For o=1,
it turns into AJ*-statistically bounded and the space
of such these sequences is AJ*(S,) [17].

MAIN RESULTS

In this section we will define (AT"),,-statistically
bounded and (A7"),,-statistically convergent of order
a and examine some inclusion relations.

Definition 1. Let X=l,, c,coand u = (uy), v = (vy)
any fixed nonzero complex numbers’ sequences. We
define:

(A (X) = {x = (x;): (A)y(x) € X},
where (A71), (x) = (weAy'xy).
Throughout  this paper we consider the
sequences u = (u), v = (v;) as sequences of
nonzero complex numbers.

Definition 2. If there exists some B = 0 such that
lim 21k < 2 Judfxid > B}l =0,

then the sequence x = (x;) is (ATY),-statistically
bounded of order @ and we denote the space of such
sequences with (ATY),, (S5).

It can easily be seen that if we take @ > 1 then
the (A7Y),, u(SF) turns into w. If we take a = 1, then
the x = (x;) become (A"),-statistically bounded
and we will denote this sequences’ space by

(A5)u(Sp)-

Theorem 1. Let a, 8 € (0,1] such that « < 8. Then
(O™, (SH) © (M), (SF) and this inclusion is
strict.

Proof: Let x € (AM),(S5). Therefore, we know

lim ni I{k < n: |upA™x,| > B}| = 0. Since a < B
n—-oo
implies n < nf and thus = > —,
1 n n
—a [l < n:|uedy'x | > Bl

1
> n_ﬁl{k < n: |luAl'x | > B}



We take the limit of both sides of the above
inequality as n — oo and find that x € (A7), (SF).
To prove the strictness of the inclusion we can
choose as x = (x) = (k) and v = (v,) = (k —
1). Atthat rate form = 1, A'x = A,x = (A,xy) =
(X, v — Xp41Vk41) = (2k) is found. If we define u
by

1
ﬁ' k + Tl3
we=179 n=0,12.3,..),

-, k=n3
> n

then we write

1, k#nd
Ay xy, = {k, k= n3 n=0123,..).

For B = 1, we can easily see
{k < n: |uApxg | > 13 = [[3\/5]] -1<in-1<
Yn. Where [] denotes greatest integer function.
Therefore, we have:
3

niﬁl{k < |udyxg| > 13 < n_\//?
Let0<a< % < B < 1. By taking the limitas n —»
o, we obtain x € (A7), (SF). From the property
greatest integer function, we know Yn-1<
[¥/n] < ¥n which implies:

Yn-2 1

na e

[k < n: Jup A, | > 13,

By taking the limit, we obtain x & (A7), (S{).

From Theorem 1 by setting g =1, we
obtain (A7), (S5) c (AT),(S,). Note that this
inclusion is strict for a« € (0,1).

Proposition 1. (A7), (le) € (AT)L(SF), and this
inclusion is strict.

Proof: If x € (A7), (l), then there exists some
B = 0 suchthat [(AT), x| = lu, ATx, | < B forall
keN. Thus {k<n: |uAlx,|>B}=0 and
hence
1
lim — |{k < n: [wA7'x,| > B} = 0.

n-on
This implies that x € (A7"),(S5). To show that the
converse inclusion does not always hold, we can take
u, = v, = 1 forall k € N and sequence x like this,
X = (x) = {k3, k is prime number,
k, otherwise.
For m = 2, we have:
A2y = {6k + 6, k is prime number,
v 0, otherwise.
Since the density of prime numbers is zero, we

conclude that (A%),x is statistically bounded.
However, it is clear that this sequence is not bounded.

Corollary 1. (A™),(l,) € (A™),(S,) and this
inclusion is strict.

Theorem 2.

(@) Ifu = (ug) € Sy, then AT(S,) € (A7), (Sy),
(i) If v = (vy) € Sp, then (A™),,(Sp) < (A7) (Sp)
and these inclusions are strict.

Proof: (i) Letu € S, and x € AT*(S,). Then there
exists numbers B,, B, = 0 such that lim %I{k <

n—-oo
n: |wel > By} =0 and ylli_%%l{k <n: |ATx| >
B} =0
Let B, - B, = B. Thus, we have:
{k < n: |wA'x, | > B}
C {k <n: |A7'xy| > By}
Uf{k <n: |ug| > By}
and therefore,

1
;l{k <n |ukA1;mxk| > B}l
1
< —Hke<n 167 > B

1
+ Zl{k <n: |ul| > By}

is obtained. Taking the limit as n — oo on both sides
of the above inequality , x € (AT"),,(S}) is obtained.

(i) The proof is similar to that of (i).

Corollary 2. If u,v € S, then following inclusions
are strict.

@ A™(Sp) < (A7) (Sp),
(i) A™(lw) < (A7) (Sp)

Theorem 3. (i) If |uy| < |u| for all k € N, then
(A7) (Sp) € (ATDu(Sh),
(ii) If |vg| < |vyg| for all k € N, then

(A7) (Sp) € (A1)u(Sp).

Proof: (i) Let |uy| < |uy| for all k e N and x €
(A7), (Sp). So there exists a number B = 0 such
that:
Tlli_r)lgo%I{k <n: |[u'yA"x,| > B}| = 0.
Since |uy| < |u| for all k€N, we have the
following inclusion
{k < n: |uAJ'xi | > B}
c {k <n: |uATx,| > B}
and thus
I{k < n: |wA7'xi | > B}
< |{k < n: |u'( Al'x,| > B}|
and

1
El{k < n: |ugAltx,| > B}

1
< El{k <n |u'kALnxk| > B}l

Taking the limit as n — o on both sides of the
inequality, we find that x € (ATY),,(Sp).

(ii) The proof is similar to that of (i).



Corollary 3. It is obvious from Theorem 3 that:
(@ I Jul=1 for all keN, then
A)u(Sp) S AT(Sp),
(i) I J|vl=1 for all keN, then
A7)u(Sp) & (A™)u(Sp),
(iit) If |vg]| < vl and uy| < |uy| for all
k € N, then (A;’%)w(sb) c (A™),(Sy).

Theorem 4. The inclusion (A7Y),(S,) C
(Am+1),(S,) is strict.

Proof: For the strictness we can use example which
we gave in proof of the Proposition 1. Letu = v =
(1) and define the sequence x as follows:
x = (x) = {kS, k is prime number,
k, otherwise.
For m =1, (A,),x is statistically bounded, but for
m = 0, is not statistically bounded.

Corollary 4. For 0 < a < 8 < 1, the strict inclusion
(A7), (SE) © (A7), (SP) follows from Theorem
4 and Theorem 1.

Definition 3. If a sequence x = (x;) satisfies
ggoniauk < n:uAlx, — 1| = €}l =0, for all
€ > 0.and some [, then x is called (AT, -statistically
convergent of order a. The space of such sequences
is denoted by (A7"),,(Sc%). If in above equation we
take @ =1, then x = (x;) is called (A}),-
statistically convergent and we will denote this
sequences’ space by (AM™),(Sc). It is obvious that
(A7), (Sc™®) turns into w for a > 1.

Theorem 5. Let , 8 € (0,1] such that @ < 8. Then
(A™),(Sc®) € (A™),(ScP) and this inclusion is
strict for certain a and .

The proof is trivial.

Corollary 5. From Theorem 5, we obtain
(Am™),(Sc*) < (A™),(Sc) and this inclusion is
strictwhen 0 < a < 1.

Proposition 2. (AT, (Sc %) c (AT, (Sf) and this
inclusion is strict.

Proof: Let x € (A™),,(Sc%). In this case, there
exists a number [ such that
gmniauk <n lwyAlx,—1=>e}=0 (1)
forafixed € > 0. Using the properties of the absolute
value,
{k <n: |[wAlx, | = e+ |1}
C{k <n: |luAlx, — 1| = ¢}
and thus
[{k < n: Ju Alx | = €+ |11}
< |k < n JupAltxg, — 1] = €|

holds. If we multiply both side of the above
inequality by ni“ and taking the limit for n — oo, we
obtain from (1), x € (A7), (S5). To show that the

converse inclusion does not always hold, let m = 1,
u=(u) = (ﬁ) v=(v) = (k+1) and define

the sequence x = (xy) as:
Y = { k, k is odd number,
k= 1k, k is even number.
It is easy to see that for m = 1;

(B,),x = {—2, k is odd number,

viu 2, k is even number.
This sequence is statistically bounded but not
statistically convergent.

Proposition 3. (A™),,(¢) € (A™),(Sc) and this
inclusion is strict.

Theorem 6. If u = (u) € Sc, then A (Sc) c
(A™),,(Sc) and this inclusion is strict.

Proof: Since (Sc) is a sequence algebra, the proof
is obvious. To show the strictness of the inclusion,
let m = 2, and define x = (x;) = (k?), v = (v) =
(k), and the statistically convergent sequence u =
(uy) as
(-1D*,  kissquare,
u =4 1 )

-, otherwise.
k
Then, we have AZx = (6k + 6), and thus

(=1)¥*(6k +6) , k is sequare,

2 —
(@) = 6+ 7 otherwise.

This sequence is statistically convergent, but A2x is
not statistically convergent.

As a common consequence of Proposition 3
and Theorem 6, we can obtain the following result:

Corollary 6. If u € Sc, then AT'(c) < (A7), (Sc).

Definition 4. Let « € (0,1] and A € I'". We say that a
sequence x = (x;) is (A,) -statistically bounded
of order « if there exists a number B > 0 such that:

1
lim A—al{k € I,: luAT'x, | > B} = 0.
n

n—-co

The set of all such sequence is denoted by
(87, (8.

Note that this concept reduces to (A7),-
statistical boundedness of order a for A, =
nforalln € N.

Definition 5. Let ¢ € (0,1] and A € I'. A sequence
x = (x) is (A}'f,,)u—statistically convergent of order

«a if there exists a number [ such that:



1
lim — |{k € I;; |uAT'x, — 1] > €}| = 0.
n-oo }{%

By (47,),(5c®), we will denote the space of
(Afv)u—statistically convergent sequences.

If we get 4,, = n forall n € N, this concept turns
into (ATY),,-statistical convergence of order a.

Proposition 4. The inclusion (47,) (Sc®) <
(87,),, (58 is strict.

Proof: Let x € (47,) (Sc®). In this case, there
exists a number [ such that

1
lim —|{k € I;: |[uAT'x, —1| >¢€}| =0
n—»oo}frll

for fixed € > 0.
Using the properties of the absolute value, we can
write:
{k € L;: lw AT x| > || + €}
c{k €I,: |lugAl'x, — l| > €}
and thus

1
7 |tk € I Ay | > U] + e}
n

1
< l—al{k € I: |ugAl'xy — 1] > €},
n
Taking the limit as n — oo and setting || + € = B,
we obtain lim = |{k € L,: lwAx | > B} = 0.
n—oo An

Thus, x € (A7},) (S). To prove the strictness, by

taking (1) = (n), we can reconsider the example in
Proposition 2.

Theorem 7. LetA, u €', 4, < u, foralln € N and
0<a<p<sl

@0 If 1%31% >0, then (A%,) (S5) <
(a7,) (S,

(i) If 11113)10% =1 and HQOZ—E =1, then
(@), (s5) = (aF,), (55)-

Proof: The proof can be referred to Temizsu and Et,
Theorem 4 [17].

From Theorem 7 we obtain the following
results:
Corollary 7. LetA,u € I', A,, < u, foralln € Nand
a € (0,1].
i .. on
@) If hglogf; > 0, then (A;'},,)u(sb) c (A;';,)u(s,,)

(i) If lim 2—11 = 1, then (A7%,) (S,) = (ALS,). (S).

Corollary 8. Let A€ ', 1, <n for all n € N and
a € (0,1].

(0 If 11722&% > 0, then (A7),.(S,) < (A%%,). (S,
(&) If 1im 2 = 1, then (A7),.(S,) = (813), (S9).

Theorem 8. Let A, u € I', A, < u, foralln € N and
0<a<sp<l

(0 If 111%1% >0, then (A7) (Sc#) €

(@ar,). (sc®),
(i) If lim 2 = 1 and lim £2 = 1, then

n—oo uy, n-oo py

(Az'l")u(scﬁ) = (A;lr.lv)u(sca)-
The proof is trivial.

From Theorem 8 we can get the following result:

Corollary 9. Let A€, 1, <n for all n € N and
a € (0,1].

() If liminf22

>0, then (A7),(Sc) <

n—-oo
(87,), (Se,
i) If lim 2 =1 then (A7), (Sc) =
n—-oo
(a7,), (Se®.

Proposition 5. (A™),,(I,,) © (A;'},,)u(sgf).

Proof: Let x € (A]Y),(l). Thus there exists B >
0 such that {k: |u;AT'x; | > B} = @. Thus, we have
{k: |lui AT x| > B} 2 {k € I;: |up AT x| > B}

Therefore, we obtain

1
lim — |{k € I,;; |wAT'xx| > B}| = 0.
n—>00/1%
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